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S1 Experimental Section
S1.1 Chemicals
All chemicals used in this study were commercially purchased and used without further purification. Iron(Ⅲ) chloride (FeCl3, AR, 99%), Nickel(Ⅱ) chloride(NiCl2, 99%) and Potassium hydroxide (KOH, 95%) were purchased from Shanghai Macklin Biochemical Co., Ltd. Urea (H2NCONH2, AR, 99%) and Chitosan (C6H11NO4)n, ≥95% were purchased from Shanghai Aladdin Biochemical Technology Co., Ltd. Boric acid (H3BO3, GR, ≥99.8%), Methanol (CH4O, AR, ≥99.5%) and Ethanol (C2H5OH, AR) were obtained from Tianjin Fuyu Fine Chemical Co., Ltd. Potassium hydrogenperoxomonosulphate (H3K5O18S4, 98%) was purchased from Shanghai Yi En Chemical Technology Co., LTD., P-Benzoquinone (C6H4O2, 99%) and Furfuryl alcohol (C5H6O2, AR, 98%) were obtained from Shanghai Aladdin Biochemical Technology Co., Ltd. Deuterium oxide (D2O, 99.9 atom % D) and nafion solution (5 wt%) were purchased from Shanghai Aladdin Biochemical Technology Co., Ltd. All experiments were carried out using ultrapure water. 
S1.2 Material Synthesis
Synthesis of NiFe-BNC. 0.4 g of chitosan and 30 mg of urea were dissolved in 50 mL of ultrapure water, then 0.4 g of nickel chloride was added. The solution was stirred continuously until green solution was formed. 1.43 g of anhydrous ferric chloride was dissolved in 10 mL of water to form brown solution. The two solutions were then mixed and stirred at room temperature for 12 h. The mixture was then evaporated at 85°C to remove the water, followed by continuous drying in a forced air oven. The dried sample was placed in a tubular furnace and heated under an argon atmosphere at 750°C for 4 h, then allowed to cool to room temperature. After washing with 6 M HNO3 and soaking, the sample was vacuum dried. The dried powder (0.15 g) was mixed with a certain amount of boric acid (0 g, 0.015 g, 0.025 g) and ground for 5 min. The mixture was then heated under an argon atmosphere at 900°C for 2 h to obtain the NiFe-BNC. NiFe-BNC catalysts with different metal loading amounts were also prepared as control samples (where the molar amounts of Fe/Ni were 3/1 mmol and 6/2 mmol). In addition, the preparation of NiFe-NC was similar to that of NiFe-BNC, except for the addition of the boric acid. The preparation of Ni-NC was similar to that of NiFe-NC, except for the addition of the Fe salt. The preparation of Fe-NC was similar to that of NiFe-NC, except for the addition of the Ni salt.
S1.3 Material Characterization
Various material characterization techniques were employed to examine the morphology, crystal structure, elements, valence states, and reaction intermediate processes of the prepared samples and reduced catalysts. We conducted Synchrotron X-ray characterization utilizing the Table-XAFS-500 equipment manufactured by Specreation Instrument Co., Ltd. Scanning electron microscopy (SEM) on a ThermoFisher Apreo S, STEM, and high-resolution TEM (HR-TEM, JEOL JEM-F200) were used to investigate the morphology and crystal structure. An aberration-corrected high-angle annular dark-field scanning transmission electron microscopy (AC-HAADF-STEM, JEM-ARM300F2) provided further insights. X-ray photoelectron spectroscopy (XPS) measurements were conducted using a Thermo Fisher Scientific ESCALAB Xi+ spectrometer with monochromatic Al Kα radiation. X-ray diffraction (XRD, Bruker-D8 ADVANCE) analysis was carried out, operating at 40 kV voltage and 15 mA current with Cu Kα radiation. The surface functional groups of the prepared series of samples were performed using an FTIR spectrometer (Bruker VERTEX 70). Raman tests were performed using the excitation wavelength of 532 nm ((Bruker Senterra). The contact angles were measured with a contact angle measuring device (DSA100S). The electrochemical workstation (CHI 760E) was used to test the performance of electrocatalytic CO2 reduction.
S1.4 VOC Catalytic Oxidation Test
The degradation of gaseous VOCs was conducted in a continuous flow system. The reaction apparatus mainly consists of gas supply system, wet scrubber, and an exhaust gas detection system. After entering the wet scrubber, the gaseous VOCs were converted into microbubbles, which then fully contact the solution to undergo a catalytic reaction. Magnetic stirring was applied during the reaction to ensure the uniform dispersion of the catalyst. The reaction was conducted at a constant temperature of 30°C.
The removal efficiency of VOCs was calculated according to the following equation:
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Where the [Styrene]inlet and [Styrene]outlet (ppmv) represent the inlet and outlet concentrations of styrene, respectively.
Electron paramagnetic resonance (EPR) testing was applied to testify to the existence of ROS with 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) and 2,2,6,6-tetramethyl-4-piperidone hydrochloride (TEMP) as the spin trapping reagents. DMPO was used as the spin trapping agent for HO•, SO4•–, and O2•– radicals, while TEMP for 1O2. More experimental details about the reagents, catalyst characterizations, VOC degradation procedure, electrochemical test, intermediate detection, and health risk assessment method can be found in the Supporting Information.
S1.5 Electrocatalytic CO2 Reduction
Electrode Preparation. The prepared catalysts (20 mg) were weighed. Then, 120 µL of Nafion solution, 750 μL of water and 750 μL of ethanol were added. The solution was ultrasonicated for 10 minutes to create a homogeneous ink. This ink was evenly sprayed onto carbon paper, with dimensions of 1.5 × 1.5 cm2 for the flow cell electrolyzer and 1.3 × 1.3 cm2 for the membrane electrode assembly electrolyzer (MEA) electrolyzer, using a spray gun. A real 1.0 × 1.0 cm2 gas diffusion electrode (GDE) was assembled into a flow cell electrolyzer or MEA electrolyzer as the working electrode.
eCO2RR tests. All electrochemical measurements were conducted under ambient temperature and pressure conditions. eCO2RR tests were carried out in a flow cell electrolyzer using a CHI electrochemical workstation (1440 series). Each current density was maintained at a constant level for 1000 seconds. 
The prepared GDE served as the cathode in the flow cell electrolyzer, while the Ti mesh coated with IrO2 was used as the anode. For eCO2RR testing, the cathode electrolyte and anode electrolyte contained a solution with 1 mol/L KOH. Peristaltic pumps were used to circulate both electrolytes through the cathode and anode chambers. The cathodic chamber and anodic chamber were separated by the anion exchange membrane (Fumapem FAA-3-PK-130). The flow rate of the CO2 gas was controlled using a mass flow meter controller and corrected with a soap bubble flow meter at a rate of 100 sccm. The reference electrode employed was Hg/HgO. Voltage values were converted using the following equations:
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Where [image: image3.png]-



 represents the solution resistance of the electrolyte, which is determined through electrochemical impedance spectroscopy testing, and [image: image4.png]


 represents the current at the respective voltage.
In the MEA electrolyzer, the anode chamber was supplied with 1 mol/L KOH, using a peristaltic pump. Simultaneously, the cathode chamber in the MEA electrolyzer received a continuous inflow of humidified CO2 gas. The flow rate of the CO2 gas was controlled using a mass flow meter controller and corrected with a soap bubble flow meter, at a rate of 50 sccm. The prepared GDE served as the cathode in the MEA electrolyzer, while the IrO2 was used as the anode. The anode utilized an anion exchange membrane.
During the evaluation of the catalyst’s eCO2RR performance, we quantified and collected the electrolyte from both the cathode and anode, while separating the gas product from the liquid product by passing it into ultrapure water. To ensure conductivity and maintain ionic concentration, we periodically replaced the electrolyte with fresh electrolyte during stability tests. The gas products of the reaction were dried using a desiccant, collected in a gas bag, and then analyzed both qualitatively and quantitatively using gas chromatography (Tianmei 7980) equipped with TCD and FID detectors. We calculated the respective Faraday efficiencies (FE) for gaseous product obtained using the following equations:
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where [image: image6.png]


 represents the Faradaic efficiency for the gas product; [image: image7.png]


 represents the charge transferred for the formation of the product gas; [image: image8.png]Qv



 represents the total charge passed through the working electrode; [image: image9.png]


 represents the outlet gas flow rate; [image: image10.png]


 represents the concentration of the product as detected by GC; [image: image11.png]


 represents the molar volume of the gas at room temperature, which is 24.5 L/mol; [image: image12.png]


 represents the number of electrons transferred for reduction to a molecule product; [image: image13.png]


 represents the Faradaic constant, which is 96485 C/mol and [image: image14.png]-



 represents the total current density during CO2 electrolysis.
In order to analyze whether there are liquid phase products in the reaction process, 500 µL was withdrawn using a pipette. Then, 1 µL of DMSO and 200 µL of D2O were added to the withdrawn liquid. The resulting mixture was qualitatively and quantitatively analyzed using a 1H NMR (Bruker Advance III 400 HD spectrometer).
S1.6 In-situ Spectroscopy
In-situ Raman spectroscopy (eCO2RR). Raman spectra were acquired using a Raman flow cell with 532 nm excitation laser. During the in-situ experiment, a solution contained with 1 mol/L KOH was continuously circulated through the cathodic chamber, while a 1 mol/L KOH solution was circulated through the anodic chamber. This circulation was achieved using peristaltic pumps at a rate of 5 mL/min. The flow rate of CO2 was maintained at 100 sccm using a mass flow controller.
In-situ Raman spectroscopy (PMS activation). Quantitative catalyst powder and PMS were mixed with 5 mL ultra-pure water, and the mixture was put into a 10 mL centrifuge tube, which was shock for 1 min to complete the reaction, and a small amount of turbidity was absorbed with a capillary tube. Under the irradiation of 532 nm laser, a resolution of 1 cm-1 was used to scan for 1 min in the range of 400 - 4000 cm-1. Similar to the test method for control samples, the PMS is dissolved in pure water for scanning.
S1.7 Theoretical Calculations. 
This study employed density functional theory (DFT) calculations using the Dmol3 module in Materials Studio software for first-principles simulations. The exchange-correlation interactions were described by the Perdew-Burke-Ernzerhof (PBE) functional within the generalized gradient approximation (GGA) framework. Double numerical plus polarization (DNP) basis sets and density-functional semi-core pseudopotentials (DSPP) were adopted for calculations, with van der Waals (vdW) corrections incorporated. Gibbs free energy corrections were implemented for the CO2 reduction process. The Brillouin zone integration utilized a Monkhorst-Pack k-point grid of 2×2×1, with convergence thresholds set as follows: energy tolerance (2.0×10-5 Ha), maximum force (0.004 Ha/Å), maximum displacement (0.005 Å), and self-consistent field (SCF) convergence criterion (1.0×10-5). These computational parameters ensured rigorous electronic structure optimization and thermodynamic evaluations.
S2 Supplementary Figures
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Fig. S1 SEM images showing the morphology of the NiFe-BNC (a-b) and NiFe-NC (c-d). SEM images show the layered loose porous carbon structure
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Fig. S2 EDS mapping of NiFe-NC
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Fig. S3 XRD pattern of NC, NiFe-NC and NiFe-BNC
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Fig. S4 Contact angle measurement of NiFe-BNC, showing a water contact angle of 140°, indicating hydrophobicity
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Fig. S5 B 1p XPS spectrum of NiFe-BNC
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Fig. S6 Raman spectra and FTIR spectra of different catalysts
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Fig. S7 Morphology of NiFe-BNC catalyst after catalytic degradation experiment
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Fig. S8 LSV Curves of NiFe-BNC in Different Reaction Systems
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Fig. S9 EPR spectra in the catalyst/PMS system
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Fig. S10 The actual setup of the flow cell electrolyzer used for CO2 electroreduction. The electrolyzer consists of a gas diffusion electrode (GDE) for CO2 introduction, a cathode and anode electrolyte compartment separated by a membrane, and a reference electrode. The cathode and anode compartments allow for the inflow and outflow of electrolytes, facilitating the electrochemical reduction process
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Fig. S11 The actual photograph of the membrane electrode assembly (MEA) electrolyzer setup. The diagram on the left shows the components of the MEA electrolyzer, including the anode with IrO₂ catalyst, the anion exchange membrane (AEM), and the gas diffusion electrode (GDE) at the cathode. The system facilitates the flow of electrolyte and CO2 through the anode and cathode, respectively
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Fig. S12 1H NMR spectra of the different products obtained after the eCO2RR
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Fig. S13 LSV curves of different catalysts: Ar-saturated electrolyte (flow cell), CO2-saturated electrolyte (flow cell)
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Fig. S14 Cyclic voltammetry curves. (a) NiFe-BNC; (b) NiFe-NC; (c) Ni-NC and (d) Fe-NC with the scan rates from 0.1 V/s to 1 V/s
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Fig. S15 FECO of Fe-NC and Ni-NC physical mixed catalysts
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Fig. S16 The eCO2RR performance of NiFe-BNC with varying boron doping levels
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Fig. S17 (a) The styrene degradation performance and (b-d) the corresponding Faradaic efficiencies of CO and H2 at different current densities of NiFe-BNC catalysts with varying metal contents
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Fig. S18 Infrared spectra of NiFe-NC and NiFe-BNC catalysts before and after catalytic degradation reaction
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Fig. S19 (a) The CO2-TPD profiles and (b) corresponding CO2 adsorption capacities of the NiFe-NC and NiFe-BNC catalysts
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Fig. S20 (a-b) Actual gas chromatogram of the catalytic reaction with the addition of ethanol and methanol quencher; (c) The possible degradation pathways of styrene
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Fig. S21: The spectrum of gas chromatography-mass spectrometry (GC-MS)
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Fig. S22 Removal efficiency of styrene and toluene by NiFe-BNC/PMS systems
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Fig. S23 Cyclic degradation experiment of the catalysts
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Fig. S24 Schematic diagram of the in-situ Raman spectroscopy setup for CO2 reduction reaction studies, with a gas diffusion electrode (GDE) and a membrane separating the cathode and anode compartments
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Fig. S25 WT-EXAFS plots of (a) Fe2O3, (b) Fe3O4; (c) Fe-NC; (d) NiFe-NC; (e) NiO
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Fig. S26 Experimental and fitting EXAFS curves of Fe-NC in R space (Fe-N4)
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Fig. S27 Adsorption energy of different oxygen sites of PMS at Fe/Ni metal sites of NiFe-NC catalyst
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Fig. S28 Gibbs free energy calculation model diagram
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Fig. S29 (a-b) Mulliken charge diagram and (c-d) the optimized structural model diagrams of NiFe-NC and NiFe-BNC catalysts
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Fig. S30 Raman spectra of NiFe-BNC catalysts with different boron doping contents
Table S1 Structural parameters extracted from the Fe/Ni K-edge EXAFS fitting
	Sample
	Scattering path
	Distance (Å)
	C.N.       
	(Å2)
	∆E0 (Ev)
	R-factor

	Fe foil
	Fe-Fe
	2.46
	
	8
	0.004
	6.7
	0.004

	
	Fe-Fe
	2.85
	
	6
	0.004
	6.7
	

	NiFe-BNC (Fe)
	Fe-N
	1.99
	
	3.6
	0.001
	13.2
	0.017

	Ni foil
	    Ni-Ni
	2.49
	
	12
	0.006
	7.1
	0.002

	NiFe-BNC (Ni)
	Ni-Ni
	2.49
	
	3.1
	0.005
	-8.1
	0.007
0.007

	
	Ni-N
	1.90
	
	2.4
	0.005
	-8.1
	


Table S2 Comparison of the removal effect of VOCs by liquid-phase AOPs
	Catalytic system
	Pollutant
	Degradation efficiency（%）
	Optimal mineralization rate（%）
	Pollutant concentration（ppm）
	Refs.

	Co3O4/activated carbon/PMS
	Toluene
	90
	57
	30
	 [S1]

	CFS/PMS
	Toluene
	95
	47
	30
	 [S2]


 [S3]
	[S4]
[S5]

	Co@NCNT/PMS
	Chlorobenzene
	90
	38
	30
	 [S6]

	MnCo2O4.5
	Toluene
	97.3
	85.3
	30
	 [S7]

	Fe/ZSM-5/UV/Fenton
UV/H2O2
UV/PDS
CoS2/AC/PMS
	Toluene
Toluene
Chlorobenzene Toluene
	85
81.4
90-97
90
	/
72
  75
80
	30
30
30
30
	 [S8-S11]

	NF-BNC/PMS
	Styrene
	99
	94
	30
	This work


Table S3 Comparative analysis of the eCO2RR performance of the NiFe-BNC catalyst compared to other reported electrocatalysts
	Electrocatalyst
	Electrolyte
	Potential/V vs. RHE/
JCO (mA/cm2)
	FECO  (%)
	Refs.

	NF-BNC
	Flow Cell
	1000
	98%
	This work

	
	MEA
	400
	97%
	

	Cu-S-Ni/SNC
	Flow Cell
	400
	98%
	 [S12]

	FeNi–NSC
	H-type Cell
	40
	90%
	 [S13]

	NiN4B2Cx
	H-type Cell
	67.91
	95%
	 [S14]

	Cu/Ni-NC
	Flow Cell
	300
	95%
	 [S15]

	CuNi-DSACs
	Flow Cell
	213
	99%
	 [S16]

	Ni-NBr-C
	MEA
	350
	97%
	 [S17]

	Ni-Zn bimetal site
	H-type Cell
	-0.8V
	99%
	 [S18]

	Fe-Zn dual-atom sites
	Flow Cell
	400
	94%
	 [S19]

	NiFe-DASC
	H-type Cell
	50.4
	94.5%
	 [S20]

	CuZn-DAS/NC
	Flow Cell
	-0.6V
	98.4%
	 [S21]
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