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S1 Materials and Methods
S1.1 Materials Characterizations
S1.1.1 Fourier Transform Infrared Spectroscopy (FTIR)
The functional groups on the surface of the simples are characterized by FTIR (Nicolet iS10) with the wavenumber ranging from 4000 to 500 cm-1. FTIR spectra are baseline calibrated and smoothed using Omnic 8.0 software.
S1.1.2 N2 Adsorption/Desorption Measurements
The specific surface area and N2 adsorption/desorption isothermal curves of samples are characterized by surface area and porosity analyzer (Micromeritics TriStar II 3flex).
S1.1.3 Characterization of Material Morphology
The morphologies of the samples are characterized using scanning electron microscopy (SEM, Zeiss Gemini 300), Atomic Force Microscope (AFM, Bruker Dimension ICON), HAADF-STEM (Thermo Themis Z) and high-resolution transmission electron microscopy (HRTEM, JEOL JEM 2100F), with further elemental distribution analysis conducted via energy-dispersive spectroscopy (EDS).
S1.1.4 Raman Spectroscopy
Raman (Thermo Fischer DXR) spectra are employed to determine the structure of the samples with the wavenumber ranging from 1000 to 2000 cm-1.
S1.1.5 Thermogravimetric (TG)
TG (Mettler Toledo TGA2) curves are used to test the temperature resistance and carbonization temperature of nano-sponge. To quantify the thermal decomposition temperatures of the samples, the temperature is increased by 10 °C/min from room temperature (25 ℃) to 1000 °C, through a ramp function.
S1.1.6 Electron Paramagnetic Resonance (EPR)
EPR (Bruker EMXplus) curves are utilized to characterize the density of carbon defects in the materials with the g-value is 2.0023.
S1.1.7 Electronic Conductivity
The electronic conductivity of the as-synthesized materials (Jingke ST2722-SZ powder resistivity tester) is tested under a pressure of 4 MPa using the four-probe method.
S1.1.8 X-ray Powder Diffraction (XRD)
XRD measurements are carried out over a 2θ range of 10-70° (X'Pert PRO MPD) with a Cu Kα line as the radiation source.
S1.1.9 X-ray Photoelectron Spectroscopy (XPS)
XPS (Thermo ESCALAB 250XI) spectra are used to evaluate the molecular structure and atomic valence states in both the carbon materials and solid-state battery cathodes. Monochromatic Al Kα radiation is used for analysis (3000 eV). The power of the X-ray source is 50 W, and the beam voltage is 15 kV. The beam diameter is 900 μm. Depth profiling is performed using Ar+ ions (soft sputtering with 0.5 kV) to clean the surface and to avoid misinterpretations due to reactions that occur only on the surface. The rasterized area is (6×6) mm2. The samples are transferred to the analysis chamber in an argon-filled transfer bin in order to avoid air exposure.
S1.1.10 X-ray Absorption Near-edge Structure (XANES)
S K-edge XANES spectra are measured at the BL08U1-A beamline at the Shanghai Synchrotron Radiation Facility, and the data are used to further characterize changes in molecular structure and atomic valence states of the cathode materials after cycling.
S1.1.11 Operando Raman
The operando Raman spectra are test by Renishaw inVia Qontor instrument with the wavenumber range is from 100 to 800 cm-1. And the batteries for the operando Raman characterizations are sealed in the test mold, which cycle at 0.1C (1 C=160 mA·g-1).
S1.2 Electrochemical Measurements
S1.2.1 Cyclic Voltammetry (CV)
The CV curves within the voltage range of 1.0-3.7V (scan rate: 0.01 mV/s) for the ASSLBs without active materials.
S1.2.2 In-situ Galvanostatic Electrochemical Impedance Spectroscopy (in-situ GEIS)
The in-situ GEIS curves (the frequency ranges from 0.1 to 106 Hz) during charge-discharge processes at a current density of 78.4 μA (0.1C) for the SP/LCO/LPSC-based ASSLBs, NPCs/LCO/LPSC-based ASSLBs, Mo@NPCs/LCO/LPSC-based ASSLBs, Mo-Ni@NPCs/LCO/LPSC-based ASSLBs, which are measured using a Bio-Logic electrochemical workstation to uncover the cathode evolution of ASSLBs during cycling.
S1.2.3 Galvanostatic Electrochemical Impedance Spectroscopy (GEIS)
The ASSLBs are subjected to EIS testing using the same electrochemical workstation before and after 100 cycles at 0.1C and room temperature, covering a frequency range from 0.1 to 106 Hz.
S1.2.4 Galvanostatic Intermittent Titration Technique (GITT)
The GITT curves during charge-discharge processes at a current density of 78.4 μA (0.1C) for the SP/LCO/LPSC-based ASSLBs, NPCs/LCO/LPSC-based ASSLBs, Mo@NPCs/LCO/LPSC-based ASSLBs, Mo-Ni@NPCs/LCO/LPSC-based ASSLBs, which are measured using a Bio-Logic electrochemical workstation to evaluate their Li+ ions transport efficiency.
S1.2.5 Cycling Performance
Furthermore, the ASSLBs are tested for charge-discharge cycling curves within the voltage range of 1.4V to 3.7V using a Neware battery tester to evaluate charge-discharge curves under various current densities, areal capacities, and temperatures (room temperature and 60°C), thereby comprehensively assessing their capacity, coulomb efficiency, and stability.
S1.3 Assembly and electrochemical measurements of ASSLBs
S1.3.1 ASSLBs without Active Materials
The carbon material and LPSC are mixed in a weight ratio of 1:5 in an agate mortar and pestle for 20 minutes to obtain the cathode without AMs. The Li/In alloy (with a mass ratio of Li to In of 1:30) served as the counter electrode. The ASSLB without AMs is employed to investigate the production of chemical/electrochemical by-products between the carbon material and SSEs. The assembly process is as follows: 100 mg of LPSC is added to a mold with a diameter of 10 mm and pressed at 10 MPa for 5 minutes to form the SSE. Subsequently, 7 mg of the cathode without AMs is evenly spread on one side of the SSE and pressed at 300 MPa for 10 minutes to ensure intimate contact with the SSE. Finally, 186 mg of Li/In negative electrode is uniformly spread on the other side of the SSE, and the assembly of the ASSLBs is completed by pressing at 30 MPa for 1 minute. These ASSLBs are named SP/LCO/LPSC-based ASSLBs with no-AMs, NPCs/LCO/LPSC-based ASSLBs with no-AMs, Mo@NPCs/LCO/LPSC-based ASSLBs with no-AMs, Mo-Ni@NPCs/LCO/LPSC-based ASSLBs with no-AMs, respectively.
S1.3.2 ASSLBs with Active Materials
The CCAs, LPSC, and LCO are mixed in an agate mortar and pestle in a weight ratio of 2:28:70 for 20 minutes to obtain the composite cathode. The Li/In alloy (with a mass ratio of Li to In of 1:30) served as the counter electrode [S1]. The assembly steps of the ASSLBs are identical to those of the ASSLBs without active materials. These ASSLBs are named SP/LCO/LPSC-based ASSLBs, NPCs/LCO/LPSC-based ASSLBs, Mo@NPCs/LCO/LPSC-based ASSLBs, Mo-Ni@NPCs/LCO/LPSC-based ASSLBs, respectively.
S1.3.3 Preparation of Pouch Cell
The composite cathode materials of pouch cell are prepared by mixed with LCO, LPSC and conductive carbon at the mass ratio of 70:25:5 for 20 min in a mortar by hand. To fabricate a dry film of the cathode, the above-prepared powder electrode is mixed with 1.5 wt% polytetrafluoroethylene (PTFE) in a heated mortar. After 3 min of mixing and shearing, a single flake is formed [S2].
The 45 mm × 55 mm pouch cell with an area capacity of 1.50 mAh·cm-2 is produced [S3]. Electrodes and SSE sheets are cut by a punching machine. The dimensions of the anode, cathode, and solid electrolyte sheet are 30 mm × 40 mm, 30 mm × 40 mm, and 35 mm × 45 mm, respectively. All electrodes and electrolyte sheets are stacked and packaged in a laminated bag. After the vacuum is applied to the laminate bag and sealed, the battery is pressurized for 10 min by a Warm Isostatic Press (WIP400, Sichuan Lineng Ultra High Voltage Equipment Co., Ltd) at a pressure of 300 MPa. Then, the battery is taken out of the laminate bag and the Al and Ni terminals of the cathode and anode, respectively, are welded using an ultrasonic welder. The battery is placed in a laminated bag and vacuum-sealed again. Most of the assembly process is carried out in the argon atmosphere.
S1.4 DFT Calculation Details
S1.4.1 Diffusion Energy Barriers of Li+ Ions Migration at Different Interfaces
This study employs density functional theory (DFT) to comprehensively analyze the mechanism of Mo@NPCs/LCO/LPSC-based ASSLBs and Mo-Ni@NPCs/LCO/LPSC-based ASSLBs. In the DFT calculations, the projector-augmented wave (PAW) method with a cutoff energy of 400 eV [S4] and the Perdew-Burke-Ernzerhof (PBE) functional [S5] are utilized. The DFT-D3 method [S6] is employed to correct for the van der Waals interactions. Heterostructure models of MoS2-Mo3Ni3N are established by cutting one layer of Mo3Ni3N (221) surface and one layer of MoS2 (001) surface with a 15 Å vacuum layer. Similarly, heterostructure models of MoS2-MoN are established by cutting two layers of MoN (200) surface and one layer of MoS2 (001) surface with a 15 Å vacuum layer. Additionally, a ribbon model of Li2SO3 is established by cutting two layers of Li2SO3 (001) crystal surface with a 15 Å vacuum layer, where half of the bottom atomic layer is fixed to simulate the bulk phase. All models are optimized with energy and force convergence criteria of 10-5 eV and 0.02 eV/Å, respectively. Brillouin zone integration is performed using the Monkhorst-Pack scheme. Furthermore, to obtain the energy barriers of Li+ ions migration on the surface of the bulk phase, the climbing-image nudged elastic band (CI-NEB) method is employed with a path threshold of 0.05 eV/Å.
S1.4.2 DFT-computed Free Energy Diagrams of Pathway at Different Interfaces
In addition, the free energy is performed using a castep module of Material Studio 2020. The generalized gradient approximation (GGA) method with Perdew-Burke-Ernzerhof (PBE) function is employed to describe the interactions between the valence electrons and the ionic core. The energy cut-off for the plane-wave basis set is 450 eV. The threshold values of the convergence criteria are specified as follows: 0.001 Å for maximum displacement, 0.03 eV Å-1 for the maximum force, 0.05 GPa for the maximum stress, 10-5 eV/atom for energy, and 2.0×10-6 eV/atom for self-consistent field tolerance. The Brillouin zone integration is performed using a 2×2×1 k-mesh. 15 Å vacuum space is implemented into the model to eliminate undesirable interactions between the bottom side of the slab and the molecules in the vacuum space. 
When the optimization is completed, the density difference calculations are performed. Also, the diffusion barrier energy is located utilizing the well-known linear synchronous transit (LST) and quadratic synchronous transit (QST) methods.
S2 Supplementary Figures and Tables
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Fig. S1 FTIR spectra of melamine, epichorohydrin, β-cyclodextrin, and cyclodextrin-based nanosponge
Description: The FTIR spectroscopy is employed to characterize the functional groups present in the polymer and NPCs. As shown in Fig. S1, the peak at 3419.57 cm-1 is attributed to the stretching vibration of -OH groups, while the peak at 2924.25 cm-1 is assigned to the stretching vibration of CH2 groups. The peak at 1645.57 cm-1 is considered the bending vibration absorption peak of -OH groups of water molecules adsorbed by β-cyclodextrin, serving as evidence for the presence of β-cyclodextrin [S7]. The peak at 1553.99 cm-1 is attributed to the in-plane stretching peak of C-N bonds, indicating the presence of melamine [S8]. Furthermore, compared to β-cyclodextrin, characteristic peaks of nanosponges exhibit certain shifts, and the intensity of the stretching vibration absorption peaks is weakened corresponding to C-O and C-C bonds at 1162 cm-1 and 1036.57 cm-1, respectively, suggesting cross-linking reactions of β-cyclodextrin [S7, S8]. 
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Fig. S2 TGA curves of cyclodextrin-based nanosponge
Description: The TG curves are utilized for the preliminary determination of the initial carbonization temperature of nanosponge, as shown in Fig. S2. At the nitrogen atmosphere, the TG curve of nanosponge and its impregnated metal salt solution are mainly divided into three sections. The first stage involves the loss of free water and bound water in the polymer, primarily occurring between room temperature and 130°C. It is noteworthy that the weight loss rate of nanosponge impregnated with metal salt solution is significantly higher than that of nanosponge without impregnation, indicating the excellent water absorption capability of nano sponges. This heightened absorption could be attributed to the ability of nanosponge to adsorb some free and crystalline water within their pore structure, thereby enhancing the adsorption capacity of metal salt molecules on their surface [8]. The second stage involves the breakage of polymer molecular chains, primarily occurring in the temperature range of 220 to 430 °C. Within this temperature range, functional groups within the polymer break down, accompanied by the loss of oxygen and hydrogen elements [S9, S10]. When the temperature exceeds 430 °C, this corresponds mainly to the formation of carbonaceous materials. Therefore, these results provide the theoretical and experimental supports to gain the targeted samples in our experimental conditions.
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Fig. S3 Schematic diagram of the process of NPCs and its derivatives
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Fig. S4 XRD patterns of (a) SP, (b) NPCs, and (c) Mo@NPCs
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Fig. S5 XPS spectra of Mo-Ni@NPCs, Mo@NPCs, NPCs, and SP
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Fig. S6 SEM images of (a) SP, (b) NPCs, and (c) Mo@NPCs
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Fig. S7 (a) HRTEM image and (b) SAED image of Mo@NPCs
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Fig. S8 AFM images of (a) Mo@NPCs and (b) Mo-Ni@NPCs
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Fig. S9 Raman spectra of Mo-Ni@NPCs, Mo@NPCs, NPCs, and SP
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Fig. S10 The electronic conductivities of Mo-Ni@NPCs, Mo@NPCs, NPCs, and SP
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Fig. S11 EPR spectra of Mo-Ni@NPCs, Mo@NPCs, NPCs, and SP (g=2.0023)
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Fig. S12 (a) N2 adsorption/desorption isothermal curves and (b) the pore size distributions of Mo-Ni@NPCs, Mo@NPCs, NPCs, and SP
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Fig. S13 ex-situ XPS spectra of cathodes of SP/LPSC-based ASSLBs with non-AMs, NPCs/LPSC-based ASSLBs with non-AMs, Mo@NPCs/LPSC-based ASSLBs with non-AMs, and Mo-Ni@NPCs/LPSC-based ASSLBs with non-AMs at first cycle
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Fig. S14 The 2nd-5th CV curves of SP/LPSC-based ASSLBs with non-AMs, NPCs/LPSC-based ASSLBs with non-AMs, Mo@NPCs/LPSC-based ASSLBs with non-AMs, and Mo-Ni@NPCs/LPSC-based ASSLBs with non-AMs
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Fig. S15 Mo3p XPS spectra and Ni2p XPS spectra of cathodes of NPCs/LPSC-based ASSLBs with non-AMs, Mo@NPCs/LPSC-based ASSLBs with non-AMs, and Mo-Ni@NPCs/LPSC-based ASSLBs with non-AMs
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[bookmark: _Hlk177657011]Fig. S16 The enlarged views of (a) S2- and (b) sulfites on XANES spectra of S K-edge of LPSC and the cathodes of SP/LPSC-based ASSLBs with non-AMs, Mo@NPCs/LPSC-based ASSLBs with non-AMs, Mo-Ni@NPCs/LPSC-based ASSLBs with non-AMs after 100 cycles (0.1C)
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Fig. S17 XRD patterns of (a) SP, (b) NPCs, and (c) Mo@NPCs after 1000 cycles
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Fig. S18 HRTEM images of (a-b) Mo@NPCs and (c-d) Mo-Ni@NPCs after 10 cycles
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Fig. S19 (a) FTIR spectra and (b) the relative content of functional groups of Mo-Ni@NPCs, Mo@NPCs, NPCs, and SP
Description: In order to quantitatively compare the contents of hydroxyl groups and carbonyl groups on SP, NPCs, Mo@NPCs and Ni-Mo@NPCs, the corresponding peaks areas SP are normalized to 1, while the peak area values of carbonyl species and hydroxyl species on other counterparts are obtained by dividing the peak area of their respective species by the corresponding peaks areas on SP.
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Fig. S20 Structures of (a) SP and (b) Mo-Ni@NPCs
[image: ]
Fig. S21 DFT-computed free energy diagrams of reaction pathway on (a) SP|LPSC interface and (b) Mo-Ni@NPCs|LPSC interface
Description: The interfacial reactions between different carbon materials and sulfide electrolytes are illustrated in Equations S1-S6.
Li6PS5Cl→Li3PS4+Li2S+LiCl                         (S1)
PS43-+*OH→PS43--OH                             (S2)
PS43--*OH→PS3O3--SH                             (S3)
PS3O3--SH→PS3O3-+*SH                           (S4)
2Li2S+3*OH+*SH→Li2SO3+2H2S+2Li++6e-                 (S5)
Mo3++3Li2S+2*SH→2MoS2+H2S+6Li++5e-                 (S6)
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Fig. S22 Structures of (a) MoN, (b) MoS2, (c) Mo3Ni3N, and (d) Li2SO3
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Fig. S23 (a, c) The side views and (b, d) the top views of MoS2-Mo3Ni3N heterostructure and MoS2-MoN heterostructure
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Fig. S24 DOS at the Fermi level (E-Ef=0) for (a) MoS2(001)/Mo3Ni3N(221) heterostructure and (b) MoS2(001)/MoN(200) heterostructure
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Fig. S25 TDOS and PDOS of (a) MoS2-Mo3Ni3N heterostructure and (b) MoS2-MoN heterostructure
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Fig. S26 Adsorption states of Li+ ions on surfaces of MoS2-Ni3Mo3N heterostructure (a. side view, b. top view), MoS2-MoN heterostructure (c. side view, d. top view), and Li2SO3 (e. side view, f. top view)
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Fig. S27 Migration pathways of Li+ ions on surfaces of MoS2-Ni3Mo3N heterostructure (a. side view, b. top view), MoS2-MoN heterostructure (c. side view, d. top view), and Li2SO3 (e. side view, f. top view)
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Fig. S28 GITT curves of (a) SP/LCO/LPSC-based ASSLBs, (b) NPCs/LCO/LPSC-based ASSLBs, (c) Mo@NPCs/LCO/LPSC-based ASSLBs, and (d) Mo-Ni@NPCs /LCO/LPSC-based ASSLBs. (e) The Li+ ions diffusion coefficient of SP/LCO/LPSC-based ASSLBs, NPCs/LCO/LPSC-based ASSLBs, Mo@NPCs/LCO/LPSC-based ASSLBs, and Mo-Ni@NPCs/LCO/LPSC-based ASSLBs
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Fig. S29 operando Raman spectra and the contour plots of cathodes of NPCs/LCO/LPSC-based ASSLBs
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Fig. S30 operando Raman spectra and the contour plots of cathodes of Mo@NPCs/LCO/LPSC-based ASSLBs
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Fig. S31 The operando Raman spectra and the contour plots of cathodes of (a, b) SP/LCO/LPSC-based ASSLBs, (c, d) NPCs/LCO/LPSC-based ASSLBs, (e, f) Mo@NPCs/LCO/LPSC-based ASSLBs, (g, h) Mo-Ni@NPCs/LCO/LPSC-based ASSLBs after different cycles
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Fig. S32 (a) The in-situ GEIS, the DRT analyses and the contour plots of DRT for NPCs/LCO/LPSC-based ASSLBs, and Mo@NPCs/LCO/LPSC-based ASSLBs at 1st cycle during the charge process at 0.1C. (b) The in-situ GEIS, the DRT analyses and the contour plots of DRT for SP/LCO/LPSC-based ASSLBs, NPCs/LCO/LPSC-based ASSLBs, Mo@NPCs/LCO/LPSC-based ASSLBs, and Mo-Ni@NPCs/LCO/LPSC-based ASSLBs at 1st cycle during the discharge process at 0.1C
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Fig. S33 (a) in-situ GEIS, the DRT analyses and the contour plots of DRT for SP/LCO/LPSC-based ASSLBs, NPCs/LCO/LPSC-based ASSLBs, Mo@NPCs/LCO/LPSC-based ASSLBs, and Mo-Ni@NPCs/LCO/LPSC-based ASSLBs at 1st cycle during the charge process at 0.2C. (b) The in-situ GEIS, the DRT analyses and the contour plots of DRT for SP/LCO/LPSC-based ASSLBs, NPCs/LCO/LPSC-based ASSLBs, Mo@NPCs/LCO/LPSC-based ASSLBs, and Mo-Ni@NPCs/LCO/LPSC-based ASSLBs at 1st cycle during the discharge process at 0.2C
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Fig. S34 (a) The in-situ GEIS, the DRT analyses and the contour plots of DRT for SP/LCO/LPSC-based ASSLBs, NPCs/LCO/LPSC-based ASSLBs, Mo@NPCs/LCO/LPSC-based ASSLBs, and Mo-Ni@NPCs/LCO/LPSC-based ASSLBs at 1st cycle during the charge process at 0.5C. (b) The in-situ GEIS, the DRT analyses and the contour plots of DRT for SP/LCO/LPSC-based ASSLBs, NPCs/LCO/LPSC-based ASSLBs, Mo@NPCs/LCO/LPSC-based ASSLBs, and Mo-Ni@NPCs/LCO/LPSC-based ASSLBs at 1st cycle during the discharge process at 0.5C
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Fig. S35 The effects of the content of (a-b) SP, (c-d) NPCs, (e-f) Mo@NPCs, and (g-h) Mo-Ni@NPCs on the 1st cycle charge/discharge performances of ASSLBs (0.1C, RT)
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Fig. S36 The long cycle stability of LCO/LPSC-based ASSLBs at room temperature (0.1C)
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Fig. S37 The long cycle stability of NPCs/LCO/LPSC-based ASSLBs at room temperature (0.1C)
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Fig. S38 The long cycle stability of Mo@NPCs/LCO/LPSC-based ASSLBs at room temperature (0.1C)
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Fig. S39 SEM images of cathodes of SP/LCO/LPSC-based ASSLBs before cycle
[image: ]
Fig. S40 SEM images of cathodes of SP/LCO/LPSC-based ASSLBs after 100 cycles
[image: ]
Fig. S41 SEM images of cathodes of NPCs/LCO/LPSC-based ASSLBs before cycle
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Fig. 42 SEM images of cathodes of NPCs/LCO/LPSC-based ASSLBs after 100 cycles
[image: ]
Fig. S43 SEM images of composite cathodes of Mo@NPCs/LCO/LPSC-based ASSLBs before cycle
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Fig. S44 SEM images of composite cathodes of Mo@NPCs/LCO/LPSC-based ASSLBs after 100 cycles
[image: ]
Fig. S45 SEM images of composite cathodes of Mo-Ni@NPCs/LCO/LPSC-based ASSLBs before cycle
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Fig. S46 SEM images of composited cathodes of Mo-Ni@NPCs/LCO/LPSC-based ASSLBs after 100 cycles
[image: ]
[bookmark: _Hlk178857063]Fig. S47 XPS spectra of S2p and P2p for cathodes of Mo-Ni@NPCs/LCO/LPSC-based ASSLBs, Mo@NPCs/LCO/LPSC-based ASSLBs, NPCs/LCO/LPSC-based ASSLBs and SP/LCO/LPSC-based ASSLBs before and after 100 cycles
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Fig. S48 The long cycle stability of NPCs/LCO/LPSC-based ASSLBs at 60℃ (0.1C)[image: ]
Fig. S49 The long cycle stability of Mo@NPCs/LCO/LPSC-based ASSLBs at 60℃ (0.1C)
[image: ]
Fig. S50 The 1st cycle charge/discharge performances of SP/NCM/LPSC-based ASSLBs
[image: ]
Fig. S51 The 1st cycle charge/discharge performances of Mo-Ni@NPCs/NCM/LPSC-based ASSLBs
[image: ]
Fig. S52 The effects of different areal capacities of LCO on long cycle stabilities of SP/LCO/LPSC-based ASSLBs
[image: ]
Fig. S53 The effects of different areal capacities of LCO on long cycle stabilities of Mo-Ni@NPCs/LCO/LPSC-based ASSLBs
[image: ]
Fig. S54 (a) The charge/discharge curves for 1.8mAh SP/LCO/LPSC-based prototype pouch cell at a 0.1 C/0.1 C charge/discharge rate plotted with selected cycle numbers. (b) The charge/discharge curves for 1.8mAh Mo-Ni@NPCs/LCO/LPSC-based prototype pouch cell at a 0.1 C/0.1 C charge/discharge rate plotted with selected cycle numbers. (c) The cycling performance and coulombic efficiency of SP/LCO/LPSC-based prototype pouch cell (1.8 mAh) are plotted against the cycle numbers. A constant current (CC) model with the charge/discharge rate of 0.1C/0.1C is applied (voltage windows, 1.4-3.7V vs. Li+/(In-InLi) at 60℃). The area capacity loading of the LCO cathodes is 0.15 mAh·cm-2 (0.1C=0.015mA·cm-2).
Table S1 Specific surface area of SP, NPCs, Mo@NPCs, and Mo-Ni@NPCs
	Sample
	Specific surface area(m2·g-1)

	SP
	62.00

	NPCs
	53.59

	Mo@NPCs
	48.60

	Mo-Ni@NPCs
	20.39


Table S2 Contents of different categories of C species from C1s XPS spectra in SP, NPCs, Mo@NPCs, and Mo-Ni@NPCs
	
	SP
	NPCs
	Mo@NPCs
	Mo-Ni@NPCs

	C-C
	66.38
	46.29
	32.76
	29.27

	C-N/C=N
	/
	23.70
	40.78
	48.02

	C-OH
	12.79
	16.26
	10.98
	8.70

	C-O/C=O
	7.48
	10.46
	10.69
	2.78

	Satellite peaks
	13.35
	3.29
	4.79
	11.23


Table S3 Contents of different categories of O species from O1s XPS spectra in SP, NPCs, Mo@NPCs, and Mo-Ni@NPCs
	
	SP
	NPCs
	Mo@NPCs
	Mo-Ni@NPCs

	C-O/C=O
	47.76
	51.48
	65.52
	71.80

	O-H
	52.24
	48.52
	34.48
	28.20


Table S4 The lattice parameters and mismatches of MoS2-MoN heterostructure and MoS2-Mo3Ni3N heterostructure
	Sample
	a/nm
	b/nm
	d/nm
	Mismatch/%

	MoN
	0.5748
	0.5648
	/
	/

	Mo3Ni3N
	0.6635
	0.6668
	/
	/

	MoS2
	0.3170
	1.8340
	/
	/

	MoS2-MoN
	16.4097
	16.7561
	4.92867
	1.5000

	MoS2-Mo3Ni3N
	18.7165
	15.9701
	4.95722
	1.2000






[bookmark: _Hlk178856478]Table S5 The effects of CCAs contents in composite cathodes for capacities and coulomb efficiencies of ASSLBs (0.1C, RT)
	Sample
	Content/%
	Capacity/mAh·g-1
	Coulomb efficiency/%

	SP
	1
	114.49
	83.78

	
	2
	118.13
	84.38

	
	3
	108.91
	83.13

	
	4
	111.87
	83.52

	
	5
	111.58
	81.84

	NPCs
	1
	98.45
	78.09

	
	2
	89.88
	77.30

	
	3
	90.09
	78.58

	
	4
	88.32
	77.93

	
	5
	81.28
	78.78

	Mo@NPCs
	1
	128.98
	89.45

	
	2
	136.59
	90.57

	
	3
	132.25
	90.24

	
	4
	139.27
	90.08

	
	5
	127.31
	89.75

	Mo-Ni@NPCs
	1
	142.29
	91.26

	
	2
	145.92
	93.26

	
	3
	143.27
	91.08

	
	4
	140.47
	92.05

	
	5
	136.95
	90.36





Table S6 The performance in previously reported representative literatures compared with our work
	Number
	SSEs
system
	Cathode
structure
	1st CE/%
	Capacity retention at 100 cycles/%
	Areal capacity/
mAh·cm-2
	Reference

	1
	LPSC
	NCM/VG-CNF/LPSC
	83.45
	85.52
	1.43
	[S2]

	2
	LPS
	NCM/VGCF/LPS
	65.71
	54.00
	2.15
	[S11]

	3
	LGPS
	NCM@LCO@LNO/LGPS
	84.21
	68.80
	1.84
	[S12]

	4
	LSPSC
	SC-NCM/LSPSC
	85.71
	63.00
	2.45
	[S13]

	5
	LPSC
	S-KB-LiTFSI/CNTs/LPSC
	79.02
	78.00
	1.15
	[S14]

	6
	LPSC
	LiNbO3@NCM/CB/LPSC
	73.08
	83.42
	1.65
	[S15]

	7
	Li2S-P2S5
	NCM/ Denka black /Li2S-P2S5
	88.03
	88.52
	1.42
	[S16]

	8
	LGPS
	NCM/CNTs/LGPS
	79.82
	60.40
	1.34
	[S17]

	9
	LPSC
	NCM/SP/LPSC
	82.51
	63.40
	1.21
	[S18]

	10
	LPSC
	NCM/PTFE/LPSC
	67.10
	85.24
	1.40
	[S19]

	11
	LSPSC
	NCM/LSPSC
	84.29
	79.40
	2.20
	[S20]

	12
	LPSC
	NCM/LPSC
	68.80
	83.30
	2.10
	[S21]

	13
	β-LPS
	NCM/VGCF/β-LPS
	79.80
	85.71
	2.00
	[S22]

	14
	LGPS
	CS-NCA@LiNbO3/LGPS
	82.90
	88.64
	2.52
	[S23]

	15
	LPSC
	Li4C8H2O6/SP/LPSC
	83.30
	82.60
	1.93
	[S24]

	16
	LGPS
	LNMO/AB/LGPS
	75.60
	52.90
	1.77
	[S25]

	17
	LPSC
	NMC/RGO/LPSC
	74.90
	52.10
	1.35
	[S26]

	18
	LPSC
	NCM/SC-Gr/LPSC
	78.80
	74.40
	1.35
	[S27]

	19
	LPSC
	Ti3(PO4)4-NCM/LPSC
	74.58
	64.86
	1.76
	[S28]

	20
	LIC
	LRMO/SBS/SP/LIC
	73.63
	79.84
	1.15
	[S29]

	21
	LGPS
	NCM/LGPS
	84.30
	79.04
	2.41
	[S30]

	22
	LPSC
	NCM/CNF/LPSC
	75.90
	77.78
	1.91
	[S31]

	23
	LPSC
	NCM/SP/LPSC
	83.59
	76.60
	1.61
	[S32]

	24
	LGPS
	LCO-NiS-CNT@LPS/LSPS
	84.21
	71.84
	0.34
	[S33]

	25
	LPSC
	LCO/Mo-Ni@NPCs/LPSC
	94.01
	96.88
	1.50
	This Work

	26
	
	
	93.26
	94.63
	2.00
	

	27
	
	
	91.52
	89.36
	2.50
	

	28
	
	
	89.28
	82.59
	3.00
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