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Supplementary Test S1
Distribution of carbon species at 300 °C
Initially 1.5 MPa CO2 was sealed in the reactor. 
Henry’s law states:

The Henry's law constant kH changes significantly with temperature, and the solubility of gases decreases at higher temperatures.
At 25 °C, kH ≈ 0.033 mol/(L•atm).
At 300 °C, water approaches a supercritical state, and the solubility of gases becomes very low. kH may increase by several orders of magnitude, making the dissolved CO₂ concentration much smaller than at room temperature.
Assuming kH at 300 °C is 10 times the value at room temperature (i.e. kH≈0.33 mol/(L•atm)). Thus, with 1.5 MPa CO2 sealed at room temperature, the concentration of CO2 in the solution at 300 °C can be calculated as:

With CO2 dissolved in water, the following reactions occur:
CO2+H2O⇌H2CO3
H2CO3⇌H++HCO3−(Ka1)
HCO3−⇌H++CO32−(Ka2)
At high temperatures, both Ka1 and Ka2 increase, but the alkaline environment (due to NaOH) greatly suppresses the concentration of H2CO3.
Thus, when no NaOH was added to the solution, the distribution of carbon species is: [H2CO3] ≈ ; [HCO3−] ≈ 0.
When 0.1 mol/L NaOH was added, the distribution of carbon species is: [H2CO3] ≈ ; [HCO3−] ≈ .
When 0.2 mol/L NaOH was added, the distribution of carbon species is: [H2CO3] ≈ ; [HCO3−] ≈ ; [CO32−] ≈ .
When 0.3 mol/L NaOH was added, the distribution of carbon species is: [H2CO3] ≈ ; [HCO3−] ≈ ; [CO32−] ≈ .
Supplementary Test S2
Energy requirements accounting
The reaction is divided into 3 parts to consider. 1) Energy Input for Heating: The first part involves calculating the energy required to heat all the substances to the desired temperature. 2) Enthalpy Changes of the Reaction: The second part focuses on evaluating the enthalpy changes during the reaction, which reflect the heat absorbed or released by the system. 3) Energy Recovery: The third part accounts for the energy recovered from the reaction.
Step 1: Energy Input
Take 1 mol reaction as an example. According to the typical reaction settings, we need to calculate the heat required to heat a mixture containing 1082.5 mL of water, 2577.3 mmol of cobalt (Co), 3866 mmol of zinc (Zn), and 1 mol of carbon dioxide (CO₂) from 20°C to 300°C (the amount of water is the entire water added to the reaction system). The following constant numbers are used.
Specific heat capacity of water: cwater≈4.18 J/g
Specific heat capacity of cobalt: cCo≈0.421 J/g
Specific heat capacity of zinc: cZn≈0.388 J/g
Heat absorbed by each substance:
Qwater=mwater⋅cwater⋅ΔT
QCo=mCo⋅cCo⋅ΔT
QZn=mZn⋅cZn⋅ΔT
For a closed system, the heat capacity of CO₂ should be considered:
Molar heat capacity of CO₂ at constant volume Cv≈28.46 J/mol
Heat absorbed by CO₂:
QCO2=nCO2×Cv×ΔT
Qtotal=Qwater+QCo+QZn+QCO2
Thus, the total heat required to heat this closed system from 20°C to 300°C is approximately 1320.2 kJ.
Step 2: Enthalpy change
[bookmark: _Hlk188282982]We calculated the enthalpy change of the reaction as follow:
4Zn + 2H2O + CO2(g) = CH4(g) + 4ZnO
	T (oC)
	Delta H (kJ)
	Delta S (J/k)
	Delta G (kJ)

	100
	-517.909
	-180.592
	-450.521

	200
	-526.020
	-199.845
	-431.464

	300
	-535.628
	-218.166
	-410.586

	400
	-550.269
	-241.656
	-387.599


[bookmark: _Hlk188287784]At 300 oC, the typical reaction temperature, the enthalpy change of the reaction is -535.628 kJ, indicating that it is an exothermic reaction. 
Step 3: Energy recovered from the reaction
Since the reaction is exothermic, we tried to investigate whether the energy needed for heating up the reaction system can be compensated from the reaction itself in case the reaction system is kept adiabatic. 
For every new mole of reaction, we need to calculate the heat required to heat a mixture containing 36 mL of water, 2577.3 mmol of cobalt (Co), 3866 mmol of zinc (Zn), and 1 mol of carbon dioxide (CO₂) from 20°C to 300°C. The constant numbers are the same to that in Step 1.
Thus, the total heat required to heat substances for 1 mole of reaction from 20°C to 300°C is approximately 98.1 kJ. Consequently, for every mole of reaction, 535.628-98.1=437.5 kJ energy can be collected. 
Since in the initial step, for 1 mole of reaction, 1320.2 kJ energy input is needed, thus, after 1320.2/437.5=3 mole of reaction, the energy for heating the reaction system can be compensated, and after that, more energy can be collected from the reaction system.
Based on these results, if an adiabatic reaction system is applied, after 3 moles of reaction, no more energy is needed to keep the reaction running, while it can sustain itself sufficiently.
Supplementary Figures


[image: ]
Fig. S1 (a) Effect of NaOH concentration on CH4 yield and (b) GC-MS analysis of gaseous products after isotope reaction with 13CO2 (reaction conditions: 1.5 MPa CO2 or 1 MPa 13CO2, 60 mmol Zn, 40 mmol Co, 2 h, 300 ℃)
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[bookmark: _Hlk188826078][bookmark: _Hlk187842996]Fig. S2 SEM image (a) and XRD patterns (b) of Co@ZnO catalyst after washing away ZnO


Fig. S3 The variation of CH4 yield with reaction time (reaction conditions: 60 mmol Zn, 40 mmol Co, 1.5 MPa CO2, 0.1 mol/L NaOH, 300 C)




        
Fig. S4 In-situ hydrothermal FTIR (a) and hydrogen pressure (b) of Zn+Co, Fe+Co, and Al+Co reaction under hydrothermal conditions




[bookmark: _Hlk183789637]Fig. S5 H2-TPR profiles of Co@ZnO catalyst, commercial Co, and commercial Co mixed with ZnO
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[bookmark: _Hlk183789662][bookmark: _Hlk147763239]Fig. S6 Schematic model of Co@ZnO catalyst
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Fig. S7 Charge density difference and bader charge transfer between CO2 and Co (a) and Co@ZnO (b) (blue, yellow, red, and gray balls represent Co, C, O, and Zn atoms, respectively; yellow and blue clouds represent increased or decreased charge, respectively)






[bookmark: _Hlk130915704]Fig. S8 TCD (a) and FID (b) analysis of gaseous samples and GC-MS analysis of liquid samples (c) from CO2 hydrothermal methanation (reaction conditions: 60 mmol Zn, 40 mmol Co, 1.5 MPa CO2, 0.1 mol/L NaOH)
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[bookmark: _Hlk130915746]Fig. S9 In-situ hydrothermal FTIR of formaldehyde (a), CO2 methanation with Zn as the reductant (b), and CO2 methanation with Zn as the reductant via ZnO as the catalyst (c)
[bookmark: _Hlk190358060][bookmark: _Hlk187843029][image: ]


[bookmark: _Hlk190288535][bookmark: _Hlk190361135]Fig. S10 Geometrically optimized structure of Co or Co@ZnO (a) and reaction energy profile of CO as the intermediate (b)



[bookmark: _Hlk183789772]Fig. S11 Optimization of CO2 hydrothermal methanation by altering different parameters. (a) Zn quantity. (b) Reaction temperature. (c) Co quantity (reaction conditions: 1.5 MPa CO2, (a) 300 °C, 2 h, 40 mmol Co, 0.1 mol/L NaOH, (b) 60 mmol Zn, 2 h, 40 mmol Co, 0.1 mol/L NaOH, (c) 300 °C, 2 h, 60 mmol Zn, 0.1 mol/L NaOH)
[bookmark: _Hlk189157796][image: ]
Fig. S12 XRD and TEM analysis of catalysts after 5 times reuse (a) or 10 h reaction (b)
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[bookmark: _Hlk130915766]Fig. S13 (A) Image of the high-pressure/high-temperature reactor. (B) Schematic drawing of the in-situ hydrothermal FTIR system
Supplementary Tables
	[bookmark: _Hlk130915788]Table S1 Standard electrode potentials of Al, Zn, and Fe

	Metal
	φA/V

	Al
	-1.662

	Zn
	-0.762

	Fe
	-0.447



	[bookmark: _Hlk130915801][bookmark: _Hlk147768421]Table S2 Product distribution of CO2 hydrothermal reduction with Co@ZnO or commercial Co as the catalyst and the corresponding product yieldsa

	Catalyst
	Product distribution and yield

	
	CH4
	CO
	Formic acid
	Acetic acid

	Co@ZnO
	44.7%
	-
	2.3%
	-

	Commercial Co
	21.3%
	7.8%
	3.6%
	4.5%


aReaction conditions: 1.5 MPa CO2, 3.5 MPa H2, 300 °C, 2 h, 0.1 mol/L NaOH.

	Table S3 EXAFS data fitting results of Co@ZnO *

	Sample
	Path
	CNa
	R(Å)b
	σ2 (Å2)c
	ΔE0(eV)d
	R factor

	Co K-edge (Ѕ02=0.764)

	Co foil
	Co-Co
	12.0*
	2.492±0.001
	0.0063
	7.7±0.3
	0.0013

	CoO
	Co-O
	6.4±0.7
	2.114±0.011
	0.0108
	-1.1±0.9
	0.0111

	
	Co-O-Co
	14.3±0.5
	3.012±0.006
	0.0093
	
	

	sample_Co
	Co-O
	6.2±0.3
	2.068±0.008
	0.0065
	0.5±1.4
	0.0048

	
	Co-O-Zn
	6.5±0.2
	2.934±0.005
	0.0106
	-5.0±0.7
	

	
	Co-O-Co
	7.5±0.4
	3.471±0.007
	
	
	


aCN, coordination number; bR, the distance between absorber and backscatter atoms; cσ2, the Debye Waller factor value; dΔE0, inner potential correction to account for the difference in the inner potential between the sample and the reference compound; R factor indicates the goodness of the fit. S02 was fixed to 0.764, according to the experimental EXAFS fit of Co foil by fixing CN as the known crystallographic value. * This value was fixed during EXAFS fitting, based on the known structure of Co. Fitting conditions: k range：3.0 - 12.0; R range: 1.0-3.5; fitting space: R space; k-weight = 3. A reasonable range of EXAFS fitting parameters: 0.700 < Ѕ02 < 1.000; CN > 0; σ2 > 0 Å2; |ΔE0| < 15 eV; R factor < 0.02.



	Table S4 Product distribution of HCOOH or CO hydrothermal reduction with Zn and Coa

	Substrate
	Product distribution and yield

	
	CH4
	C2H6
	C3H8
	C4H10
	C5H12
	C6H14

	HCOOH
	71.8%
	4.2%
	3.9%
	2.5%
	1.7%
	1.1%

	CO
	60.0%
	1.7%
	0.9%
	0.5%
	0.3%
	0.2%


aReaction conditions: 0.9 mol/L HCOOH (the carbon content was identical to 1.5 MPa CO) or 1.5 MPa CO, 60 mmol Zn, 40 mmol Co, 300 °C, 2 h, 0.1 mol/L NaOH.
	Table S5 The yield of CH4 with different catalystsa

	Entry
	Reductant
	Catalyst
	The yield of CH4 (%)

	1
	Zn
	Co
	99.9

	2
	Zn
	Fe
	2.19

	3
	Zn
	Cu
	9.76

	4
	Zn
	Ni
	24.12

	5
	Zn
	Pd/C
	29.44

	6
	Zn
	Pt/C
	4.23


aReaction conditions: 1.5 MPa CO2, 90 mmol Zn, 40 mmol catalyst, 300 °C, 2 h, 0.1 mol/L NaOH.
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Supplementary Test S1 

Distribution of carbon species at 300 °C 

Initially 1.5 MPa CO

2

 was sealed in the reactor.  

Henry’s law states: 

𝐶

𝐶𝑂

2

=

𝑃

𝐶𝑂

2

𝐾

𝐻

 

The Henry's law constant k

H

 changes significantly with temperature, and the 

solubility of gases decreases at higher temperatures. 

At 25 °C, k

H

 ≈ 0.033 mol/(L•atm). 

At 300 °C, water approaches a supercritical state, and the solubility of gases 

becomes very low. k

H

 may increase by several orders of magnitude, making the 

dissolved CO₂ concentration much smaller than at room temperature. 

Assuming k

H

 at 300 °C is 10 times the value at room temperature (i.e. 

k

H

≈0.33 mol/(L•atm)). Thus, with 1.5 MPa CO

2

 sealed at room temperature, the 

concentration of CO

2

 in the solution at 300 °C can be calculated as: 

𝐶
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2
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𝑃
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2

𝐾

𝐻

=

1.5∗9.87
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=0.045 𝑚𝑜𝑙/𝐿

 

With CO

2

 dissolved in water, the following reactions occur: 

CO

2
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At high temperatures, both K

a1

 and K

a2

 increase, but the alkaline environment (due 

to NaOH) greatly suppresses the concentration of H

2

CO

3

. 

Thus, when no NaOH was added to the solution, the distribution of carbon species 

is: [H

2

CO

3

] ≈ 0.045 𝑚𝑜𝑙/𝐿; [HCO

3

−

] ≈ 0. 

When 0.1 mol/L NaOH was added, the distribution of carbon species is: [H

2

CO

3

] 

≈ 0; [HCO

3

−

] ≈ 0.045 𝑚𝑜𝑙/𝐿. 

