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S1 Experimental Section 
S1.1 Characterizations 
The morphology and microstructure of LDHs and various samples were analyzed using transmission electron microscope (TEM, Talos F200s, Netherlands) and scanning electron microscopy (SEM) equipped with an energy-dispersive spectrometer (EDS) on a Sigma-500, ZEISS instrument. The 1H cross-polarization magic angle spinning (CP/MAS) nuclear magnetic resonance (NMR) measurements were conducted on a 500 MHz NMR spectrometer from Bruker Corp., Germany. The chemical compositions and structure of the materials were analyzed using a Nicolet 7000 Fourier-transform infrared (FT-IR) spectrometer, Raman spectra (Xplora, HORIBA, France), and an X-ray photoelectron spectrometer (XPS, Thermo Fisher Escalab Xi+, America), respectively. UV-vis transmission spectra were obtained using a Perkin-Elmer Lambda 35 UV-vis spectrometer (Perkin-Elmer, USA). Uniaxial stress-strain tests were performed using a dynamic mechanical thermal analyzer (DMA-Q800) from TA Instruments, USA. The tension rate was 2.0 mm/min, with at least five specimens were tested per batch to obtain an average value. Shear adhesion strength was evaluated using a universal testing machine (AGS-X 5KN) according to the ASTM F2255 standard. X-ray diffraction (XRD) analysis was performed using a D8-A25 X-ray diffractometer with a 2θ range of 5° to 80° (Bruker, Germany). The water contact angle of the samples was measured at room temperature using a DSA30 CA analyzer from Kruss, Germany. Thermographic images were captured using an infrared thermal camera (FLIR E60) with a thermal sensitivity of ≤2% (Fluke, America).
Temperature-dependent FTIR spectra of PSH/BM/LDHs film from 25 to 55 °C were used for performing 2D correlation analysis. The 2D correlation analysis was carried out using the software 2D Shige ver. 1.3 (©Shigeaki Morita, Kwansei-Gakuin University, Japan, 2004-2005), and further plotted into contour maps using the Origin program. In the contour maps, warm colors (red) are defined as positive intensities, while cold colors (blue) represent negative intensities. 
The thermal stability of the samples was tested using TGA-8000 thermogravimetry analyzer (PerkinElmer, USA). Samples (5-10 mg) were heated from 30 °C to 800 °C at a heating rate of 10 °C/min under an air/N₂ atmosphere with a gas flow of 50 mL/min. The pyrolysis products were monitored by TGA coupled with FTIR (TGA-FTIR) and TGA coupled with MS (TGA-MS). For TGA-FTIR testing, a TGA-8000 (PerkinElmer, USA) was combined with an FTIR (PerkinElmer, USA) infrared spectrometer. Samples (5-10 mg) were heated from 30 °C to 800 °C at a heating rate of 10 °C/min under an air/N₂ atmosphere with a gas flow of 50 mL/min. For TGA-MS testing, the gaseous products were analyzed by gas chromatography-mass spectrometry (GC-MS, PerkinElmer, USA) under the same conditions as TGA-FTIR (air).
The limited oxygen index (LOI) was measured using a JF-3 oxygen index instrument (Jiangning, China) with sample dimensions of 150×10×10 mm3, following the ASTMD-2863 standard. The average values from three samples were recorded. The UL-94 vertical burning test was conducted using a CZF-3 instrument (Nanjing Jiangning Analytical Instruments Co., Ltd., China) according to ASTM D 3801, and the average values of three samples were recorded. A cone calorimeter (Fire Testing Technology, UK) was used to evaluate the combustion performance of the FPUF filled with potassium salt according to ISO 5660-1, with wood specimens (100×100×10 mm3) tested at a heat flux of 50 kW/m2. The smoke toxicity gas concentration was measured using an FTT0095 smoke toxicity tester (Fire Testing Technology, UK) according to ISO 5659-2. 

S2 Supplementary Figures and Tables
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Fig. S1 (a) The 1H NMR spectra, (b) FTIR spectra and assignments, (c-d) TGA and DTG curves at air atmosphere, and (e) shear strength for wood of poly(SSS-HEMA) with various SSS/HEMA ratios
To confirm the chemical structure and composition of the three copolymers, infrared spectra were conducted (Fig. S1a). Notably, a broad absorption peak at ~3407 cm-1 and a sharp absorption peak at 1711 cm-1 are attributed to the hydroxyl groups (C-OH) and carbonyl (C=O) of HEMA unit, respectively. Additionally, characteristic peaks at 1179 cm-1 (S=O symmetric vibrational stretching), 1037 cm-1 (S=O asymmetric vibrational stretching), and 1591 cm-1 (-Ph) for SSS unit. 

[image: ]
Fig. S2 (a) SEM image, (b) corresponding size distribution, (c) XRD patterns of LDHs, and (d) TEM images as well as corresponding to mapping images
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Fig. S3 EDS elemental mapping images for O, Na, Mg, and N from the cross-section of the PSH/BM/LDH-coated wood
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Fig. S4 (a) XPS results and (b) XPS C 1s spectra of PSH and PBML film
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Fig. S5 Temperature-variable FTIR spectra of PSH/BM/LDHs films upon heating from 25 to 55 C in the regions of (interval: 1 C)
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Fig. S6 (a) The stress-strain curves, (b) tensile strength, (c) and toughness values of various paper samples
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Fig. S7 Digital image of PL, PBM, and PBML coatings against wood after shear tests
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Fig. S8 Combustion process of PSH, PBM, PL, and PBML papers
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Fig. S9 (a1-d4) Optical image and SEM of PSH, PBM, PL, and PBML papers after combustion
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Fig. S10 Digital images for the top surface of PBML paper after being exposed to the alcohol lamp flame (~500 C) for different time
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Fig. S11 SEM images (EDS mapping) of the PBML paper: (a1-c1) the top surface and (a2-c3) the cross-section after being exposed to the alcohol lamp flame (~500 C) for different time (e.g., 10 s, 30 s, and 300 s) as well as (a4-c4) corresponding EDS mapping
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Fig. S12 (b-d) Raman spectra of the top surface materials after fire treatment with different time, and (a) corresponding to microscope images of the test point
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Fig. S13 (a) XPS results and (b) XPS Na1s of PBML film after burning for different time
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Fig. S14 (a-f) XPS C 1s, and B 1s spectra of PBML film after being flame attacked with different time
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Fig. S15 (a-d) The three-dimensional spectra of pyrolysis products of PSH, PL, PBM, and PBML papers under air atmosphere
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Fig. S16 (a-d) The infrared spectra of PSH, PL, PBM, and PBML under air atmosphere at various temperatures
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Fig. S17 Normalized absorbance curves of (a) SO2, (b) aromatic, (c) CO2, and (d) H2O during pyrolysis of PBML composites obtain from TGA coupled with FTIR during 350-800 C under air atmosphere. The normalized absorbance (a.u./g) of each sample is calculated by dividing the measured absorbance by its own mass
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Fig. S18 The curves of SO2, aromatic, CO2, and H2O during pyrolysis of PBML composites obtain from TGA coupled with FTIR during 30-800 C under air atmosphere
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Fig. S19 TGA and DTG curves of PSH, PL, PBM, and PBML papers from 30 to 800 C at N2 atmosphere
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Fig. S20 (a1-d1) The three-dimensional spectra of pyrolysis products of PSH, PL, PBM, and PBML papers under air atmosphere. (a2-d2) The infrared spectra of PSH, PL, PBM, and PBML under N2 atmosphere at various temperatures. (a3-d3) The pyrolysis products of PSH, PL, PBM, and PBML obtained from TGA coupled with GC-MS at 400 C under N2 atmosphere
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Fig. S21 (a-e) Optical photos showing the burning process of wood and coated woods as a function of time during UL-94 tests
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Fig. S22 (a-e) THR, residue mass, SPR, TSP, and COY and CO2Y of various samples
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Fig. S23 (a-e) Digital images of residue chars for (a) pure wood, (b) PSH@wood, (c) PL@wood, (d) PBM@wood, and (e) PBML@wood after cone testing
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Fig. S24 (a1-d1) Digital photos and (a2-d3) corresponding SEM images of the coating top surface with increasing heat-temperature, showing the evolution of an integral compact char

[image: ]
Fig. S25 (a-b) Digital photos PBML films 400 C and 450 C after heat treatment, respectively. (c) The XRD patterns of the coating top surface with increasing heat-temperature
Note: In general, the variation trend of the samples treated with temperature is consistent with that of the samples exposed to flame. As the temperature increases, the PBML film gradually carbonizes to form char, which then slowly transforms into a white, expanded, ceramic-like appearance (Fig. S24a1-d1 and Fig.S25a-b). In addition, SEM images show the formation of nanoclusters and their gradual integration into the carbon layer, together forming a stronger fire-proof protective layer (Fig. S24a2-d3). Similarly, XRD patterns further confirm this result, indicating that the amorphous carbon layer was gradually covered by inorganic salts or inorganic oxides (Fig. S25c).
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Fig. S26 (a) wood and (b) PBML@wood under the butane flame for 120 s, along with their side temperature variation with time determined by the IR camera
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Fig. S27 Digital images of pure wood and PBML@wood after burning under the butane flame for 120 s




Table S1 Designation of the poly(SSS-co-HEA) with various SSS/HEMA ratios
	Polymer
	SSS (mol)
	HEMA (mol)
	(NH4)2S2O8 (wt. %)

	PSH-1
	40
	60
	2

	PSH-2
	50
	50
	2

	PSH-3
	60
	40
	2



Table S2 Designation and components of the hybrid coatings for various samples
	
	Composition (wt%)
	
	

	Note
	PSH
	M2B
	LDH
	Si-coatings
	Transparency

	PSH
	100
	
	
	
	Yes

	PSH/LDH
	88.1
	
	11.9
	
	Yes

	PSH/BM
	89.6
	10.4
	
	
	Yes

	PSH/BM/LDH
	80
	9.2
	10.8
	
	Yes

	PSH @wood
	100
	
	
	
	Yes

	PSH/LDH@wood
	88.1
	
	11.9
	
	Yes

	PSH/BM @wood
	89.6
	10.4
	
	
	Yes

	PSH/BM/LDH@wood
	80
	9.2
	10.8
	
	Yes

	Si-PSH/BM/LDH@wood
	80
	9.2
	10.8
	~2 wt.%
	Yes

	PSH/BM/LDH@PU
	80
	9.2
	10.8
	
	Yes


Note: Regardless of whether the amount of BM or LDH added exceeds the ratio written in the above table, the final samples will not remain transparent. 


Table S3 Signs of the main cross-peaks in 2Dcos synchronous and asynchronous spectra. Signs read in synchronous and asynchronous spectra (left: Syn; right: Asyn)
	1077
	+, -
	+, -
	+, -
	+, -
	-, +
	+, -
	+, -
	

	1121
	+, -
	+, -
	+, -
	+, -
	-, +
	+, -
	
	

	1173
	+, -
	+, -
	+, -
	+, -
	-, +
	
	
	

	1280
	-, +
	-, +
	-, +
	-, +
	
	
	
	

	1600
	+, -
	+, +
	+, +
	
	
	
	
	

	1636
	+, -
	+, -
	
	
	
	
	
	

	1652
	+, -
	
	
	
	
	
	
	

	1716
	
	
	
	
	
	
	
	

	
	1716
	1652
	1636
	1600
	1280
	1173
	1121
	1077


Sign multiplication (Syn×Asyn)
	1077
	-
	-
	-
	-
	-
	-
	-
	

	1121
	-
	-
	-
	-
	-
	-
	
	

	1173
	-
	-
	-
	-
	-
	
	
	

	1280
	-
	-
	-
	-
	
	
	
	

	1600
	-
	+
	+
	
	
	
	
	

	1636
	-
	-
	
	
	
	
	
	

	1652
	-
	
	
	
	
	
	
	

	1716
	
	
	
	
	
	
	
	

	
	1716
	1652
	1636
	1600
	1280
	1173
	1121
	1077



According to Noda’s rule (see Note S2), the order of different wavenumbers is: 1077  1121  1173  1280  1652  1636  1600  1716, i.e. v(C-OH)  v(B-O)  v(S=O)  v(B-OH)  v(N-H)  v(C=N)  v(C=O).



Table S4 Percentage of each component in char after burning various times
	
	
	10 s (%)
	30 s (%)
	300 s (%)

	B 1s
	B(OH)3
	17.2%
	6.1%
	

	
	B2O3
	38.5%
	43.7%
	17.8%

	
	B-O-C
	44.3%
	
	

	
	B-C
	
	26.4%
	27.4%

	
	BN
	
	
	6.3%

	
	Na2B4O7
	
	
	48.5%

	C 1s
	C-C
	60.9%
	30.8%
	32.6%

	
	C=C
	1.2%
	12.8%
	26.3%

	
	C-SOx
	37.9%
	45.8%
	33.0%

	
	Na2-CO3
	
	10.6%
	8.2%


Table S5 TGA data of different film samples under air atmosphere
	Samples
	T5% a
	Tmax1 b
	Tmax2 c
	CY800

	PSH
	229
	362
	518
	19

	PL
	175
	445
	578
	18

	PBM
	222
	399
	582
	18

	PBML
	215
	447
	585
	24


a: Temperature at 5% weight loss; b: Tmax1: Temperature at maximum thermal decomposition; c: CY800: Residual rate at 800 C
Table S6 Cone calorimeter testing data for wood and various coated woods
	Samples
	Wood
	PSH
	PL
	PBM 
	PBML

	tign (s) a
	141
	3784
	4445
	3923
	unignited

	pHRR (kW/m2) a
	38123
	1248
	11611
	915
	232

	tpHRR (s)
	81
	4169
	44310
	4315
	7296

	THR (MJ/m2) a
	564
	313
	242
	264
	122

	pSPR (m2/m2) a
	0.0210.002
	0.0440.005
	0.0270.003
	0.0470.002
	0.0190.003

	TSP (m2) a
	1.70.3
	3.10.2
	2.90.3
	2.00.2
	2.70.1

	Residue mass (%) a
	322
	181
	162
	151
	101

	COY (kg/kg) 
	1084
	1363
	1066
	1015
	1746

	CO2Y (kg/kg)
	180830
	97226
	133231
	104136
	54118

	FPI (m2s/kW) b
	0.0370.003
	3.0390.03
	3.8380.4
	4.3270.3
	>38.662

	FGI (kW/m2/s) c
	47.703
	0.300.02
	0.260.02
	0.210.01
	0.030.003


[bookmark: _Hlk174038967]a tign: time to ignition; pHRR: peak heat release rate; THR: total heat release; pSPR: peak smoke release rate; TSR: total smoke release; TSP: total smoke production; COY/ CO2Y: CO yield and CO2 yield.
b: FPI: fire performance index; FGI: fire growth index.

Table S7 Toxicity of gases an emitted from smoke of various wood materials (ND is not detected) 
	Samples
	Wood
	PSH
	PL
	PBM
	PBML
	Reference concentration (mg/m3)

	CO2 (ppm)
	1283328
	909143
	1074195
	1103146
	474132
	72,000

	CO (ppm)
	38.22.4
	69.55.3
	150.424.3
	145.317.0
	107.517.9
	1380

	SO2 (ppm)
	13.41.3
	9.91.41173
	19.02.18364
	18.41.30394
	9.42.65405
	262

	NO (ppm)
	1.30.35
	1.00.14
	0.90.10
	1.10.22
	0.30.08
	38

	NO2 (ppm)
	ND
	ND
	ND
	ND
	ND
	

	HF (ppm)
	ND
	ND
	ND
	ND
	ND
	25

	HCl (ppm)
	1.050.24
	0.080.01
	0.050.01
	0.040.01
	0.010.01
	75

	HBr (ppm)
	0.260.03
	0.270.01
	0.210.03
	0.250.02
	0.250.02
	99

	HCN (ppm)
	0.960.16
	0.340.08
	0.190.03
	0.380.04
	0.270.02
	55

	CITG
	0.0210.002
	0.0170.001
	0.0280.002
	0.0280.002
	0.0160.001
	


The conventional toxicity index (CITG) consists principally of the ratios of measured concentrations of toxic smoke gas components to their reference concentrations, according to the formula: 

where the model is the combustion of 0.1 m2 of product; the gaseous effluents are dispersed in 150 m3; the volume of the test chamber is 0.51 m3; the exposed surface of the test specimen is 0.004225 m2. ci and Ci is the concentration measured in mg/m3 of the ith gas in the smoke chamber according to EN ISO 5659-2 and the IDLH reference concentration in mg/m3 of the ith gas. CITG values are dimensionless. The threshold value is 0.75 based on the standard (EN 45545-2), which means that values inferior to those could qualify the product for rail vehicles. 
Table S8 Combustible gases emitted from smoke of various wood materials
	Samples
	Wood
	PSH
	PL
	PBM
	PBML

	CH2O (ppm)
	1.00.18
	4.70.39
	8.11.31
	7.11.43
	4.71.63

	CH4 (ppm)
	2.90.45
	16.40.36
	27.03.40
	27.53.47
	23.43.67

	C2H4 (ppm)
	0.060.01
	2.0810.02
	3.100.48
	3.980.56
	2.891.13

	C3H6 (ppm)
	2.290.60
	4.140.56
	6.011.23
	8.601.01
	5.352.65
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Table S9 A comparison of comprehensive properties with different MXene-based materials
	Film type a
	Substrate b
	LOI (%)
	TTI/heat flux c
(s/ kWm-2)
	pHRR (kW/m2)
	THR (MJ/m2)
	FGI (kW/m2s)
	CITG
	FRI d
	Refs.

	DPDHPP@PU
	PU
	NG
	18/35
	218.6
 (-44.2%)
	19.5 
(-13.7%)
	NG
	NG
	NG
	[S1]

	PVH@PVH/BN/GP
	PU
	35.8
	21/25
	226 
(-34%)
	38 (33%)
	7.6
	NG
	9.51
	[S2]

	PBM
	PU
	NG
	5/35
	306.7 (+23.1%)
	34.6 (+2.9%)
	NG
	NG
	0.67
	[S3]

	PDA/GO
	PU
	NG
	NG/35
	273.2 
(-64.9%)
	21.4 
(-12.3%)
	NG
	NG
	NG
	[S4]

	F-MC
	SiRF
	27.6
	27.6/25
	87.4 
(-7.6%)
	54.1 
(-17.9%)
	NG
	NG
	NG
	[S5]

	APP/SWCNHs
	Cotton
	NG
	Unignited/35
	22.1 
(-92.2%)
	3.35 
(-58.4%)
	0.47
	NG
	∞
	[S6]

	UCPR-LDHs
	Wood
	NG
	46/50
	91.5 
(-24.3%)
	33.6 
(-26.2%)
	NG
	NG
	1.96
	[S7]

	MCPR-LDHs
	Wood
	NG
	55/50
	98.8 
(-11.9%)
	39.1 
(-20.3%)
	NG
	NG
	1.87
	[S7]

	silica/polyurea
	Wood
	48
	65.2/NG
	121 
(-45.9%)
	121 
(-23.8%)
	NG
	NG
	11.01
	[S8]

	PEI-GMWCNT/MMT
	Wood
	NG
	237/35
	201 
(-43.1%)
	68 
(-44.7%)
	0.46
	NG
	15.40
	[S9]

	PM-Fe3+/OA
	Wood
	38.6
	15/NG
	55.7 
(-56.6%)
	2.1 
(-52.2%)
	2.32
	NG
	10.5
	[S10]

	MAW4
	Wood
	54.5
	89/50
	254 
(-22.3%)
	54.9 
(-29.5%)
	NG
	NG
	13.5
	[S11]

	MPW-4
	Wood
	42.4
	119/50
	146.9 
(-46.3%)
	32.2 
(-30.8%)
	NG
	NG
	22.8
	[S12]

	PSH/BM/LDH
	Wood
	37.3
	Unignited/50
	23 
(-94.0%)
	12 
(-78.6%)
	0.03
(-99.4%)
	0.016
	>4417.4
	This work


a PVH/BN/GP: poly(2-hydroxyethyl acrylate -co-sodium vinylsulfonate)/boron nitride/low-melting glass powders; PBM: polyurethane acrylate resin/ melamine-based acrylate resin/(N, N-bis (2-hydroxyethyl acrylate) aminomethyl phosphonic acid diethyl ester (BHAAPE))/MXene; PDA/GO: polydopamine-graphene oxide; F-MC: 1, 1, 2, 2-tetrahydroperfluorodecyltrimethoxysilane /cellulose nanofibers/MXene; SiRF: polydimethylsiloxane foam; APP/SWCNHs: ammonium polyphosphate/carbonaceous nanomaterials-single-walled carbon nanohorns; MCPR/UCPR-LDHs: melamine-formaldehyde/urea-formaldehyde resin-layered double hydroxides; PEI-GMWCNT/MMT: polyethyleneimine/graphitized MWCNT/Na-montmorillonite sheets; PM-Fe3+/OA: melamine/phytic acid/anhydrous ferric chloride/octadecylamine; MAW4: melamine urea-formaldehyde resin/adenosine-based phosphonate; MPW: melamine-urea-formaldehyde/ammonium hydrogen phytate.
b TTI: time to ignition. c FRI: flame Retardancy Index.

3 Movies S1-S21
Movie S1 Water bucket lifting process with PBML coating
Movie S2 Combustion processes of PSH film under butane torch flame attack
Movie S3 Combustion processes of PL film under butane torch flame attack
Movie S4 Combustion processes of PBM film under butane torch flame attack
Movie S5 Combustion processes of PBML film under butane torch flame attack
Movie S6 UL-94 testing of wood
Movie S7 UL-94 testing of PSH@wood
Movie S8 UL-94 testing of PL@wood
Movie S9 UL-94 testing of PBM@wood
Movie S10 UL-94 testing of PBML@wood
Movie S11 cone calorimeter testing of PBML@wood
Movie S12 Burning process for uncoated PU
Movie S13 Thermal video of burning process for uncoated PU
Movie S14 Burning process for coated PU
Movie S15 Thermal video of burning process for coated PU
Movie S16 Burning process for uncoated wood
Movie S17 Thermal video of burning process for uncoated wood
Movie S18 Burning process for coated wood
Movie S19 Thermal video of burning process for coated wood
Movie S20 Water-tolerant test of Si-PBML@wood
Movie S21 UL-94 testing of Si-PBML@wood
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S1 Experimental Section  

S1.1 Characterizations  

The morphology and microstructure of LDHs and various samples were analyzed using transmission 

electron microscope (TEM, Talos F200s, Netherlands) and scanning electron microscopy (SEM) 

equipped with an energy-dispersive spectrometer (EDS) on a Sigma-500, ZEISS instrument. The 

1

H 

cross-polarization magic angle spinning (CP/MAS) nuclear magnetic resonance (NMR) measure-

ments were conducted on a 500 MHz NMR spectrometer from Bruker Corp., Germany. The chemical 

compositions and structure of the materials were analyzed using a Nicolet 7000 Fourier-transform 

infrared (FT-IR) spectrometer, Raman spectra (Xplora, HORIBA, France), and an X-ray photoelec-

tron spectrometer (XPS, Thermo Fisher Escalab Xi

+

, America), respectively. UV-vis transmission 

spectra were obtained using a Perkin-Elmer Lambda 35 UV-vis spectrometer (Perkin-Elmer, USA). 

Uniaxial stress-strain tests were performed using a dynamic mechanical thermal analyzer (DMA-

Q800) from TA Instruments, USA. The tension rate was 2.0 mm/min, with at least five specimens 

were tested per batch to obtain an average value. Shear adhesion strength was evaluated using a 

universal testing machine (AGS-X 5KN) according to the ASTM F2255 standard. X-ray diffraction 

