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Fig. S1 SEM images of a the cross-area of birds of paradise stem, b Ground tissues and vascular bundle tissue in the stem of birds of paradise. c Tracheid and vessel elements and d Porous structure at the channel surface
[image: ]
Fig. S2 SEM images of a-c PAN, d-f) LM/PAN11. g-i) LM/PAN21 and j-l) LM/PAN31 fiber
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Fig. S3 Water contact angle test of a PAN, b LM/PAN11 and c LM/PAN31 fibers
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Fig. S4 High-resolution XPS spectra of Ga 2p in LM/PAN11, LM/PAN21 and LM/PAN31 evaporators
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Fig. S5 Optical images of a the wet spinning dope with a PAN to LM weigh ratio of 0, 1:1, 1:2 and 1:3, b the dope with a homogenous distribution after 24 h. c The prepared PAN, LM/PAN11, LM/PAN21 and LM/PAN31 evaporators
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Fig. S6 a Digital picture of the LM/PAN fiber. b LM/PAN evaporators with various configurations
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Fig. S7 Reflectance spectra of (a dry and (b PAN, LM/PAN11, LM/PAN21 and LM/PAN31 evaporators. Transmittance spectra of c dry and d PAN, LM/PAN11, LM/PAN21 and LM/PAN31 evaporators
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Fig. S8 Schematic diagram of a apparatus for evaporation experiments and b relative optical image, c the surface area (red circle enclosed area of PAN and LM/PAN evaporators that used for calculate the evaporation rate)
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Fig. S9 a IR image. b Top surface temperature evolution over time and C temperature difference between 0 s and 600 s in PAN and LM/PAN evaporators during the SSG experiment
Estimation of Water Equivalent Evaporation Enthalpy
Dark evaporation experiment: The dark evaporation experiment was performed according to a previous reported method [S1, S2]. PAN and LM/PAN evaporators were fixed in a polystyrene foam and placed in a bottle with enough supersaturated potassium carbonate solution as for experiments (Fig. S10). A sample of pure water with the comparable area was also prepared for comparison. The experiment was performed at 23 ºC and ambient air pressure. The loss weight of water of the apparatus was recorded per 10 minutes. Furthermore, the ∆Hwe of bulk water at 23 ºC can be calculated as follows [S3]:

		(S1)

where C1=2500.304, C2=-2.2521025, C3= -0.021465847, C3 =3.1750136×10-4, C4= -2.8607959×10-5 are constants, and T is temperature (°C. Thus, ∆Hwe of bulk water was calculated as 2439.5 kJ kg-1.
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Fig. S10 Schematic of dark evaporation experiment
Water Equivalent Evaporation Enthalpy Measurement via DSC: The original PAN and LM/PAN evaporators were cut and soaked into pure water for one day and the weight change was shown in Table S1. During water equivalent evaporation enthalpy measurement, the sample was placed in an open Al crucible and heated from 30 to 120 °C at a rate of 5 K/min under nitrogen atmosphere (30 mL/min). The water equivalent evaporation enthalpy was calculated based on the heat flow curves and shown in Table S1. It should be noted that the evaporation enthalpy in LM/PAN evaporators, calculated by DSC, was temperature-dependent and higher than that in the dark experiment. In the DSC tests, the selected temperature range was 30–120°C, whereas the actual temperature during practical applications was approximately 30°C. The difference in temperature contributes to the variation in the measured enthalpy values. Additionally, the DSC test represents complete dehydration from the swollen state, whereas the dark evaporation experiment involves a more gradual dehydration process. Therefore, the enthalpy value calculated through the dark evaporation experiment is more aligned with practical applications, where water molecules, with weaker hydrogen bonds, continuously diffuse toward the liquid-vapor interface from the water reservoir. Consequently, the water equivalent evaporation enthalpy obtained from DSC can only indicate the trend of enthalpy evolution across different samples, but cannot be used to calculate solar evaporation efficiency [S1, S3].
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Fig. S11 Heat flow signal as the function of a time and b temperature of water, PAN, LM/PAN11, LM/PAN21 and LM/PAN31 evaporator in the DSC measurement  
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Fig. S12 Fitting curves based on the Gaussian function in the energy region of O–H stretching modes of water in a bulk water, b PAN evaporator and c LM/PAN21 evaporator
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Fig. S13 Simulation models of a water molecular, PAN chain, unit cell of LM, c water layer, PAN layer and LM/PAN layer used in dynamics simulation of the water evaporation process
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Fig. S14 Water evaporation process of a pure water, b water in PAN, and c water in LM/PAN at 0, and 500 ps. The colourful insert images are the water molecular concentration at different evaporation interfaces. The hydrogen bonds number evolution in the 500 water molecules at the surface of d bulk water, e PAN, and f) LM/PAN during the evaporation process
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Fig. S15 Optical image of a LM/PAN84 evaporator, b LM/PAN130 evaporator. SEM images of cross-area of fibers in c LM/PAN84 evaporator, d LM/PAN130 evaporator and relevant enlarged image e and f. Water absorption capability of g LM/PAN84 evaporator and h LM/PAN130 evaporator
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Fig. S16 a Nitrogen adsorption-desorption isotherms and b corresponding specific surface area of LM/PAN84, LM/PAN100 and LM/PAN130 evaporator. c Water content variation over time in LM/PAN84, LM/PAN100 and LM/PAN130 evaporator. d Heat flow signal as the function of time in LM/PAN84, LM/PAN100 and LM/PAN130 evaporator
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Fig. S17 Mechanical strength of LM/PAN21 evaporator in 1st day and 60th day before and after 10 hours continuous evaporation test
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Fig. S18 a Water evaporation rates of LM/PAN21 evaporator in MB and MO solution after each cycle. b Optical images of dye solution and collected water in the 1st cycle and 5th cycle
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Fig. S19 UV spectrum of pure water, LM/PAN21 evaporator, water that had been continuously soaked with the LM/PAN21 evaporator for 2 days
Estimation the cost-effectiveness of LM/PAN evaporator
LM/PAN evaporator was designed and prepared with a low density of 0.11 g cm-3, which ensures lower consumption of materials in practical production. Additionally, most of the raw materials, including PAN and DMF, are inexpensive and widely sourced. Cost-effectiveness was defined as the evaporation rate divided by the cost per unit area [S4]. Taking the LM/PAN21 evaporator as an example, the specific calculation is provided. To prepare a large-scale LM/PAN21 evaporator with a dimensional of (1 m2 2.5 cm), the total mass is 2.75 kg. The price of PAN powder is approximately 61.8 $ kg-1 (MACKLIN Co. Ltd, resulting in a cost of 56.7 $. The cost of DMF as the solvent is 7.4 $ for 8.25 kg (0.9 $ kg-1 for industrial grade DMF). The price of LM is 82.4 $ kg-1 (Dongguan Hua Titanium Material Technology Co. Ltd, so the cost is about 151 $ while consuming 1.83 kg. Taking all materials into account, the total cost is approximately 215.1$. Considering the evaporation rate of 2.66 kg m-2 h-1, the cost-effectiveness index is 12.4. The following Table S4 presents a specific comparison of cost-effectiveness and solar vapor generation performance. Compared to other evaporator, LM/PAN evaporator exhibits superior photothermal evaporation performance while also offering favorable cost-effectiveness.
Life cycle assessment
To evaluate the life cycle assessment (LCA of LM/PAN evaporator, a preliminary LCA was performed using the open-source software OpenLCA, with data sourced from the ecoinvent database. For this evaluation, a LM/PAN evaporator with a demonsion of 1 m² × 2.5 cm was used. The assessment considered the raw materials, including liquid metal, PAN, DMF, and water, as well as the electricity consumed during the wet-spinning process. The emissions of greenhouse gases, the release of harmful substances, and the consumption of land and other resources throughout the evaporator's life cycle were quantified, and the results are presented in Fig. S20.
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Fig. S20 LCA of LM/PAN evaporator
Table S1 Parameters for DSC measurement and calculated evaporation enthalpy of water in bulk water, PAN, LM/PAN11, LM/PAN21 and LM/PAN31 evaporator
	

	Dry mass (mg)
	Wet mass (mg)
	Evaporation enthalpy (kJ kg−1)

	Water
	-
	7.33
	2215.88

	PAN
	1.1
	8.52
	1691.62

	LM/PAN11
	1.7
	8.24
	1648.87

	LM/PAN21
	1.9
	8.25
	1386.87

	LM/PAN31
	1.6
	6.80
	1534.92


Table S2 Parameters for DSC measurement and calculated evaporation enthalpy of water in LM/PAN84, LM/PAN100 and LM/PAN130 evaporator
	
	Dry mass (mg)
	Wet mass (mg)
	Evaporation enthalpy (kJ kg−1)

	LM/PAN84 
	1.6
	5.47
	1584.03

	LM/PAN100 
	1.9
	8.25
	1386.87

	LM/PAN130
	2.6
	11.8
	1690.17

	Table S3 Comparison of different SSG systems

	

	Materials
	Evaporation rate
(kg m-2 h-1)
	η (%)
	Refs:

	Wood developed structure
	Lignin-Wood
	1.93
	91.74
	 [S5]

	
	Polydopamine/
Wood
	1.2
	77
	 [S6]

	
	Carbon dot/Wood
	2.27
	92.5
	 [S7]

	
	Carbon nanoparticle/Wood
	2.06
	90
	 [S8]

	
	Nigrosin/Wood
	1.46
	86.1
	 [S9]

	Hydrogel
	Ti3C2TX/rGO/PVA hydrogel
	2.09
	93.5
	 [S10]

	
	Acetylene black
sodium alginate  polyacrylamide/ hydrogel
	1.64
	93
	 [S11]

	
	Ti3C2TX/rGO/PVA hydrogel
	2.22
	91
	 [S12]

	
	Polypyrrole (PPy)/
lignin hydrogel
	2.25
	91.6
	 [S13]

	Aerogel and foam like structure

	Ti3C2TX/carbon aerogels
	1.48
	92.3
	 [S14]

	
	MoS2-sodium alginate hydrogel wrapped
Melamine foam
	1.92
	90
	 [S15]

	
	PPy/PVA-F/Janus aerogel
	1.68
	94.7
	 [S16]

	
	Polyacrylonitrile/carbon nanotubes
	2.13
	94.5
	 [S17]

	
	Carbon black nanoparticles/ polymethylmethacrylate/ polyacrylonitril
	1.3
	72
	 [S18]

	
	Coconut husk
	1.83
	73.2
	 [S19]

	
	LM/PAN
	2.66
	96.5
	This work

	Membrane
	AuNPs/
carbonized organosilica microspheres
	1.5
	94.6
	 [S20]

	
	Cu-CAT-1 nanorod arrays/
gelatin composite membrane
	1.5
	80.2
	 [S21]

	
	Polyacrylonitrile@copper sulfide
	2.27
	90.2
	 [S3]

	
	Cotton paper
	1.71
	83
	 [S22]

	
	Graphene oxide/carbon nanotubes
	1.87
	79.2
	 [S23]


Table S4 Comparison of cost-effectiveness of different SSG systems
	Materials
	Evaporation rate (kg m-2 h-1)
	cost-effectiveness （g h-1 USD-1）
	References

	Cellulose-based fabric / expanded polystyrene
	0.6
	200
	 [S24]

	Titanium sesquioxide nanoparticles / poly(vinyl alcohol)
	3.6
	12.3
	 [S25]

	Gold film / High-purity aluminum foil
	0.67
	0.1
	 [S26]

	Cermet-coated copper sheet / polystyrene foam
	0.5
	9
	 [S27]

	Polypyrrole / Stainless steel 
	0.92
	16.7
	 [S28]

	Polypyrrole / Airlaid paper
	1.35
	67.5
	 [S29]

	Mixed Metal Oxide / quartz glass fibrous filter membrane
	2.04
	4.6
	 [S30]

	AIE-active molecule / Olive oil / poly(vinylidene fluoride-co-hexafluoropropylene
	1.52
	11.2
	 [S31]

	Attapulgite / Acrylamide/ N, N′-Methylene bisacrylamide / polyvinyl pyrrolidone / polyvinyl alcohol
	1.2
	32.69
	 [S32]

	SiO2 / m-TiO2–x
	1.05
	32.81
	 [S33]

	Polypyrrole / Ag 
	1.55
	29.25
	 [S34]

	LM / PAN
	2.66
	12.4
	Our work
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