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S1 Experimental Section and Calculation
DFT calculation: We used the DFT as implemented in the Vienna Ab initio simulation package (VASP) in all calculations. The exchange-correlation potential is described by using the generalized gradient approximation of Perdew-Burke-Ernzerhof (GGA-PBE). The projector augmented-wave (PAW) method is employed to treat interactions between ion cores and valence electrons. The plane-wave cutoff energy was fixed to 450 eV. Given structural models were relaxed until the Hellmann–Feynman forces smaller than -0.03 eV/Å and the change in energy smaller than 10-4 eV was attained. Grimme’s DFT-D3 methodology was used to describe the dispersion interactions among all the atoms in adsorption models. The Gamma-centered k-points samplings were set to 2 × 2 × 1 for modle. 
The space-charge-limited currents (SCLC) measurements: The trap density of the Pb2CuGly2X4 (X=Cl, Br) SCs can be calculated according to the following equation:
                                                         
[bookmark: OLE_LINK32][bookmark: OLE_LINK33]where the VTFL, ε0, and L denote the threshold voltage, vacuum permittivity, and the Pb2CuGly2X4 (X=Cl, Br) SC thickness, respectively.
The measurement of sensitivity: The sensitivity (S) is defined as the response current density per unit dose rate:

Where Iph is the photocurrent of device, Idark is the dark current, and  is the device area, and D is the dose rate.
The measurement of the detection efficiency: The theoretical efficiency of both devices can be estimated by the following equation [S1]:
                           S0 =                       
[bookmark: OLE_LINK3][bookmark: OLE_LINK5]Where the φ/X denotes the number of photons per unit of exposure, Ē is the mean energy of the X-ray photons, the W± represents the ionization energy to create an electron-hole pair, β, e and η are the energy absorption efficiency of X-ray, elemental electron charge and charge collection efficiency, respectively. The φ/X is about 277068 photons mm-2 mR-1, which is equal to 3.16×1012 photons cm-2 Gy-1 (1 mR = 8.76×10-6 Gy)  [S2]. The Ē for the 50 kV tube voltage is calculated to be about 42 keV according to the equation:
Ē = 
where ρ (Ei) and △Ei denote the distribution probability and the energy bin width of X-rays, respectively. According to the UV-Vis-NIR absorbance spectrum, the W± of the Pb2CuGly2X4 (X=Cl, Br) SC are calculated to be 3.63 and 3.61 eV based on the empirical model:
W± = 2Eg + 1.43 eV
The β of Pb2CuGly2X4 (X=Cl, Br) SC for 50 keV X-ray is calculated to be about 83% and 82%, respectively by the equation:
β =1-e(-ax)
where a is linear absorption coefficient of Pb2CuGly2X4 (X=Cl, Br) SC, and the x is corresponding SC thickness. As for the Pb2CuGly2X4 (X=Cl, Br) SC detector, the thickness of the Pb2CuGly2X4 (X=Cl, Br) SC are 1 mm and 0.8 mm, respectively. The a values of Pb2CuGly2X4 (X=Cl, Br) SC is 17.62 cm-1 and 21.81 cm-1 for 50 keV X-ray. The η is assumed to be 100%.    
The measurements of signal-to-noise ratio (): The signal-to-noise () values were calculated using the following equation:

[bookmark: OLE_LINK10][bookmark: OLE_LINK11]Where ​ is the detector signal current, obtained by subtracting the average dark current (​) from the average X-ray response current (​), and ​ is the effective detector noise current, obtained by calculating the standard deviation of the response current:

The dark current (photocurrent) drift: The dark current (photocurrent) drift () can be estimated by the following equation:

Where represents the final current,  is the initial current at the beginning of the test, t represents the whole test time, s denotes the device area, and E is the electric field.
S2 Supplementary Figures and Tables
Table S1 Crystallographic information of Pb2CuGly2X4 (X=Cl, Br)
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Fig. S1 The crystal structure of Pb2Cu(O2C-CH2-NH2)2Cl4 observed along c axis (a) and a axis (b), and the (011) crystal plane (c)
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[bookmark: OLE_LINK4]Fig. S2 The structure of the [PbX5O3]9- (X=Br, Cl) dodecahedral and the length of Pb-O and Pb-X
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Fig. S3 The Williamson–Hall (WH) plots of Pb2CuGly2X4 (X=Cl, Br) SC according to the XRD patterns
The corresponding micro strain calculated from Williamson–Hall (WH) plots was depicted in Figure S3. According to previous studies, microstrain will induce the formation of defects and hamper the stability of device. It can be seen that the derived microstrain of Pb2CuGly2Cl4 is 0.02, smaller than that of Pb2CuGly2Br4 (0.07). This result suggests a lower defect density and higher stability of Pb2CuGly2Cl4 SC.
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Fig. S4 TGA curves of Pb2CuGly2X4 (X=Cl, Br) powder
Table S2 The radius of the different ions
	Ions
	Pb2+
	Br-
	Cl-

	Radius/nm
	0.119
	0.195
	0.181


[bookmark: _Hlk173853608]Table S2 lists the radii of halide ions and Pb2+ commonly used in perovskites to compare the electrostatic interaction forces between the X- and the Pb2+, which can be calculated according to Coulomb's law:

where F is the interaction force between the two ions,  and  are the charge on the two point particles, r is the distance between the two particles, and k is the Coulomb's constant, which is about 9.0 ×109 N m2 C-2 in air.


[image: ]
Fig. S5 The schematic diagram of the electrostatic interaction force between Pb2+ and X- (X=Br, Cl)
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[bookmark: OLE_LINK14][bookmark: OLE_LINK15]Fig. S6 (a) The photographs of Pb2CuGly2X4 (X=Cl, Br) single crystal under light (left) and UV-light (310 nm). (b) The PL spectra of Pb2CuGly2X4 (X=Cl, Br) single crystal under excitation of 310 nm UV-light
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Fig. S7 Frequency-dependent capacitance curves of Pb2CuGly2X4 (X=Cl, Br) SC
The capacitance-frequency curves of Pb2CuGly2X4 (X=Cl, Br) were measured in the dark over a wide frequency range from 10 to 1000 kHz via a TZDM-RT-1000 dielectric temperature spectrometer. The relative permittivity () was calculated according to the following Eq:

where  and  are the device area and the thickness of SC, respectively,  is
the vacuum permittivity, c is the capacitance. The  of the Pb2CuGly2X4 (X=Cl, Br) SC were calculated to be 32 and 24, respectively.
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[bookmark: OLE_LINK2]Fig. S8 The time-resolved current density of Pb2CuGly2Br4 SC detector varies with the dose rates under different electric field
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Fig. S9 The time-resolved current density of Pb2CuGly2Cl4 SC detector varies with the dose rates under different electric field
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[bookmark: OLE_LINK21]Fig. S10 The time-resolved current density of Pb2CuGly2Br4 (a) and Pb2CuGly2Cl4 (b) SC detectors varies with the dose rates at the electric field of 120 V mm-1
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[bookmark: OLE_LINK64][bookmark: OLE_LINK65]Fig. S11 The photograph of the Pb2CuGly2Cl4 powder and paste
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Fig. S12 The preparation process of Pb2CuGly2Cl4 TFT array detector and inset shows the enlarged internal structure of TFT substrate
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Fig. S13 The XRD patterns of Pb2CuGly2Cl4 film

Table S3 The comparison of X-ray detection performance based on different semiconductors
	Device structure
	X-ray source [keV]
	 Electric field [V mm-1]
	Sensitivity 
[μC·Gyair-1·cm-2]
	Detection limit [nGyair·s-1]
	Dark drift
[nA∙cm-1∙s-1∙V-1]
	Refs.
	

	α-Se
	20
	10000
	20
	5.5×103
	
	 [S3]
	

	CdZnTe
	80
	250
	2400
	5×104
	
	 [S4]
	

	Pt/MAPbBr3/Pt
	100
	10
	2.45×104
	54
	3.88×10-5
	 [S5]
	

	Au/MA0.42FA0.58PbI3/ATPES/FTO
	40
	71.4
	1.16×106
	37.4
	0.25 (-5V)
	 [S6]
	

	FTO/CsPbBr3/Au
	50
	100
	9085
	103.6
	7.1×10-4
	 [S7]
	

	EGaIn/CsPbBr3/Au
	120
	500
	4.6×104
	10.81
	1.68×10-6
	 [S8]
	

	Au/CsPb2Br5/Au
	40
	625
	8865.6
	12.7
	
	 [S9]
	

	Au/CsPbBr2.9I0.1/Au
	70
	100
	2.75×105
	18
	
	 [S10]
	

	Au/α-FAPbBr3/Au
	70
	5
	1.67×105
	1.1
	
	 [S11]
	

	Ag/(4ABA)PbI4/Ag
	50
	5
	572
	7.50
	5.18×10-8
	 [S12]
	

	Au/(F-PEA)2PbI4/C60/BCP/Cr
	120
	133
	3402
	23
	4.9×10-8
	 [S13]
	

	Au/(DGA)PbI4/Au
	40
	1200
	4869
	95.4
	5.97×10-7
	 [S14]
	

	Au/(4AEPy)PbI4/C60/BCP/Cr
	120
	200
	5627
	20
	1.9×10-8
	 [S15]
	

	Au/BDAPbI4/Au
	40
	310
	242
	430
	6.06×10-9
	 [S16]
	

	Ag/BA2PbBr4/Ag
	50
	920
	726
	8.2
	
	 [S17]
	

	Cu/Pb2CuGly2Cl4/Cu
	50
	120
	7020
	912.6
	1.20×10-8
	This work
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Fig. S14 Microphotograph of the different region of TFT array
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Fig. S15 The time-resolved current density of Pb2CuGly2Cl4 TFT array detector varies with the dose rates under different electric field
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image1.emf
Empirical formula C4H8Br4CuN2O4Pb2 C4H8Cl4CuN2O4Pb2 

Formula weight 945.68 767.84 

Temperature/K 293(2) 293(2) 

Crystal system monoclinic monoclinic 

Space group P21/c P21/c 

a/Å 8.5562(17) 8.4236(17) 

b/Å 10.971(2) 10.404(2) 

c/Å 8.3758(17) 8.2371(16) 

α/° 90 90 

β/° 108.68(3) 109.02(3) 

γ/° 90 90 

Volume/Å

3

 744.8(3) 682.5(2) 

Z 2 2 

ρcalcg/cm

3

 4.217 3.736 

μ/mm

-1

 34.692 26.934 

F(000) 822 678 

Radiation MoKα (λ = 0.71073) MoKα (λ = 0.71073) 

2Θ range for data collection/° 6.34 to 60.04 7.18 to 60.04 

Index ranges 

-12 ≤ h ≤ 12, -13 ≤ k ≤ 

15, -11 ≤ l ≤ 11 

-11 ≤ h ≤ 11, -14 ≤ k ≤ 12, 

-11 ≤ l ≤ 11 

Reflections collected 11337 8282 

Independent reflections 

2173 [Rint = 0.0568, 

Rsigma = N/A] 

1987 [Rint = 0.0398, 

Rsigma = N/A] 

Data/restraints/parameters 2173/0/80 1987/0/79 

Goodness-of-fit on F

2

 1.124 1.028 

Final R indexes [I>=2σ (I)] R1 = 0.0274, wR2 = N/A R1 =0.0276,wR2 = N/A 

Final R indexes [all data] R1 = N/A, wR2 = 0.0605 R1 = N/A,wR2 =0.0445 

Largest diff. peak/hole / e Å

-3

 1.22/-1.47 0.83/-1.37 
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