TY - JOUR AU - Deng, Shengjue AU - Zhang, Kaili AU - Xie, Dong AU - Zhang, Yan AU - Zhang, Yongqi AU - Wang, Yadong AU - Wu, Jianbo AU - Wang, Xiuli AU - Fan, Hong Jin AU - Xia, Xinhui AU - Tu, Jiangping PY - 2020/10/31 Y2 - 2024/03/29 TI - Correction to: High-Index-Faceted Ni3S2 Branch Arrays as Bifunctional Electrocatalysts for Efficient Water Splitting JF - Nano-Micro Letters JA - Nano-Micro Lett VL - 13 IS - SE - Articles DO - 10.1007/s40820-020-00530-1 UR - https://nmlett.org/index.php/nml/article/view/622 SP - 16 AB - <p>For efficient electrolysis of water for hydrogen generation or other value-added chemicals, it is highly relevant to develop low-temperature synthesis of low-cost and high-efficiency metal sulfide electrocatalysts on a large scale. Herein, we construct a new core–branch array and binder-free electrode by growing Ni<sub>3</sub>S<sub>2</sub> nanoflake branches on an atomic-layer-deposited (ALD) TiO<sub>2</sub> skeleton. Through induced growth on the ALD-TiO<sub>2</sub> backbone, cross-linked Ni<sub>3</sub>S<sub>2</sub> nanoflake branches with exposed {<span class="mathjax-tex"><span id="MathJax-Element-2-Frame" class="MathJax" style="position: relative;" tabindex="0" role="presentation" data-mathml="<math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;><mrow class=&quot;MJX-TeXAtom-ORD&quot;><mover><mn>2</mn><mo stretchy=&quot;false&quot;>&amp;#x00AF;</mo></mover></mrow><mn>10</mn></math>"><span id="MathJax-Span-9" class="math" style="width: 1.704em; display: inline-block;"><span style="display: inline-block; position: relative; width: 1.502em; height: 0px; font-size: 111%;"><span style="position: absolute; clip: rect(1.165em, 1001.46em, 2.324em, -1000em); top: -2.152em; left: 0em;"><span id="MathJax-Span-10" class="mrow"><span id="MathJax-Span-11" class="texatom"><span id="MathJax-Span-12" class="mrow"><span id="MathJax-Span-13" class="munderover"><span style="display: inline-block; position: relative; width: 0.5em; height: 0px;"><span style="position: absolute; clip: rect(3.188em, 1000.45em, 4.154em, -1000em); top: -4.004em; left: 0em;"><span id="MathJax-Span-14" class="mn" style="font-family: MathJax_Main;">2</span></span><span style="position: absolute; clip: rect(3.264em, 1000.43em, 3.61em, -1000em); top: -4.251em; left: 0em;"><span id="MathJax-Span-15" class="mo" style="font-family: MathJax_Main;">¯</span></span></span></span></span></span><span id="MathJax-Span-16" class="mn" style="font-family: MathJax_Main;">10</span></span></span></span></span></span></span><strong>}</strong> high-index facets are uniformly anchored to the preformed TiO<sub>2</sub> core forming an integrated electrocatalyst. Such a core–branch array structure possesses large active surface area, uniform porous structure, and rich active sites of the exposed {<span class="mathjax-tex"><span id="MathJax-Element-3-Frame" class="MathJax" style="position: relative;" tabindex="0" role="presentation" data-mathml="<math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;><mrow class=&quot;MJX-TeXAtom-ORD&quot;><mover><mn>2</mn><mo stretchy=&quot;false&quot;>&amp;#x00AF;</mo></mover></mrow><mn>10</mn></math>"><span id="MathJax-Span-17" class="math" style="width: 1.704em; display: inline-block;"><span style="display: inline-block; position: relative; width: 1.502em; height: 0px; font-size: 111%;"><span style="position: absolute; clip: rect(1.165em, 1001.46em, 2.324em, -1000em); top: -2.152em; left: 0em;"><span id="MathJax-Span-18" class="mrow"><span id="MathJax-Span-19" class="texatom"><span id="MathJax-Span-20" class="mrow"><span id="MathJax-Span-21" class="munderover"><span style="display: inline-block; position: relative; width: 0.5em; height: 0px;"><span style="position: absolute; clip: rect(3.188em, 1000.45em, 4.154em, -1000em); top: -4.004em; left: 0em;"><span id="MathJax-Span-22" class="mn" style="font-family: MathJax_Main;">2</span></span><span style="position: absolute; clip: rect(3.264em, 1000.43em, 3.61em, -1000em); top: -4.251em; left: 0em;"><span id="MathJax-Span-23" class="mo" style="font-family: MathJax_Main;">¯</span></span></span></span></span></span><span id="MathJax-Span-24" class="mn" style="font-family: MathJax_Main;">10</span></span></span></span></span></span></span>} high-index facet in the Ni<sub>3</sub>S<sub>2</sub> nanoflake. Accordingly, the TiO<sub>2</sub>@Ni<sub>3</sub>S<sub>2</sub> core/branch arrays exhibit remarkable electrocatalytic activities in an alkaline medium, with lower overpotentials for both oxygen evolution reaction (220&nbsp;mV at 10&nbsp;mA&nbsp;cm<sup>−2</sup>) and hydrogen evolution reaction (112&nbsp;mV at 10&nbsp;mA&nbsp;cm<sup>−2</sup>), which are better than those of other Ni<sub>3</sub>S<sub>2</sub> counterparts. Stable overall water splitting based on this bifunctional electrolyzer is also demonstrated.</p><p>Highlights:</p><p>1 TiO<sub>2</sub>@Ni<sub>3</sub>S<sub>2</sub> core/branch arrays are constructed via a low-temperature sulfurization.<br>2 Highly active {2¯10} high-index facet of Ni<sub>3</sub>S<sub>2</sub> is exposed for both oxygen evolution reaction (OER) and hydrogen evolution reaction (HER).<br>3 Remarkable bifunctional electrocatalytic activity is observed for both HER and OER.</p> ER -