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S1 Experimental Section
S1.1 Materials
The following chemicals were utilized in this study: 3,3’,4,4’-biphenyl tetracarboxylic dianhydride (BPDA), polyetherimide (PEI), and 4,4’-diamino benzanilide (DABA), all of which were procured from Energy Chemical. Carbonate-based electrolytes, including dimethyl carbonate (DMC), diethyl carbonate (DEC), and ethylene carbonate (EC), along with N, N-dimethylacetamide (DMAc), 1-methyl-2-pyrrolidinone (NMP), and auxiliary reagents, were acquired from Suzhou Duoduo Chemical Technology Co., Ltd. Additionally, LiNi0.5Co0.2Mn0.3O2 (NCM523) cathodes were sourced from Guangdong Candlelight New Energy Technology Co., Ltd. The Celgard-2400 separator, known as Celgard, was used for comparison.
S1.2 Porosity measurements
Porosity was determined by calculating the mass difference of the separator before and after immersion in n-butanol, as shown in Eq. (S1):

where mp and mb represent the masses of the dried membrane and n-butanol, respectively, while ρb and ρp are the densities of n-butanol and separator.
S1.3 Electrolyte uptake measurements
[bookmark: _Hlk210815225]To determine the electrolyte uptake, the mass difference of the separators before (W2) and after (W1) immersion in a ternary electrolyte (EC/DMC/DEC, 1:1:1 vol%) was measured. The electrolyte uptake was then calculated using Eq. (S2):

S1.4 Ionic conductivity measurements
[bookmark: _Hlk210815358]The ionic conductivity of the separators was measured by recording the impedance of an SS||separator||SS cell with a CHI660 workstation. The conductivity was then calculated using Eq. (3):

where d represents the membrane thickness, Rd is the bulk resistance, and S denotes the area between the separators and the stainless steel (SS) electrodes.
S2 Density Functional Theory (DFT) Calculations
Density functional theory (DFT) calculations were performed using the Gaussian software package [S1]. The objective was to evaluate the binding energies (EB) between Li⁺ ions and the repeat structural units of the electrolyte components. The generalized gradient approximation (GGA) with the Perdew–Burke–Ernzerhof (PBE) exchange–correlation functional was employed, as it offers a good balance between accuracy and computational cost in polymer–ion interaction studies. The 6-31G (d,p) basis set was applied for all atoms. Full geometry optimizations were performed without symmetry constraints at the same level of theory. Vibrational frequency analyses were subsequently conducted to verify that the optimized structures correspond to true minima on the potential energy surface (no imaginary frequencies) and to obtain zero-point energy (ZPE) and thermal corrections. The binding energy (EB) between Li⁺ and the polymer repeat structure was calculated using Eq. (S4):

where Ecomplex, Eunit, and Eion are total energy, energy of optimized unit, and energy of optimized Li+.
S3 Molecular dynamics (MD) simulations
In this system, periodic boundary conditions were applied in all three directions. MD simulations were conducted using the GROMACS software package [S2]. The initial structure was first subjected to energy minimization using the steepest descent algorithm until the maximum force fell below 200 kJ·mol-1·nm-1. The CHARMM36 all-atom force field was employed due to its wide applicability to polymer and electrolyte systems [S3]. Long-range electrostatics were treated using the particle–mesh Ewald (PME) method, and van der Waals interactions were truncated at 1.2 nm [S4]. Following minimization, a 100 ps NPT ensemble MD simulation was performed at 298 K and 1 bar to relax the system volume. Temperature and pressure were controlled using the V-rescale thermostat and the Parrinello–Rahman barostat [S5, S6]. Subsequently, a 200 ps production run was conducted under the NVT ensemble at 298 K using the same thermostat. A time step of 1 fs was used for all simulations, and all covalent bonds involving hydrogen atoms were constrained using the LINCS algorithm. To investigate ion migration and field-induced structural evolution, a uniform external electric field was applied along the z-axis during the production MD simulation. Similar approaches have been previously adopted to study charge transport and polarization phenomena in polymer electrolytes and battery materials [S7].
S4 Supplementary Figures and Tables
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Fig. S1 Synthetic procedure of PAI 
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[bookmark: _Hlk523430524]Fig. S2 DSC curve of as-prepared PAI 
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Fig. S3 DMA curve of PAI film at 5 ℃/min with N2
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Fig. S4 FTIR spectra of the PAI@PEI, PAI, and PEI samples
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[bookmark: _Hlk214202770]Fig. S5 Mechanical properties of the PAI@PEI and PAI as well as PAI@PEI membranes with the first, second and third restored apertures (R-PAI@PEI, 2R-PAI@PEI, and 3R-PAI@PEI) 
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Fig. S6 The surface morphology of PAI@PEI membrane at different temperatures
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[bookmark: _Hlk12614943]Fig. S7 The surface morphology of closed-aperture PAI@PEI membranes at different temperatures
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Fig. S8 The entire shape memory process of a star-shaped film (original shape) at a high-temperature
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Fig. S9 The schematic diagram of the self-recovering mechanism for PAI@PEI membrane
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Fig. S10 The fiber diameters of a PAI@PEI, b closed-aperture PAI@PEI (C-PAI@PEI), and c R-PAI@PEI; The aperture diameters of d PAI@PEI and e R-PAI@PEI membranes
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[bookmark: _Hlk214200190]Fig. S11 The surface morphology of the PAI@PEI membranes after repeated heating-cooling cycles
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[bookmark: _Hlk214202596]Fig. S12 The aperture diameters of PAI@PEI membranes with the second and third restored apertures (2R-PAI@PEI and 3R-PAI@PEI)
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[bookmark: _Hlk528005368][bookmark: _Hlk523430542]Fig. S13 Photographs of wetting behavior of electrolytes on the Celgard, PAI@PEI, and R-PAI@PEI separators
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[bookmark: _Hlk3150951][bookmark: _Hlk523430629]Fig. S14 Electrolyte absorption and retention of the Celgard, PAI@PEI, and R-PAI@PEI samples
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[bookmark: _Hlk214203601]Fig. S15 TGA curves of the PAI@PEI and Celgard membranes
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Fig. S16 TMA curves of the PAI@PEI and Celgard samples
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Fig. S17 DSC curves of the PAI@PEI and Celgard samples
[image: ]
Fig. S18 Digital photos showing thermal-dimensional stability of separators
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Fig. S19 Ignition testing of the Celgard and PAI@PEI samples
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[bookmark: _Hlk214292759]Fig. S20 Comparison of the ionic conductivity and Li+ transference number
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Fig. S21 Nyquist plots of SS||SS batteries with the Celgard, PAI@PEI, R-PAI@PEI, 2R-PAI@PEI, and 3R-PAI@PEI separators
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Fig. S22 Nyquist plot of the impedance spectra of the Li||Li cells at 1 mA cm-2


[image: ]
[bookmark: _Hlk214655606]Fig. S23 SEM images of Li anode of Li symmetrical cells using the Celgard, PAI@PEI, and R-PAI@PEI separators
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[bookmark: _Hlk213869750]Fig. S24 Cycling plating/stripping process of Li||Li cell at high current density of 2 and 3 mA cm⁻²
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Fig. S25 Rate performance at current density from 0.5 to 2 mA cm−2 with charge/discharge durations of 30 min in Li||Li cells
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Fig. S26 The critical current density of Li||Li symmetric cells, ranging from 0 to 8 mA cm−2 with increments of 0.2 mA cm−2
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Fig. S27 Morphology of the deposited lithium on Li anode of Li||Cu cells with the Celgard, PAI@PEI, and R-PAI@PEI separators after 10 cycles
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Fig. S28 Post-cycling SEM images of the Cu foil of Li||Cu cells with the a Celgard, b PAI@PEI, and c R-PAI@PEI separators
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Fig. S29 Voltage-time curves of Li||Cu cells with different separators at a current density of 4 mA cm−2 (D, ZC, F, J, c0, and t+ corresponding to the diffusion coefficient of Li+, charge, Faraday constant, current density, concentration of Li+, and transfer number, respectively.)
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[bookmark: _Hlk214655674]Fig. S30 The EIS of Li||NCM523 cells with the Celgard, PAI@PEI, and R-PAI@PEI separators
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[bookmark: _Hlk214655682]Fig. S31 SEM images of Li metal in Li||NCM523 cells with the a Celgard, b PAI@PEI, and c R-PAI@PEI separators
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[bookmark: _Hlk214211227][bookmark: _Hlk214375236]Fig. S32 The XPS of R-PAI@PEI separator before and after cycling of Li||NCM523 cells
Table S1 The physical properties and ionic conductivity of the sample
	[bookmark: _Hlk214375220]Samples
	Puncture strength/N
	Gurley numbers/s
	Porosity
	Ionic conductivity
/mS cm-1

	Celgard
	5.03
	191.0
	40.7%
	0.79

	IPAI@PEI
	1.768
	2.3
	88.3%
	1.60

	R-PAI@PEI
	1.950
	6.5
	73.0%
	1.63

	2R-PAI@PEI
	1.765
	6.6
	72.5%
	1.52

	3R-PAI@PEI
	1.659
	7.1
	70.8%
	1.44



[bookmark: _Hlk214655708]Table S2 Comparison of separators with irreversible thermal shutdown function between PAI@PEI and reported separators
	Year
	Samples
	Preparation
method
	Shutdown temperature (℃)
	The recoverability of the pores
	References

	2025
	PAI@PEI
	Coaxial electrospinning
	400
	[bookmark: OLE_LINK39]Restorability
	This work

	
	DCS
	[bookmark: OLE_LINK37]Coaxial Electrospinning with decosane-based micro capsule
	120
	Nonrecovery
	[S8]

	
	CF@HAP
	In situ growth and dip-coating
	60
	Nonrecovery
	[S9]

	
	VC-(DMFu)m
	Uniform solution after mixing
	120
	Nonrecovery
	[S10]

	
	PCIE
	In situ polymerization
	120
	Nonrecovery
	[S11]

	
	TS
	Coaxial Electrospinning and coating
	105
	Nonrecovery
	[S12]

	2024
	EVB
	Coaxial Electrospinning
	110
	Nonrecovery
	[S13]

	
	PBO-BN/PVDF
	Filming and coating process
	100
	Nonrecovery
	[S14]

	
	DFM
	Utilizing hydrophobic association
	172
	[bookmark: OLE_LINK3]Nonrecovery
	[S15]

	
	PES
	Electrospining
	120
	Nonrecovery
	[S16]

	
	PNIPAM/PP
	Grafting via the Michael addition reaction
	65
	Nonrecovery
	[S17]

	2023
	Na-Alg/PMIA
	Non-solvent phase induced separation
	200
	Nonrecovery
	[S18]

	
	CUIA-PE
	In-situ radical andom polymerization
	170
	Nonrecovery
	[S19]

	
	PVDF/PEI
	Solution casting
	150
	Nonrecovery
	[S20]

	
	BM/PAN
	Electrospinning technique
	170
	Nonrecovery
	[S21]

	
	DEE
	Mixing
	150
	Nonrecovery
	[S22]

	2022
	EVAs/PP
	Coating
	85
	Nonrecovery
	[S23]

	
	HA-1:3/PE
	Liquid-phase coating
	130
	Nonrecovery
	[S24]

	
	PCM-TEP@SiO₂/PP
	Microcapsules and coating
	80
	Nonrecovery
	[S25]

	
	GPE
	Radical polymerization and phase separation
	300
	Nonrecovery
	[S26]

	
	PP-Al2O3-PE
	Multilayer co-extrusion and sequential bidirectional drawing
	130
	Nonrecovery
	[S27]

	2021-2017
	PSF-b-PEG
	Selective swelling
	125
	Nonrecovery
	[S28]

	
	PBEI
	Electrospinning and in situ welding
	235
	Nonrecovery
	[S29]

	
	PPE
	Solution-mixing
	130
	Nonrecovery
	[S30]

	
	CPC
	Paper-making and lamination
	200
	Nonrecovery
	[S31]

	
	TPP@PVDF-HFP
	Coaxial electrospinning
	160
	Nonrecovery
	[S32]




[bookmark: _Hlk214655717]Table S3 Comparison of cycle life and the Li+ transference number of Li||Li cells between R-PAI@PEI and reported separators
	Samples
	Current density (mA cm-1)
	Area capacity (mAh cm-1)
	Cycling time (h)
	Li-ion transfer number (tLi+)
	References

	R-PAI@PEI
	1
	1
	760
	0.71
	This work

	PI-based PI/PIL
	0.5
	—
	250
	0.69
	[S33]

	PI-based PI-SO3
	1
	—
	360
	0.63
	[S34]

	PI-based Mesoporous PI
	4
	4
	500
	[bookmark: OLE_LINK76]—
	[S35]

	PI-based TEPI-PVP
	2
	2
	400
	0.65
	[bookmark: OLE_LINK74][S36]

	PI-based PBI@PI-COF10
	1
	1
	500
	0.53
	[S37]

	PP-based Ti0.87O2/PP
	2
	1
	300
	0.55
	[S38]

	PP-based BFO/PP
	1
	1
	350
	[bookmark: OLE_LINK79]—
	[S39]

	PP-based PZT/PP/PZT
	2
	2
	200
	—
	[S40]

	PP-based PPNFS-120
	0.5
	0.5
	500
	0.55
	[S41]

	PP-based PPTA/LLZTO
	0.5
	1
	500
	0.57
	[S42]

	PP-based MOFs@PP
	1
	0.5
	150
	0.68
	[S43]

	PE-based SPMC@PE
	1
	1
	500
	0.62
	[S44]

	PE-based CS@TiO2@PE
	1
	0.5
	600
	0.63
	[S45]

	PVDF-based PC/PMT/P
	0.2
	0.2
	600
	0.57
	[S46]

	PBO-based PBO/NW
	0.38
	—
	700
	—
	[S47]

	PAN-based PEO/LiTFSI
	0.5
	0.25
	300
	—
	[S48]

	PEEK-based ZIF-PIO
	0.5
	—
	100
	0.68
	[S49]

	ANF-based mANFs-20
	0.5
	—
	600
	0.67
	[S50]

	PMIA-based separator
	1
	0.5
	200
	0.54
	[S51]
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