Multifunctional Nacre-Like Nanocomposite Papers for Electromagnetic Interference Shielding via Heterocyclic Aramid/MXene Template-Assisted In-Situ Polypyrrole Assembly
Corresponding Author: Qingyu Peng
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 53
Abstract
Robust, ultra-flexible, and multifunctional MXene-based electromagnetic interference (EMI) shielding nanocomposite films exhibit enormous potential for applications in artificial intelligence, wireless telecommunication, and portable/wearable electronic equipment. In this work, a nacre-inspired multifunctional heterocyclic aramid (HA)/MXene@polypyrrole (PPy) (HMP) nanocomposite paper with large-scale, high strength, super toughness, and excellent tolerance to complex conditions is fabricated through the strategy of HA/MXene hydrogel template-assisted in-situ assembly of PPy. Benefiting from the "brick-and-mortar" layered structure and the strong hydrogen-bonding interactions among MXene, HA, and PPy, the paper exhibits remarkable mechanical performances, including high tensile strength (309.7 MPa), outstanding toughness (57.6 MJ m−3), exceptional foldability, and structural stability against ultrasonication. By using the template effect of HA/MXene to guide the assembly of conductive polymers, the synthesized paper obtains excellent electronic conductivity. More importantly, the highly continuous conductive path enables the nanocomposite paper to achieve a splendid EMI shielding effectiveness (EMI SE) of 54.1 dB at an ultra-thin thickness (25.4 μm) and a high specific EMI SE of 17,204.7 dB cm2 g−1. In addition, the papers also have excellent applications in electromagnetic protection, electro-/photothermal de-icing, thermal therapy, and fire safety. These findings broaden the ideas for developing high-performance and multifunctional MXene-based films with enormous application potential in EMI shielding and thermal management.
Highlights:
1 The large-scale, high-strength, super-tough, and multifunctional nacre-like heterocyclic aramid (HA)/MXene@polypyrrole (PPy) (HMP) nanocomposite papers were fabricated using the in-situ assembly of PPy onto the HA/MXene hydrogel template.
2 The "brick-and-mortar" layered structure and abundant hydrogen-bonding interactions among MXene, PPy, and HA respond cooperatively to external stress and effectively increase the mechanical properties of HMP nanocomposite papers.
3 The templating effect from HA/MXene was utilized to guide the assembly of conducting polymers, leading to high electrical conductivity and outstanding electromagnetic interference shielding performance.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y. Zhang, K. Ruan, K. Zhou, J. Gu, Controlled distributed Ti3C2Tx hollow microspheres on thermally conductive polyimide composite films for excellent electromagnetic interference shielding. Adv. Mater. 35, 2211642 (2023). https://doi.org/10.1002/adma.202211642
- Z. Liu, X. Zhao, F. Xue, L. Xu, H. Chen et al., Shear-rheological-assisted MXene dispersion in epoxy resin for efficient electromagnetic absorption. Adv. Funct. Mater. (2024). https://doi.org/10.1002/adfm.202409069
- Y.-Y. Shi, S.-Y. Liao, Q.-F. Wang, X.-Y. Xu, X.-Y. Wang et al., Enhancing the interaction of carbon nanotubes by metal-organic decomposition with improved mechanical strength and ultra-broadband EMI shielding performance. Nano-Micro Lett. 16(1), 134 (2024). https://doi.org/10.1007/s40820-024-01344-1
- L. Wang, Z. Ma, Y. Zhang, H. Qiu, K. Ruan et al., Mechanically strong and folding-endurance Ti3C2Tx MXene/PBO nanofiber films for efficient electromagnetic interference shielding and thermal management. Carbon Energy 4(2), 200–210 (2022). https://doi.org/10.1002/cey2.174
- Y. Liu, Y. Wang, N. Wu, M. Han, W. Liu et al., Diverse structural design strategies of MXene-based macrostructure for high-performance electromagnetic interference shielding. Nano-Micro Lett. 15(1), 240 (2023). https://doi.org/10.1007/s40820-023-01203-5
- B. Li, N. Wu, Y. Yang, F. Pan, C. Wang et al., Graphene oxide-assisted multiple cross-linking of MXene for large-area, high-strength, oxidation-resistant, and multifunctional films. Adv. Funct. Mater. 33(11), 2213357 (2022). https://doi.org/10.1002/adfm.202213357
- Z. Han, Y. Niu, X. Shi, D. Pan, H. Liu et al., MXene@c-MWCNT adhesive silica nanofiber membranes enhancing electromagnetic interference shielding and thermal insulation performance in extreme environments. Nano-Micro Lett. 16, 195 (2024). https://doi.org/10.1007/s40820-024-01398-1
- F. Shahzad, M. Alhabeb, C.B. Hatter, B. Anasori, S.M. Hong et al., Electromagnetic interference shielding with 2D transition metal. Science 353(6304), 1137–1140 (2016). https://doi.org/10.1126/science.aag2421
- X. Zhao, A. Vashisth, E. Prehn, W. Sun, S.A. Shah et al., Antioxidants unlock shelf-stable Ti3C2Tx (MXene) nanosheet dispersions. Matter 1(2), 513–526 (2019). https://doi.org/10.1016/j.matt.2019.05.020
- C.J. Zhang, S. Pinilla, N. McEvoy, C.P. Cullen, B. Anasori et al., Oxidation stability of colloidal two-dimensional titanium carbides (MXenes). Chem. Mater. 29(11), 4848–4856 (2017). https://doi.org/10.1021/acs.chemmater.7b00745
- W. Cao, C. Ma, S. Tan, M. Ma, P. Wan et al., Ultrathin and flexible CNTs/MXene/cellulose nanofibrils composite paper for electromagnetic interference shielding. Nano-Micro Lett. 11(1), 72 (2019). https://doi.org/10.1007/s40820-019-0304-y
- Z. Ma, S. Kang, J. Ma, L. Shao, Y. Zhang et al., Ultraflexible and mechanically strong double-layered aramid nanofiber-Ti3C2Tx MXene/silver nanowire nanocomposite papers for high-performance electromagnetic interference shielding. ACS Nano 14(7), 8368–8382 (2020). https://doi.org/10.1021/acsnano.0c02401
- J. Yan, T. Zhou, X. Yang, Z. Zhang, L. Li et al., Strong and tough MXene bridging-induced conductive nacre. Angew. Chem. Int. Ed. 63, 202405228 (2024). https://doi.org/10.1002/anie.202405228
- W.T. Cao, F.F. Chen, Y.J. Zhu, Y.G. Zhang, Y.Y. Jiang et al., Binary strengthening and toughening of MXene/cellulose nanofiber composite paper with nacre-inspired structure and superior electromagnetic interference shielding properties. ACS Nano 12(5), 4583–4593 (2018). https://doi.org/10.1021/acsnano.8b00997
- Y. Sun, R. Ding, S.Y. Hong, J. Lee, Y.-K. Seo et al., MXene-xanthan nanocomposite films with layered microstructure for electromagnetic interference shielding and Joule heating. Chem. Eng. J. 410, 128348 (2021). https://doi.org/10.1016/j.cej.2020.128348
- S. Feng, Y. Yi, B. Chen, P. Deng, Z. Zhou et al., Rheology-guided assembly of a highly aligned MXene/cellulose nanofiber composite film for high-performance electromagnetic interference shielding and infrared stealth. ACS Appl. Mater. Interfaces 14(31), 36060–36070 (2022). https://doi.org/10.1021/acsami.2c11292
- Y. Yang, K. Chen, B. Dang, C. Wang, Y. Chen et al., Flexible and mechanically strong MXene/cellulose-lamellae sheets for electromagnetic interference shielding. Chem. Eng. J. 468, 143661 (2023). https://doi.org/10.1016/j.cej.2023.143661
- F. Hu, N. Gong, J. Zeng, P. Li, T. Wang et al., Aramid nanofiber-based artificial nacre-supported graphene/silver nanowire nanopapers for electromagnetic interference shielding and thermal management. Adv. Funct. Mater. (2024). https://doi.org/10.1002/adfm.202405016
- C. Liu, Y. Ma, Y. Xie, J. Zou, H. Wu et al., Enhanced electromagnetic shielding and thermal management properties in MXene/aramid nanofiber films fabricated by intermittent filtration. ACS Appl. Mater. Interfaces 15(3), 4516–4526 (2023). https://doi.org/10.1021/acsami.2c20101
- J. Wang, X. Ma, J. Zhou, F. Du, C. Teng, Bioinspired, high-strength, and flexible MXene/aramid fiber for electromagnetic interference shielding papers with Joule heating performance. ACS Nano 16(4), 6700–6711 (2022). https://doi.org/10.1021/acsnano.2c01323
- J. Xiong, R. Ding, Z. Liu, H. Zheng, P. Li et al., High-strength, super-tough, and durable nacre-inspired MXene/heterocyclic aramid nanocomposite films for electromagnetic interference shielding and thermal management. Chem. Eng. J. 474, 145972 (2023). https://doi.org/10.1016/j.cej.2023.145972
- S. Yang, R. Yang, Z. Lin, X. Wang, S. Liu et al., Ultrathin, flexible, and high-strength polypyrrole/Ti3C2Tx film for wide-band gigahertz and terahertz electromagnetic interference shielding. J. Mater. Chem. A 10(44), 23570–23579 (2022). https://doi.org/10.1039/d2ta06805b
- Y. Zhang, L. Wang, J. Zhang, P. Song, Z. Xiao et al., Fabrication and investigation on the ultra-thin and flexible Ti3C2Tx/co-doped polyaniline electromagnetic interference shielding composite films. Compos. Sci. Technol. 183, 107833 (2019). https://doi.org/10.1016/j.compscitech.2019.107833
- Y.-J. Wan, X.-M. Li, P.-L. Zhu, R. Sun, C.-P. Wong et al., Lightweight, flexible MXene/polymer film with simultaneously excellent mechanical property and high-performance electromagnetic interference shielding. Compos. Part. A-Appl. Sci. Manuf. 130, 105764 (2020). https://doi.org/10.1016/j.compositesa.2020.105764
- Y. Chen, M. Fang, S. Ding, Y. Liu, X. Wang et al., Bioinspired ultrastable MXene/PEDOT:PSS layered membrane for effective salinity gradient energy harvesting from organic solvents. ACS Appl. Mater. Interfaces 14, 23527–23535 (2022). https://doi.org/10.1021/acsami.2c04307
- K. Maleski, V.N. Mochalin, Y. Gogotsi, Dispersions of two-dimensional titanium carbide MXene in organic solvents. Chem. Mater. 29(4), 1632–1640 (2017). https://doi.org/10.1021/acs.chemmater.6b04830
- W. Eom, H. Shin, R.B. Ambade, S.H. Lee, K.H. Lee et al., Large-scale wet-spinning of highly electroconductive MXene fibers. Nat. Commun. 11(1), 2825 (2020). https://doi.org/10.1038/s41467-020-16671-1
- C. Yang, H. Wu, Y. Dai, D. Zhang, R. Xu et al., Constructing mainstay-body structure in heterocyclic aramid fiber to simultaneously improve tensile strength and toughness. Compos. Part B-Eng. 202, 108411 (2020). https://doi.org/10.1016/j.compositesb.2020.108411
- S. Yang, C. Xie, T. Qiu, X. Tuo, The aramid-coating-on-aramid strategy toward strong, tough, and foldable polymer aerogel films. ACS Nano 16, 14334–14343 (2022). https://doi.org/10.1021/acsnano.2c04572
- D. Zhang, J. Lv, Y. Dai, Y. Li, T. He et al., Fabrication of high-temperature aromatic polyamides with ultra-high breakdown strength via complex-assisted chain arrangement. Chem. Eng. J. 432, 134407 (2022). https://doi.org/10.1016/j.cej.2021.134407
- S. Wan, X. Li, Y. Wang, Y. Chen, X. Xie et al., Strong sequentially bridged MXene sheets. Proc. Natl. Acad. Sci. U.S.A. 117(44), 27154–27161 (2020). https://doi.org/10.1073/pnas.2009432117
- J. Li, Y. Wen, Z. Xiao, S. Wang, L. Zhong et al., Holey reduced graphene oxide scaffolded heterocyclic aramid fibers with enhanced mechanical performance. Adv. Funct. Mater. 32, 109337 (2022). https://doi.org/10.1002/adfm.202200937
- H. He, H. Li, A. Pu, W. Li, K. Ban et al., Hybrid assembly of polymeric nanofiber network for robust and electronically conductive hydrogels. Nat. Commun. 14(1), 759 (2023). https://doi.org/10.1038/s41467-023-36438-8
- J. Zhou, S. Thaiboonrod, J. Fang, S. Cao, M. Miao et al., In-situ growth of polypyrrole on aramid nanofibers for electromagnetic interference shielding films with high stability. Nano Res. 15(9), 8536–8545 (2022). https://doi.org/10.1007/s12274-022-4628-4
- F. Bouville, E. Maire, S. Meille, B. Van de Moortèle, A.J. Stevenson et al., Strong, tough and stiff bioinspired ceramics from brittle constituents. Nat. Mater. 13(5), 508–514 (2014). https://doi.org/10.1038/nmat3915
- H.-L. Gao, S.-M. Chen, L.-B. Mao, Z.-Q. Song, H.-B. Yao et al., Mass production of bulk artificial nacre with excellent mechanical properties. Nat. Commun. 8(1), 287 (2017). https://doi.org/10.1038/s41467-017-00392-z
- U.G. Wegst, H. Bai, E. Saiz, A.P. Tomsia, R.O. Ritchie, Bioinspired structural materials. Nat. Mater. 14(1), 23–36 (2015). https://doi.org/10.1038/nmat4089
- H. Wang, R. Lu, J. Yan, J. Peng, A.P. Tomsia et al., Tough and conductive nacre-inspired MXene/epoxy layered bulk nanocomposites. Angew. Chem. Int. Ed. 62(9), 202216874 (2023). https://doi.org/10.1002/anie.202216874
- Y. Liu, W. Zou, N. Zhao, J. Xu, Electrically insulating PBO/MXene film with superior thermal conductivity, mechanical properties, thermal stability, and flame retardancy. Nat. Commun. 14(1), 5342 (2023). https://doi.org/10.1038/s41467-023-40707-x
- F. Zeng, X. Chen, G. Xiao, H. Li, S. Xia et al., A bioinspired ultratough multifunctional mica-based nanopaper with 3D aramid nanofiber framework as an electrical insulating material. ACS Nano 14(1), 611–619 (2020). https://doi.org/10.1021/acsnano.9b07192
- Y. Wang, S. Xia, H. Li, J. Wang, Unprecedentedly tough, folding-endurance, and multifunctional graphene-based artificial nacre with predesigned 3D nanofiber network as matrix. Adv. Funct. Mater. 29(38), 1903876 (2019). https://doi.org/10.1002/adfm.201903876
- J. Xiong, H. Zheng, R. Ding, P. Li, Z. Liu et al., Multifunctional non-woven fabrics based on interfused MXene fibers. Mater. Des. 223, 111207 (2022). https://doi.org/10.1016/j.matdes.2022.111207
- J. Xu, R. Li, S. Ji, B. Zhao, T. Cui et al., Multifunctional graphene microstructures inspired by honeycomb for ultrahigh performance electromagnetic interference shielding and wearable applications. ACS Nano 15(5), 8907–8918 (2021). https://doi.org/10.1021/acsnano.1c01552
- Z. Zeng, T. Wu, D. Han, Q. Ren, G. Siqueira et al., Ultralight, flexible, and biomimetic nanocellulose/silver nanowire aerogels for electromagnetic interference shielding. ACS Nano 14(3), 2927–2938 (2020). https://doi.org/10.1021/acsnano.9b07452
- X. Ma, J. Pan, H. Guo, J. Wang, C. Zhang et al., Ultrathin wood-derived conductive carbon composite film for electromagnetic shielding and electric heating management. Adv. Funct. Mater. 33(16), 2213431 (2023). https://doi.org/10.1002/adfm.202213431
- S. Gong, X. Sheng, X. Li, M. Sheng, H. Wu et al., A multifunctional flexible composite film with excellent multi-source driven thermal management, electromagnetic interference shielding, and fire safety performance, inspired by a “brick-mortar” sandwich structure. Adv. Funct. Mater. 32, 2200570 (2022). https://doi.org/10.1002/adfm.202200570
- Y.C. Wang, Y.Z. Wang, J.C. Shu, W.Q. Cao, C.S. Li et al., Graphene implanted shape memory polymers with dielectric gene dominated highly efficient microwave drive. Adv. Funct. Mater. 33, 2303560 (2023). https://doi.org/10.1002/adfm.202303560
- Z. Ma, X. Xiang, L. Shao, Y. Zhang, J. Gu, Multifunctional wearable silver nanowire decorated leather nanocomposites for Joule heating, electromagnetic interference shielding and piezoresistive sensing. Angew. Chem. Int. Ed. 61(15), e202200705 (2022). https://doi.org/10.1002/anie.202200705
- J. Xiong, X. Zhao, P. Li, H. Lian, Q. Yan et al., In-situ assembly of polypyrrole onto heterocyclic aramid for high-strength, ultratough, durable, and multifunctional films. Chem. Eng. J. 498, 155212 (2024). https://doi.org/10.1016/j.cej.2024.155212
- R. Li, L. Zhang, L. Shi, P. Wang, MXene Ti3C2: An effective 2D light-to-heat conversion material. ACS Nano 11(4), 3752–3759 (2017). https://doi.org/10.1021/acsnano.6b08415
References
Y. Zhang, K. Ruan, K. Zhou, J. Gu, Controlled distributed Ti3C2Tx hollow microspheres on thermally conductive polyimide composite films for excellent electromagnetic interference shielding. Adv. Mater. 35, 2211642 (2023). https://doi.org/10.1002/adma.202211642
Z. Liu, X. Zhao, F. Xue, L. Xu, H. Chen et al., Shear-rheological-assisted MXene dispersion in epoxy resin for efficient electromagnetic absorption. Adv. Funct. Mater. (2024). https://doi.org/10.1002/adfm.202409069
Y.-Y. Shi, S.-Y. Liao, Q.-F. Wang, X.-Y. Xu, X.-Y. Wang et al., Enhancing the interaction of carbon nanotubes by metal-organic decomposition with improved mechanical strength and ultra-broadband EMI shielding performance. Nano-Micro Lett. 16(1), 134 (2024). https://doi.org/10.1007/s40820-024-01344-1
L. Wang, Z. Ma, Y. Zhang, H. Qiu, K. Ruan et al., Mechanically strong and folding-endurance Ti3C2Tx MXene/PBO nanofiber films for efficient electromagnetic interference shielding and thermal management. Carbon Energy 4(2), 200–210 (2022). https://doi.org/10.1002/cey2.174
Y. Liu, Y. Wang, N. Wu, M. Han, W. Liu et al., Diverse structural design strategies of MXene-based macrostructure for high-performance electromagnetic interference shielding. Nano-Micro Lett. 15(1), 240 (2023). https://doi.org/10.1007/s40820-023-01203-5
B. Li, N. Wu, Y. Yang, F. Pan, C. Wang et al., Graphene oxide-assisted multiple cross-linking of MXene for large-area, high-strength, oxidation-resistant, and multifunctional films. Adv. Funct. Mater. 33(11), 2213357 (2022). https://doi.org/10.1002/adfm.202213357
Z. Han, Y. Niu, X. Shi, D. Pan, H. Liu et al., MXene@c-MWCNT adhesive silica nanofiber membranes enhancing electromagnetic interference shielding and thermal insulation performance in extreme environments. Nano-Micro Lett. 16, 195 (2024). https://doi.org/10.1007/s40820-024-01398-1
F. Shahzad, M. Alhabeb, C.B. Hatter, B. Anasori, S.M. Hong et al., Electromagnetic interference shielding with 2D transition metal. Science 353(6304), 1137–1140 (2016). https://doi.org/10.1126/science.aag2421
X. Zhao, A. Vashisth, E. Prehn, W. Sun, S.A. Shah et al., Antioxidants unlock shelf-stable Ti3C2Tx (MXene) nanosheet dispersions. Matter 1(2), 513–526 (2019). https://doi.org/10.1016/j.matt.2019.05.020
C.J. Zhang, S. Pinilla, N. McEvoy, C.P. Cullen, B. Anasori et al., Oxidation stability of colloidal two-dimensional titanium carbides (MXenes). Chem. Mater. 29(11), 4848–4856 (2017). https://doi.org/10.1021/acs.chemmater.7b00745
W. Cao, C. Ma, S. Tan, M. Ma, P. Wan et al., Ultrathin and flexible CNTs/MXene/cellulose nanofibrils composite paper for electromagnetic interference shielding. Nano-Micro Lett. 11(1), 72 (2019). https://doi.org/10.1007/s40820-019-0304-y
Z. Ma, S. Kang, J. Ma, L. Shao, Y. Zhang et al., Ultraflexible and mechanically strong double-layered aramid nanofiber-Ti3C2Tx MXene/silver nanowire nanocomposite papers for high-performance electromagnetic interference shielding. ACS Nano 14(7), 8368–8382 (2020). https://doi.org/10.1021/acsnano.0c02401
J. Yan, T. Zhou, X. Yang, Z. Zhang, L. Li et al., Strong and tough MXene bridging-induced conductive nacre. Angew. Chem. Int. Ed. 63, 202405228 (2024). https://doi.org/10.1002/anie.202405228
W.T. Cao, F.F. Chen, Y.J. Zhu, Y.G. Zhang, Y.Y. Jiang et al., Binary strengthening and toughening of MXene/cellulose nanofiber composite paper with nacre-inspired structure and superior electromagnetic interference shielding properties. ACS Nano 12(5), 4583–4593 (2018). https://doi.org/10.1021/acsnano.8b00997
Y. Sun, R. Ding, S.Y. Hong, J. Lee, Y.-K. Seo et al., MXene-xanthan nanocomposite films with layered microstructure for electromagnetic interference shielding and Joule heating. Chem. Eng. J. 410, 128348 (2021). https://doi.org/10.1016/j.cej.2020.128348
S. Feng, Y. Yi, B. Chen, P. Deng, Z. Zhou et al., Rheology-guided assembly of a highly aligned MXene/cellulose nanofiber composite film for high-performance electromagnetic interference shielding and infrared stealth. ACS Appl. Mater. Interfaces 14(31), 36060–36070 (2022). https://doi.org/10.1021/acsami.2c11292
Y. Yang, K. Chen, B. Dang, C. Wang, Y. Chen et al., Flexible and mechanically strong MXene/cellulose-lamellae sheets for electromagnetic interference shielding. Chem. Eng. J. 468, 143661 (2023). https://doi.org/10.1016/j.cej.2023.143661
F. Hu, N. Gong, J. Zeng, P. Li, T. Wang et al., Aramid nanofiber-based artificial nacre-supported graphene/silver nanowire nanopapers for electromagnetic interference shielding and thermal management. Adv. Funct. Mater. (2024). https://doi.org/10.1002/adfm.202405016
C. Liu, Y. Ma, Y. Xie, J. Zou, H. Wu et al., Enhanced electromagnetic shielding and thermal management properties in MXene/aramid nanofiber films fabricated by intermittent filtration. ACS Appl. Mater. Interfaces 15(3), 4516–4526 (2023). https://doi.org/10.1021/acsami.2c20101
J. Wang, X. Ma, J. Zhou, F. Du, C. Teng, Bioinspired, high-strength, and flexible MXene/aramid fiber for electromagnetic interference shielding papers with Joule heating performance. ACS Nano 16(4), 6700–6711 (2022). https://doi.org/10.1021/acsnano.2c01323
J. Xiong, R. Ding, Z. Liu, H. Zheng, P. Li et al., High-strength, super-tough, and durable nacre-inspired MXene/heterocyclic aramid nanocomposite films for electromagnetic interference shielding and thermal management. Chem. Eng. J. 474, 145972 (2023). https://doi.org/10.1016/j.cej.2023.145972
S. Yang, R. Yang, Z. Lin, X. Wang, S. Liu et al., Ultrathin, flexible, and high-strength polypyrrole/Ti3C2Tx film for wide-band gigahertz and terahertz electromagnetic interference shielding. J. Mater. Chem. A 10(44), 23570–23579 (2022). https://doi.org/10.1039/d2ta06805b
Y. Zhang, L. Wang, J. Zhang, P. Song, Z. Xiao et al., Fabrication and investigation on the ultra-thin and flexible Ti3C2Tx/co-doped polyaniline electromagnetic interference shielding composite films. Compos. Sci. Technol. 183, 107833 (2019). https://doi.org/10.1016/j.compscitech.2019.107833
Y.-J. Wan, X.-M. Li, P.-L. Zhu, R. Sun, C.-P. Wong et al., Lightweight, flexible MXene/polymer film with simultaneously excellent mechanical property and high-performance electromagnetic interference shielding. Compos. Part. A-Appl. Sci. Manuf. 130, 105764 (2020). https://doi.org/10.1016/j.compositesa.2020.105764
Y. Chen, M. Fang, S. Ding, Y. Liu, X. Wang et al., Bioinspired ultrastable MXene/PEDOT:PSS layered membrane for effective salinity gradient energy harvesting from organic solvents. ACS Appl. Mater. Interfaces 14, 23527–23535 (2022). https://doi.org/10.1021/acsami.2c04307
K. Maleski, V.N. Mochalin, Y. Gogotsi, Dispersions of two-dimensional titanium carbide MXene in organic solvents. Chem. Mater. 29(4), 1632–1640 (2017). https://doi.org/10.1021/acs.chemmater.6b04830
W. Eom, H. Shin, R.B. Ambade, S.H. Lee, K.H. Lee et al., Large-scale wet-spinning of highly electroconductive MXene fibers. Nat. Commun. 11(1), 2825 (2020). https://doi.org/10.1038/s41467-020-16671-1
C. Yang, H. Wu, Y. Dai, D. Zhang, R. Xu et al., Constructing mainstay-body structure in heterocyclic aramid fiber to simultaneously improve tensile strength and toughness. Compos. Part B-Eng. 202, 108411 (2020). https://doi.org/10.1016/j.compositesb.2020.108411
S. Yang, C. Xie, T. Qiu, X. Tuo, The aramid-coating-on-aramid strategy toward strong, tough, and foldable polymer aerogel films. ACS Nano 16, 14334–14343 (2022). https://doi.org/10.1021/acsnano.2c04572
D. Zhang, J. Lv, Y. Dai, Y. Li, T. He et al., Fabrication of high-temperature aromatic polyamides with ultra-high breakdown strength via complex-assisted chain arrangement. Chem. Eng. J. 432, 134407 (2022). https://doi.org/10.1016/j.cej.2021.134407
S. Wan, X. Li, Y. Wang, Y. Chen, X. Xie et al., Strong sequentially bridged MXene sheets. Proc. Natl. Acad. Sci. U.S.A. 117(44), 27154–27161 (2020). https://doi.org/10.1073/pnas.2009432117
J. Li, Y. Wen, Z. Xiao, S. Wang, L. Zhong et al., Holey reduced graphene oxide scaffolded heterocyclic aramid fibers with enhanced mechanical performance. Adv. Funct. Mater. 32, 109337 (2022). https://doi.org/10.1002/adfm.202200937
H. He, H. Li, A. Pu, W. Li, K. Ban et al., Hybrid assembly of polymeric nanofiber network for robust and electronically conductive hydrogels. Nat. Commun. 14(1), 759 (2023). https://doi.org/10.1038/s41467-023-36438-8
J. Zhou, S. Thaiboonrod, J. Fang, S. Cao, M. Miao et al., In-situ growth of polypyrrole on aramid nanofibers for electromagnetic interference shielding films with high stability. Nano Res. 15(9), 8536–8545 (2022). https://doi.org/10.1007/s12274-022-4628-4
F. Bouville, E. Maire, S. Meille, B. Van de Moortèle, A.J. Stevenson et al., Strong, tough and stiff bioinspired ceramics from brittle constituents. Nat. Mater. 13(5), 508–514 (2014). https://doi.org/10.1038/nmat3915
H.-L. Gao, S.-M. Chen, L.-B. Mao, Z.-Q. Song, H.-B. Yao et al., Mass production of bulk artificial nacre with excellent mechanical properties. Nat. Commun. 8(1), 287 (2017). https://doi.org/10.1038/s41467-017-00392-z
U.G. Wegst, H. Bai, E. Saiz, A.P. Tomsia, R.O. Ritchie, Bioinspired structural materials. Nat. Mater. 14(1), 23–36 (2015). https://doi.org/10.1038/nmat4089
H. Wang, R. Lu, J. Yan, J. Peng, A.P. Tomsia et al., Tough and conductive nacre-inspired MXene/epoxy layered bulk nanocomposites. Angew. Chem. Int. Ed. 62(9), 202216874 (2023). https://doi.org/10.1002/anie.202216874
Y. Liu, W. Zou, N. Zhao, J. Xu, Electrically insulating PBO/MXene film with superior thermal conductivity, mechanical properties, thermal stability, and flame retardancy. Nat. Commun. 14(1), 5342 (2023). https://doi.org/10.1038/s41467-023-40707-x
F. Zeng, X. Chen, G. Xiao, H. Li, S. Xia et al., A bioinspired ultratough multifunctional mica-based nanopaper with 3D aramid nanofiber framework as an electrical insulating material. ACS Nano 14(1), 611–619 (2020). https://doi.org/10.1021/acsnano.9b07192
Y. Wang, S. Xia, H. Li, J. Wang, Unprecedentedly tough, folding-endurance, and multifunctional graphene-based artificial nacre with predesigned 3D nanofiber network as matrix. Adv. Funct. Mater. 29(38), 1903876 (2019). https://doi.org/10.1002/adfm.201903876
J. Xiong, H. Zheng, R. Ding, P. Li, Z. Liu et al., Multifunctional non-woven fabrics based on interfused MXene fibers. Mater. Des. 223, 111207 (2022). https://doi.org/10.1016/j.matdes.2022.111207
J. Xu, R. Li, S. Ji, B. Zhao, T. Cui et al., Multifunctional graphene microstructures inspired by honeycomb for ultrahigh performance electromagnetic interference shielding and wearable applications. ACS Nano 15(5), 8907–8918 (2021). https://doi.org/10.1021/acsnano.1c01552
Z. Zeng, T. Wu, D. Han, Q. Ren, G. Siqueira et al., Ultralight, flexible, and biomimetic nanocellulose/silver nanowire aerogels for electromagnetic interference shielding. ACS Nano 14(3), 2927–2938 (2020). https://doi.org/10.1021/acsnano.9b07452
X. Ma, J. Pan, H. Guo, J. Wang, C. Zhang et al., Ultrathin wood-derived conductive carbon composite film for electromagnetic shielding and electric heating management. Adv. Funct. Mater. 33(16), 2213431 (2023). https://doi.org/10.1002/adfm.202213431
S. Gong, X. Sheng, X. Li, M. Sheng, H. Wu et al., A multifunctional flexible composite film with excellent multi-source driven thermal management, electromagnetic interference shielding, and fire safety performance, inspired by a “brick-mortar” sandwich structure. Adv. Funct. Mater. 32, 2200570 (2022). https://doi.org/10.1002/adfm.202200570
Y.C. Wang, Y.Z. Wang, J.C. Shu, W.Q. Cao, C.S. Li et al., Graphene implanted shape memory polymers with dielectric gene dominated highly efficient microwave drive. Adv. Funct. Mater. 33, 2303560 (2023). https://doi.org/10.1002/adfm.202303560
Z. Ma, X. Xiang, L. Shao, Y. Zhang, J. Gu, Multifunctional wearable silver nanowire decorated leather nanocomposites for Joule heating, electromagnetic interference shielding and piezoresistive sensing. Angew. Chem. Int. Ed. 61(15), e202200705 (2022). https://doi.org/10.1002/anie.202200705
J. Xiong, X. Zhao, P. Li, H. Lian, Q. Yan et al., In-situ assembly of polypyrrole onto heterocyclic aramid for high-strength, ultratough, durable, and multifunctional films. Chem. Eng. J. 498, 155212 (2024). https://doi.org/10.1016/j.cej.2024.155212
R. Li, L. Zhang, L. Shi, P. Wang, MXene Ti3C2: An effective 2D light-to-heat conversion material. ACS Nano 11(4), 3752–3759 (2017). https://doi.org/10.1021/acsnano.6b08415