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Supplementary Figures 
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[bookmark: _GoBack]Fig. S1 Detailed process flow diagram of the fabricated MoS2 NSFET, with two layers of conducting channel. The channel is actually three-layer 2D MoS2. The source and drain electrode at different layer are connected finally with each other by etching and metal deposition
[image: ]
Fig. S2 5 groups of transfer and output characteristics corresponding to the fabricated MoS2 NSFET, which show natural and uniform device behaviors
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Fig. S3 Geometric parameters of Si-CFET and 2D-NSFET at different technology nodes were used in our device simulations, where LspLK is the low-k spacer length and LspHK is the high-k spacer length. RBEOL and CBEOL are interconnect resistance and capacitance at back end of line (BEOL)
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Fig. S4 The constructed Si-CFET at 1 nm node and 2D-NSFET at 3 nm node in our device simulation. FP represents Fin pitch and CGP represents contacted gate pitch. The Si-CFET consists of p-type Si-NSFET stacking on n-type Si-NSFET 
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Fig. S5 The cross-scale simulation framework to investigate device behavior. Underlay material parameters were obtained from DFT calculation, and then the parameters were transferred into device simulation. After calibrated electric performance to experimental results, the whole model can be used to predict
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Fig. S6 DFT calculated material parameter of 3 layer MoS2 for experimental data calibration and WS2 for prediction. The parameter mobility is set for calibration or target case
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Fig. S7 a The calculated band structure of monolayer WS2, with K valley and Q valley labeled. b The density of states distribution of 1D, 2D, 3D, and Graphene materials, among which the constant function is adopted to the 2D semiconductors for studying 2D-FETs more accurately


[image: ]
Fig. S8 The plotted best gate length, mobility, ION, Vdd and leakage in previous experimental reports, i.e., experimental case. And the target case presents the expectant parameters and performances. With target mobility of 200 cm2/V-s and a source-drain doping concentration of 1e20 cm-3, the ION of NMOS and PMOS corresponding to the 3 nm(2D+) can reach 1.291 mA/um and 1.382 mA/um
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Fig. S9 The extracted CD_S, CG_sub, CD_sub and CS_sub at different technology nodes. As the sizes of typical devices change, CD_S increase with shortening of channel length, while the other 3 parts related to substrate decrease
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Fig. S10 The simulation framework to obtain Si-based and 2D-based circuit performance. After introducing Si parameter and 2D parameter, device simulation output C-V and I-V and SPICE model can be calibrated. If final PPA simulation could not meet our demand, the requirements for device, i.e., target device parameters, should be enhanced
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Fig. S11 The calibration of BSIM-CMG model to simulated device characteristics at 3 nm(2D+) node. The root mean square (RMS) of all calibrations are controlled below 3%
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Fig. S12 System-level benchmark framework, based on 16-bit RISC-V CPU. The calibrated SPICE model above is input of module “Timing/Power Characterization”, from which timing/power information of standard cell can be obtained
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