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[bookmark: _GoBack]Materials 
The chemicals including cobalt (II) nitrate hexahydrate (Co(NO3)2·6H2O , reagent grade, 98%), iridium(III) chloride hydrate (IrCl3·nH2O, 99.9%) and iridium black (Ir) were purchased from Sigma-Aldrich (American). The chemicals including La(NO3)3·xH2O (99.99% metals basis), Ni(NO3)2·6H2O (98%, AR), methanol (CH3OH, ≥ 99.9 %, GC), 2-methylimidazole (C4H6N2, ≥ 98%), benzyl alcohol(C7H8O,≥99%, AR), citric acid (C₆H₈O₇,≥99.5%(T), AR), iridium oxide (IrO2, 99.9% trace metals basis), ethanol (C2H5OH ≥99.8%), isopropanol (IPA, C3H7OH, GC, ≥ 99.9%) were purchased from Aladdin (China). 1,4-Phthalaldehyde (C8H6O2, ≥ 99%, GC) was purchased from Macklin (China). Platinum bis(acetylacetonate) (C10H14O4Pt, Pt 50%) was purchased from Kunming Guiyan New Material Technology Co., Ltd. (China) Acetone (C3H6O, ≥99.5%, AR) was purchased from Sinopharm. 5% Nafion solution (D520CS) were purchased from Chemours (American). Iridium oxide (75 wt%) on niobium oxide (IrO2 on NbOx) and 20 wt.% Pt on carbon black (Pt/C) were purchased from Umicore (British). Carbon was purchased from XFNANO (China). The HClO4 was purchased from thermo fisher scientific Chemicals (American). DI water with a resistance of ~18.25 MΩ·cm was produced by a pure water machine bought from Aikepu Company (China). All the chemicals were used directly without further purification. 
Supplementary Figures and Tables
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[bookmark: _Hlk197946474]Fig. S1 SEM images of IrPtOx-S. The results reveal a hierarchical pore structure composed of interconnected macropores and mesopores. This architecture facilitates efficient mass transport by enabling rapid influx of reactants (e.g., water) and efflux of products (H₂/O₂ gas)
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[bookmark: _Hlk197921307][bookmark: _Hlk192061058][bookmark: _Hlk197945424]Fig. S2 TEM images of IrPtOx-S and the corresponding particle size distribution of the entire catalyst
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[bookmark: _Hlk197923903][bookmark: _Hlk197945268]Fig. S3 a HRTEM image of IrPtOx-S; b HRTEM image of IrPtOx single particle. It clearly reveals an amorphous phase with thickness of 1-2 nm surrounding the IrPt nanoparticles
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[bookmark: _Hlk197946827][bookmark: _Hlk197945929][bookmark: _Hlk198190795]Fig. S4 a STEM-HAADF -Mapping of IrPtOx-S; b line scan of two individual IrPtOx particles. The results show that Ir and Pt are in the form of alloy, and Co, O, La and Ni are uniformly distributed across the entire catalyst. STEM-EDS Line scan profiles further confirm the formation of IrPt alloy core with particle size being around 2-3 nm, and IrPtOx shell with thickness of 2-3 nm. Those structural observations align with our XPS and Raman analyses, detecting the formation of oxidized Ir and Pt species
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Fig. S5 HAADF-STEM image of IrPtOx-S and elemental mappings. It reveals that Ir, Pt, Co, Ni, La, and O are uniformly distributed, with Ir and Pt primarily located on the surface of the support material
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Fig. S6 a N2 adsorption/desorption isotherms of the support material (S) and IrPtOx-S. b the corresponding pore size distribution
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Fig. S7 a XPS survey data of IrPtOx-S. b XPS spectra of Co 2p. c XPS spectra of La 3d. The ratio of Co²⁺ to Co³⁺ is significantly greater than 1:2, which is the ratio in pure Co3O4, indicating a high concentration of Co²⁺ in the support material. This suggests a high concentration of oxygen vacancies, consistent with the XPS results at O 1s
[image: ]
[bookmark: _Hlk192063072]Fig. S8 a XPS spectra of Ir 4f for IrPtOx-S, commercial IrO₂ (Com. IrO₂), and IrOx-S. b XPS spectra of Pt 4f for IrPtOx-S and Pt-S. The results indicate that the introduction of Pt facilitates the formation of metallic Ir, leading to the formation of IrPt alloy. Simultaneously, Pt particles were oxidized in the presence of Ir. These findings further confirm the formation of an Ir-O-Pt shell surrounding the IrPt alloy
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Fig. S9 a XANES and b EXAFS spectra of Co at K-edge of IrPtOx-S. Co3O4, CoO were the references
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[bookmark: _Hlk192161430][bookmark: _Hlk192187763]Fig. S10 Wavelet transform images of Co K-edge EXAFS of pristine IrPtOx-S. Co3O4 was the reference. Obviously, the local atomic structure of Co as the support material for IrPtOx is different from that of pure Co3O4
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[bookmark: _Hlk197946884]Fig. S11 Faradaic efficiency (FE) of IrPtOx-S measured at different current densities of 20 and 50 mA cm⁻² during OER and - 20 and - 50 mA cm⁻² during HER processes in a three-electrode configuration using a 0.1 M HClO₄ aqueous electrolyte
[image: ]
Fig. S12 Typical cyclic voltammetry curves of IrPtOx-S a Com. IrO2 c and Com. Pt/C e at different scan rates of 10, 20, 30, 40, 50 mV s-1. The scanning potential range is from 1.0 V to 1.1 V where no faradic reaction takes place. The corresponding current density plotted against scan rates of different samples were shown in b, d, f
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[bookmark: _Hlk198350719][bookmark: _Hlk198350825]Fig. S13 a, b, c ECSA of IrPtOx-S, Pt-S and the commercial Pt/C obtained by using Hydrogen Underpotential Deposition (H-UPD) method. d, e ECSA of IrOx-S and commercial IrO2 obtained by using Redox-Active Surface Charge (Redox Peaks) method. The ECSA values were shown in Table S4
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[bookmark: _Hlk197946719]Fig. S14 OER specific activities of different catalysts, calculated by normalizing the polarization curve current to the ECSA of each material. It reveals that IrOx-S and IrPtOx-S exhibit comparable intrinsic activities. This suggests that the enhanced geometric activity of IrPtOx-S relative to IrOx-S likely arises from its larger ECSA, a result of incorporating Pt into the structure
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[bookmark: _Hlk197928264]Fig. S15 HER specific activities of different catalysts, calculated by normalizing the polarization curve current to the ECSA of each material. The result suggests that incorporating iridium into platinum to form a surface with oxidized species significantly enhances the catalytic activity toward HER
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[bookmark: _Hlk197929521][bookmark: _Hlk197945217]Fig. S16 a Polarization curves recorded on LaNi-Co3O4 (S), Ni-Co3O4, La-Co3O4 for OER in O2 saturated 0.1 M HClO4 electrolyte. b Polarization curves recorded on LaNi-Co3O4 (S), Ni-Co3O4, La-Co3O4 for HER in O2 saturated 0.1 M HClO4 electrolyte. The loading of each material was 150 μg cm-2, the scan rate was 2 mV s-1
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[bookmark: _Hlk197934767][bookmark: _Hlk197932432]Fig. S17 PEMWE cell polarization and impedance curves at 80 oC as function of current density for IrPtOx-S and commercial IrO2/NbO2. Our IrPtOₓ-S catalyst exhibits a cell impedance constantly at ~ 20 mΩ·cm², outperforming the commercial benchmark (20 - 25 mΩ·cm²). This lower and stable impedance reflect enhanced electronic conductivity from metallic Ir/Pt cores, efficient charge transfer at Ir-O-Pt active sites, optimized mass transport due to hierarchical porosity. The results demonstrate the excellent integration of our catalyst into the MEA
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[bookmark: _Hlk197937763][bookmark: _Hlk197943713]Fig. S18 a, b HAADF-STEM-EDS images of IrPtOx-S peeled off from the anode of the MEA after 646 hours’ stability test. c Elemental line-scan profile across a single IrPtOx nanoparticle (NP), revealing compositional distribution
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[bookmark: _Hlk197940423]
Fig. S19 HAADF-STEM-EDS images of IrPtOx-S peeled off from the cathode of the MEA after 646 hours’ stability test

Figures S18 and S19 confirm that there is no particle agglomeration or separation/delamination, except only a minor increase in the IrPtOx layer thickness (approximately ~1 nm), consistent with post-test XPS and Raman analyses. The result underscores the structural and chemical robustness of the catalyst under prolonged electrochemical operation.
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[bookmark: _Hlk192074710]Fig. S20 a XPS survey data of IrPtOx-S at the beginning of life (fresh sample) and the end of life (EOL) during durability testing in MEA3, including the anode and cathode. b XPS spectra of Co 2p for the fresh sample and the samples at EOL, including the anode and cathode
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[bookmark: _Hlk198205415][bookmark: _Hlk192109177][bookmark: _Hlk192162655]Fig. S21 Raman spectra of the fresh IrPtOx-S, and the IrPtOx-S samples peeled off from the MEA after 644 hours testing
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Fig. S22 k2-weighted Fourier-transformed (FT) EXAFS spectrum collated at Ir LIII-edge of IrPtOx-S and the fit. a IrPtOx-S; b IrO2
[image: ]
Fig. S23 MS measurements of IrPtOx-S using a galvanostatic method. a MS signals of 32O2 (16O + 16O) and 36O2 (18O + 18O) collected during the galvanostatic test at 15 mA cm-2. b The ratio of 36O2: 32O2, which almost constant at ~ 0.2 % during 30 mins testing at 15 mA cm-2, suggesting 36O2 came from background 18O
[image: ]
[bookmark: _Hlk197957674]Fig. S24 XANES spectra at O k-edge measured at different potentials (OCV, 1.38 V, 1.70 V and reverse to OCV) in 0.1 M HClO4 during OER
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Fig. S25 The projected density of state (PDOS) of a IrO2-S and b Pt-S

[image: ]
Fig. S26 OER mechanisms on Ir-O-Pt site of IrPtOx-S that go through *OH, *O+*OH, *O+*O, respectively. Dark blue, red, green, light blue, grey and light-yellow balls represent Co, O, La, Ni, Pt and Ir, respectively
[image: ]

Fig. S27 The structure of IrO2-S and Pt-S used for the simulation. Dark blue, red, green, light blue, grey and light-yellow balls represent Co, O, La, Ni, Pt and Ir, respectively
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[bookmark: _Hlk197943773]Fig. S28 Gibbs free energy diagrams of OER on different samples. The calculated energy profiles indicate overpotentials of 0.63 V, 0.83 V, and 1.05 V for La,Ni-Co₃O₄, La-Co₃O₄, and Ni-Co₃O₄, respectively, demonstrating the intrinsic oxygen evolution reaction (OER) activity of these catalysts. These computational results align with our experimental observations, which confirm the activity trend: Ni-Co₃O₄ < La-Co₃O₄ < La,Ni-Co₃O₄

Beside functioning as protective layer (La) and the electronic optimizer (Ni), both La and Ni could optimize the local atomic structure of Co, thus improve the catalytic activity of the LaNi-Co3O4. The high OER/HER activity of IrPtOx-S, therefore, may stem from the synergy between IrPtOx and the LaNi-Co3O4 substrate.  


Table S1 Elemental analysis of the material composition measured by ICP-MS
	Elements
	Weight concentration

	Co
	31.884%

	La
	0.818%

	Ni
	0.2%

	Ir
	6.738%

	Pt
	6.779%


Table S2 BET surface area, average pore size and volume data from N2 adsorption isotherms experiment
	[bookmark: _Hlk192122988]Sample
	BET (m2 g-1)
	Main pore diameter (nm)
	Pore volume (cm3 g-1)

	Support (S)
	186.0
	7.6
	0.38

	IrPtOx-S
	144.5
	5.5
	0.30
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[bookmark: OLE_LINK2]Table S3 Comparison of  overpotential at 10 mA cm-2 current density, mass activity (MA) at 300 mV overpotential,  durability at constant 10 mA cm-2 for OER; overpotential at -10 mA cm-2 current density, mass activity (MA) at 50 mV and 100 mV overpotential,  durability at constant -10 mA cm-2 for HER, as well as the comparison of  PEMWE cell performance including activity and durability of IrPtOx-S to that of previously reported Ir- and Pt- based catalysts
	[bookmark: _Hlk192152265]Sample
	PGM loading (mgIr/Pt cm-2)
	Electrolyte
	OER:
η(mV)@10mAcm-2
	OER: 
MA (A gIr-1) @ η=300mV
	OER Durability (h) @10mAcm-2
	HER:
η (mV) @ -10mAcm-2
	HER: 
MA (A gPt-1)
	HER Durability (h)
	Cell voltage (V) @loading (mgIr cm-2) @2 Acm-2
	MEA Durability
	Reference

	IrPtOx-S
	0.010

	0.1M HClO4 for OER, 0.5M H2SO4 for HER
	285.7
	1344
	1020
	57.7±2.5
	9276 @η=100 mV
	1040@-10 mA cm-2
	1.718@0.075
	644h@1.8A cm-2
	This work

	Ir25Pt74
	~0.07

	0.5M H2SO4 for OER and HER
	240
	1240 
	-
	65
	-
	14@-10 mA cm-2
	-
	-
	[S1]

	ZnNiCoIrMn
	0.28

	0.1M HClO4 for OER and HER
	237
	610.8 
	100
	50mV
@-50mA cm-2
	675.3 A gIr-1 @η=50 mV
	[bookmark: OLE_LINK1]100@-10 mA cm-2
	-
	-
	[S2]

	A-Ir NS
	0.408
	0.1M HClO4 for OER
	255
	221.8
	8
	-
	-
	-
	-
	-
	[S3]

	IrOx-Ir
	0.133 
	0.5 M H2SO4 for OER
	293
	~100
	-
	-
	-
	-
	1.7@1.0(@1.4 A cm-2)
	100h@2A cm-2
	[S4]

	HEA@Ir-MEO
	0.15

	0.05 M H2SO4 for OER
	243
	261@350mV 
	
	-
	-
	-
	1.7 V@0.4
	500h@1 A cm-2
	[S5]

	Pt SASs/AG
	-
	0.5M H2SO4 for HER
	-
	-
	-
	12
	22400 @η=50 mV
	24@-10m Acm-2
	-
	-
	[S6]

	PtCu/WO3@CF
	0.0043
	0.5M H2SO4 for HER
	-
	-
	-
	41
	10860 @η=100 mV
	>20@-20m Acm-2
	-
	-
	[S7]

	Pt/MXene
	-
	0.5M H2SO4 for HER
	-
	-
	-
	34
	1847 @η=50 mV
	2.7
	-
	-
	[S8]

	Pt-N3S1 SAs
	
	0.5M H2SO4 for HER
	-
	-
	-
	26 
	13716 @η=50 mV
	50@-10m Acm-2 
	-
	-
	[S9]

	IrⅥ-ado
	0.02 
	0.5M H2SO4 for OER
	-
	1150±2
	-
	-
	-
	-
	1.76@0.08
	2800h@1.8 A cm-2

	[S10]

	IrCoOx@LLCF
	0.010 
	0.1M HClO4 for OER
	280
	1167 ± 150
	233
	-
	-
	-
	1.75@0.2
	246h@2 A cm-2
	[S11]

	Ir-3MA
	0.15 
	-
	243
	261
	24@100 mAcm-2
	-
	-
	-
	1.79@0.5
	400h@2 A cm-2
	[S12]

	Ir0.6Sn0.4O2
	-
	-
	-
	-
	-
	-
	-
	-
	1.96@0.294
	100h@1 A cm-2
	[S13]



[bookmark: _Hlk198350886]Table S4 ECSA of different samples obtained by using H-UPD and Redox-Active Surface Charge methods, respectively
	Sample
	ECSA (m2 g-1)
	Method

	IrPtOx-S
	123.1
	H-UPD

	Ir-S
	45.6
	Redox-Active Surface Charg

	Pt-S
	96.6
	H-UPD

	IrO2
	15.1
	[bookmark: _Hlk198128646]Redox-Active Surface Charge

	Pt/C
	89.6
	H-UPD


Table S5 Ir LIII edge EXAFS fitting results of IrPtOx-S and IrO2. k = 3 – 11 Å-1
	Sample
	bond
	N
	R (Å)
	σ2 (Å2)
	S02
	R-factor

	IrPtOx-S
	Ir-Ir/Pt
	11.5
	2.75
	0.014
	0.898
	0.06

	IrO2
	Ir-Ir
	2.3
	3.22
	0.007
	0.898
	0.09

	Ir foil
	Ir-Ir
	12
	
	
	
	

	IrO2
	Ir-O
	6
	
	
	
	

	
	Ir-Ir1
	2
	
	
	
	


[bookmark: _Hlk198206222]Table S6 Bader charge of Pt/Ir in different chemical environments of slab
	Bader charge
	Pt
	Ir

	Pt-O-Pt
	0.73
	-

	Ir-O-Ir
	-
	1.17

	Pt-O-Ir
	0.71
	1.54
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