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Supplementary Figures and Tables
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Fig. S1 XRD patterns of Ru1/ND@G, Pt1/ND@G, Pt1Ru1/ND@G, and Pt1Ru1/ND@G-used
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Fig. S2 Additional HAADF-STEM images of Ru1/ND@G
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Fig. S3 Additional HAADF-STEM images of Pt1/ND@G
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Fig. S4 The distribution of the Pt1-Ru1 distances by counting 50 Pt-Ru atom pairs
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Fig. S5 Pt 4f XPS spectra of Pt1/ND@G and Pt1Ru1/ND@G
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Fig. S6 Ru 3p XPS spectra of Ru1/ND@G and Pt1Ru1/ND@G
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Fig. S7 CO conversion of various PtRu/ND@G catalysts with different Ru loading. Reaction conditions: 1% CO, 1% O2 balanced in He, GHSV = 48,000 mL·gcat-1·h-1
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Fig. S8 T50, T100 of various PtRu/ND@G catalysts with different Ru loading
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Fig. S9 CO catalytic oxidation performance of different PtM/ND@G catalysts
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Fig. S10 (a) Catalytic performance and (b) TOF (30°C) of Pt/ND@G, Ru/ND@G, and PtRu/ND@G with the same metal loading (GHSV = 48,000 mL·gcat-1·h-1)
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Fig. S11 Catalytic performance of PtRu /ND@G, PtRu /Graphene, and PtRu/ SiO2 (GHSV = 48,000 mL·gcat-1·h-1)
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Fig. S12 The experimental Ru (a, b) and Pt (c, d) EXAFS spectra and the fitting curves of Pt1Ru1/ND@G
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[bookmark: OLE_LINK5]Fig. S13 The EXAFS fitting curves of Pt1/ND@G at R-space
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Fig. S14 The EXAFS fitting curves of Ru1/ND@G at R-space
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Fig. S15 Free energy profiles for CO oxidation on the Pt1/ND@G catalyst (x-axis is the reaction coordinate, y-axis is the free energy determined at 50 ℃ and the partial pressure for CO2, O2 and CO is 1000, 2000, 1000 Pa, respectively. Color codes: grey, orange and red balls represent carbon, platinum and oxygen, respectively)
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Fig. S16 Free energy profiles for CO oxidation on the Ru1/ND@G catalyst (x-axis is the reaction coordinate, y-axis is the free energy determined at 50 ℃ and the partial pressure for CO2, O2 and CO is 1000, 2000, 1000 Pa, respectively. Color codes: grey, red, and green balls represent carbon, oxygen and ruthenium, respectively)
[image: 图片包含 游戏机, 窗户, 建筑

描述已自动生成]
Fig. S17 (a), (b), and (c) are the top and side views of the optimized structures of O2 adsorbed on the bridge site, Ru site, and Pt site, respectively, along with the adsorption energy of O2. Color codes: grey, red, orange and green balls are carbon, oxygen, platinum and ruthenium, respectively)
[bookmark: _Hlk209365229][bookmark: OLE_LINK1][image: ]
Fig. S18 (a) and (b) HAADF-STEM images of Pt1Ru1/ND@G after the stability experiment
Table S1 Comparison of the structure information and catalytic performance over the Pt1Ru1/ND@G and SACs
	Catalyst
	Pt loading
(wt%)
	Ru loading
(wt%)
	Temp.
(°C)
	TOF
*102 (s-1)

	Ru1/ND@G
	0
	0.04
	30
	~0

	Pt1/ND@G
	0.09
	0
	30
	1.5

	Pt1Ru1/ND@G
	0.09
	0.04
	30
	17.6

	Pt1Ru1/ND@G-used
	0.10
	0.05
	30
	\


Table S2 The peak positions and shifts of platinum and ruthenium in the XPS spectra of the catalyst
	catalyst
	Pt1/ND@G
	Ru1/ND@G
	Pt1 Ru1/ND@G

	Peak Position of Pt 4f₇/₂
	71.7
	\
	71.4

	Peak Position of Ru 3p3/2
	\
	463.8
	463.2

	BE Shift of Pt (eV)
	Ref.
	\
	- 0.3

	BE Shift of Ru (eV)
	\
	Ref.
	- 0.6


Table S3 The kinetic measurement parameters for catalysts in this work
	[bookmark: _Hlk209403200]catalyst
	reaction order in CO
	reaction orders in O2
	activation energies (kJ/mol)
	pre-exponential factors (h-1)
	R2 values

	Pt1/ND@G
	+ 0.71
	+ 0.22
	17.9 ± 0.6
	221.4
	0.99

	Ru1/ND@G
	\
	\
	23.4 ± 1.2
	403.4
	0.99

	Pt1Ru1/ND@G
	+ 0.53
	+ 0.12
	13.2 ± 0.4
	492.7
	0.99


Table S4 Fit results for the EXAFS spectra of different catalysts
	Sample
	Path
	R (Å)a
	C.N.b
	σ2 (Å2)c
	ΔE0(eV)d
	R-factore

	Ru foil
	Ru-Ru
	2.68(1)
	12
	0.004
	-3.8(17)
	0.008

	RuO2
	Ru-C/O
	1.97(1)
	6
	0.002
	-3.2(22)
	0.018

	Ru1/NDG
	Ru-C/O
	2.02(2)
	4.5
	0.008
	-0.3(23)
	0.012

	Pt1Ru1/NDG
	Ru-C/O
	2.02(4)
	3.9
	0.009
	1.3(36)
	0.018

	
	Ru-Pt
	2.58(4)
	0.9
	0.003
	
	

	Pt foil
	Pt-Pt
	2.76(1)
	12
	0.005
	5.2(4)
	0.003

	PtO2
	Pt-C/O
	2.01(1)
	6
	0.003
	9.3(12)
	0.014

	Pt1/NDG
	Pt-C/O
	2.01(4)
	2.4
	0.009
	9.8(19)
	0.019

	
	Pt-Cl
	2.32(3)
	1.5
	0.009
	
	

	Pt1Ru1/NDG
	Pt-C/O
	2.02(2)
	1.8
	0.004
	9.4(26)
	0.011

	
	Pt-Cl
	2.28(3)
	1.2
	0.004
	
	

	
	Pt-Ru
	2.52(3)
	1.1
	0.007
	
	


a: R is the interatomic distance (the bond length between Pt/Ru central atoms and surrounding coordination atoms). b: CN is the coordination number. c: σ2 is the Debye-Waller factor (a measure of thermal and static disorder in absorber scatterer distances). d: ΔE0 is the edge energy shift (the difference between the zero kinetic energy value of the sample and that of the theoretical model). e: R factor is used to value the goodness of the fitting.
Table S5 Catalytic performance over various catalysts reported in literature
	Catalyst
	Pt loading
(wt%)
	Reaction condition
	Temp.
(°C)
	TOF×102
(s-1)
	Refs.

	Pt1Ru1/ND@G
	0.1
	1% CO，1% O2
	30
	17.6
	This work

	0.75Pt0.2Fe/ND@G
	0.75
	1% CO，1% O2
	30
	15.1
	[S1]

	0.5Ptn/ND@G
	0.5
	1% CO，1% O2
	30
	3.5
	[S2]

	Pt1/FeOx
	0.17
	1% CO，1% O2
	27
	13.6
	[S3]

	[bookmark: OLE_LINK2]Pt-SA/A-Fe2O3
	1.2
	1% CO，1% O2
	70
	6.87
	[S4]

	Pt/Sn0.2Ti0.8O2
	0.5
	1% CO，1% O2
	80
	17.2
	[S5]

	0.3Pt/TiO2
	0.3
	1% CO，1% O2
	40
	2.15
	[S6]

	HO-Pt/TiO2
	1
	1% CO，1% O2
	70
	11
	[S7]

	Pt-CC/Al2O3
	5
	1% CO, 1% O2
	120
	2.8
	[S8]

	Pt-CD/Al2O3
	2.2
	1% CO, 1% O2
	30
	14.8
	[S8]

	Pt NP/TiO2
	1.0
	0.5% CO, 5% O2
	115
	1.01
	[S9]

	Pt/CNT-600
	1
	1.0 % CO, 20.0 % O2
	100
	5.55
	[S10]

	Co3O4/Pt/Al2O3
	3.85
	1% CO, 10% O2
	60
	2.7
	[S11]

	1%wt Pt/TiO2(B)
	1
	0.9% CO, 24% O2
	100
	10.9
	[S12]

	CeO2-IMP-Pt
	1.2
	1% CO, 16%O2
	80
	1.2
	[S13]





Table S6 The structures of optimized Pt1Ru1/ND@G, Pt1/ND@G, and Ru1/ND@G
	[bookmark: _Hlk194941922]catalyst
	Optimized structures
	Bonds
	CNa
	R(Å)
	Bader charge analaysis

	
	
	
	
	
	Pt
	Ru

	Pt1/ND@G
	[image: 背景图案

描述已自动生成][image: 图片包含 图示

描述已自动生成]
	Pt/C
	3
	1.93
	+0.22e
	\

	Ru1/ND@G
	[image: 卡通人物

描述已自动生成][image: 图表

中度可信度描述已自动生成]
	Ru/C
	4
	2.02
	\
	+0.62e

	Pt1Ru1/ND@G
	[image: 图示

描述已自动生成][image: 图片包含 图示

描述已自动生成]
	Ru/C
	3
	1.98
	+0.05e
	+0.54e

	
	
	Pt/C
	2
	1.92
	
	

	
	
	Ru-Pt
	1
	2.52
	
	


aCN is the coordination number.


Table S7 The adsorption energies of CO and O2 on Pt1Ru1/ND@G, Pt1/ND@G, and Ru1/ND@G
	catalyst
	Reaction
	Eads(eV)

	Pt1Ru1/ND@G
	CO(g)->CO*
	-1.74

	
	CO*+O2(g)->CO*+O2*
	-1.91

	Pt1/ND@G
	CO(g)->CO*
	-1.46

	
	CO*+O2(g)->CO*+O2*
	-0.96

	Ru1/ND@G
	CO(g)->CO*
	-1.52

	
	CO*+O2(g)->CO*+O2*
	-0.98
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