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Supplementary Figures and Tables
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Fig. S1  SEM images of (a-c) CF samples and (d-f) FCF samples
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Fig. S2  (a) XRD patterns, (b, c) Raman spectra, and (d) magnetic hysteresis loops of the FCCF-1 and  FCCF-3 samples
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Fig. S3 Electromagnetic parameters of (a) CF composites, (b) CCF composites, (c) FCF composites, (d) FCCF-1 composites, (e) FCCF-2 composites and (f) FCCF-2 composites
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Fig. S4 Impedance matching contour maps of (a) FCCF-1 and (b) FCCF-3 samples
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Fig. S5 3D RL and 3D projection plots of (a, c) CF and (b, d) CCF samples
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Fig. S6 (a) Optical image, (b) Magnetic properties, and (c) Structural robustness of the FCCF samples
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[bookmark: _Hlk179220554]Fig. S7 Infrared radiation images of surface temperature of FCCF-2 sample at different times on a platform with the temperature of 150 °C
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Fig. S8 (a) Dielectric loss tangent curves and (b) Magnetic loss tangent curves of the samples
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Fig. S9 (a) Top and (b) side views of C/FeNi DFT models
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Fig. S10 Integration of ρ in planes parallel to the surface and plotted as a function of the z coordination
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Fig. S11 Enlarged magnetic hysteresis loops of the FCCF-1 and FCCF-3 samples
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Fig. S12 Reflection loss contour maps with quarter-wavelength matching curves of the samples
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Fig. S13 Impedance matching contour maps with quarter-wavelength matching curves of the samples
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Fig. S14 2D impedance matching images of the samples
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Fig. S15 2D reflection loss images of the samples
Table S1 Detailed information on the concentration of the composites for electromagnetic measurement
	[bookmark: _Hlk166746761]Sample
	Fe2+
(mmol)
	Ni2+
(mmol)
	HMT
(mmol)
	Solvent
(H2O/C2H5OH)
	Annealing
Temperature (℃)

	FCF
	1.5
	3
	6
	20 mL/20 mL
	700 

	FCCF-1
	1
	2
	4
	20 mL/20 mL
	700

	FCCF-2
	1.5
	3
	6
	20 mL/20 mL
	700

	FCCF-3
	2
	4
	8
	20 mL/20 mL
	[bookmark: _GoBack]700


Synthesis mechanisms of CCF and FCCF samples
The synthesis mechanisms of CCF and FCCF are concluded as follows:
a.	The CCF samples are prepared by growing CNCs on carbon foam (CF) via a CVD process. First, a type of efficient bimetallic catalyst (α-Fe2O3/SnO2) in the form of nanoparticles is loaded onto carbon foam by a dip coating process. The α-Fe2O3/SnO2/CF samples are preheated to 710 °C in an Ar atmosphere for 30 min. The CNCs are then synthesized on the CF samples with the introduction of additional C2H2 gases at 710 °C. During the CNC growth process, Fe-containing particles are the main catalytic components in the catalyst system, decomposing C2H2 and depositing a carbon filament. The presence of Sn and SnO2 reduces the catalytic activity of Fe-containing particles. The mechanism of CNC growth is attributed to the multiple particles at the tip of a CNC with different catalytic activities corresponding to different growth rates of the carbon filaments. In our previous work (Nano-Micro Lett. (2020) 12:23; Carbon 166 (2020) 101-112), the mechanism of CNC growth was investigated in detail.
[bookmark: OLE_LINK18]b.	The FCCF samples are prepared by growing FeNi-based nanoparticles on the CCF sample via a solvothermal reaction and a subsequent annealing treatment. In the solvothermal reaction, the hydrolysis of the hexamethylenetetramine (HMT) provides a mild basic environment (pH∼9). Hence, Ni2+ and Fe2+ couple with OH-, resulting in the formation of Ni(OH)2 and Fe(OH)2 structures on CCF sample. During the annealing treatment, the Ni(OH)2 and Fe(OH)2 structures are first transformed into NiFe2O4 structures, then the NiFe2O4 structures are partially reduced by carbon, resulting in the formation of the FeNi/NiFe2O4 structures. Following chemical equations explicitly interpreted the aforementioned reaction mechanism:

;

;

;

;

.
Density Functional Theory (DFT) calculations
The FeNi nanoparticles doped carbon model was constructed using first-principle calculation DFT via CP2K [S1-S6]. Diag procedure was used for the wave function optimization and the SCF convergence. The PBE functional [S7] was used with the D3 dispersion correction scheme [S8]. DZVP-MOLOPT-SR-GTH basis sets were used alongside planewaves expanded to a 600 Ry energy cutoff. Electronic cores were represented by Geodecker-Teter-Hutter pseudopotentials [S9, S10]. The 3s, 3p and 3d electrons of Fe/ Ni and 2s, 2p electrons of C are treated as valence. The k-point was set as 3×3×1. The periodic images were separated by vacuum layers 15 Å to eliminate image interactions.
Micromagnetic Simulation Methods
[bookmark: OLE_LINK3][bookmark: OLE_LINK2]The micromagnetic simulation is performed by Mumax3 software, an open-source GPU-accelerated program. The space and time dependent magnetization dynamics in nano- to micro-sized ferromagnets can be calculated by the Mumax3 through the finite difference discretization. Based on the Landau-Lifshitz-Gilbert equation and the minimum energy principle, the finite difference algorithm simulates the dynamic physical process and solves the 3D model.
[bookmark: OLE_LINK4]In this work, the dynamic spin structures of the FCCF-2 sample, FCF sample, and FeNi/NiFe2O4 heterostructures are simulated by the Mumax3. According to the VSM results, the saturation magnetizations of the magnetic particles in FCF and FCCF-2 samples are 2×105 and 4×105 A/m, respectively. The saturation magnetizations of the FeNi and NiFe2O4 in magnetic heterostructures are 4×105 and 2×105 A/m, respectively. The micromagnetic exchange constants of the magnetic particles in FCF and FCCF-2 samples are both 1.5×10-11 J/m. The micromagnetic exchange constants of the FeNi and NiFe2O4 in magnetic heterostructures are 1.5×10-11 and -1.5×10-11 J/m. The spin precession damping factor is 0.01. The frequency of the external magnetic field is 6 GHz. The diameters of the nanoparticles in FCCF-2 sample and FeNi/NiFe2O4 heterostructures are both 50 nm. The diameter of the nanoparticles in FCF sample is 500 nm.
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