All-in-One: A Multifunctional Composite Biomimetic Cryogel for Coagulation Disorder Hemostasis and Infected Diabetic Wound Healing
Corresponding Author: Juan Hu
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 171
Abstract
Traditional hemostatic materials are difficult to meet the needs of non-compressible bleeding and for coagulopathic patients. In addition, open wounds are susceptible to infection, and then develop into chronic wounds. However, the development of integrated dressings that do not depend on coagulation pathway and improve the microenvironment of chronic wounds remains a challenge. Inspired by the porous structure and composition of the natural extracellular matrix, adipic dihydrazide modified gelatin (GA), dodecylamine-grafted hyaluronic acid (HD), and MnO2 nanozyme (manganese dioxide)@DFO (deferoxamine)@PDA (polydopamine) (MDP) nanoparticles were combined to prepare GA/HD/MDP cryogels through amidation reaction and hydrogen bonding. These cryogels exhibited good fatigue resistance, photothermal antibacterial (about 98% killing ratios of both Escherichia coli and methicillin-resistant Staphylococcus aureus (MRSA) after 3 min near-infrared irradiation), reactive oxygen species scavenging, oxygen release, and angiogenesis properties. Furthermore, in the liver defect model of rats with coagulopathy, the cryogel displayed less bleeding and shorter hemostasis time than commercial gelatin sponge. In MRSA-infected diabetic wounds, the cryogel could decrease wound inflammation and oxidative stress, alleviate the hypoxic environment, promote collagen deposition, and induce vascular regeneration, showing a better repair effect compared with the Tegaderm™ film. These results indicated that GA/HD/MDP cryogels have great potential in non-compressible hemorrhage for coagulopathic patients and in healing infected wounds for diabetic patients.
Highlights:
1 An all-in-one cryogel is proposed for hemostasis of coagulopathy bleeding and repair of infected diabetic ulcers.
2 The cryogel possesses rapid liquid-triggered volume expansion capability and physicochemical synergistic hemostatic properties.
3 The cryogel can accelerate the healing of infected diabetic wounds by releasing oxygen and deferoxamine.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M. Naghavi, A.A. Abajobir, C. Abbafati, K.M. Abbas, F. Abd-Allah et al., Collaborators Global, regional, and national age-sex specific mortality for 264 causes of death, 1980–2016: a systematic analysis for the global burden of disease study 2016. Lancet 390, 1151–1210 (2017). https://doi.org/10.1016/S0140-6736(17)32152-9
- M. Li, Q. Dai, S. Zhu, Q. Feng, Z. Qin et al., An ultrafast water absorption composite cryogel containing iron-doped bioactive glass with rapid hemostatic ability for non-compressible and coagulopathic bleeding. Chem. Eng. J. 469, 143758 (2023). https://doi.org/10.1016/j.cej.2023.143758
- E.E. Moore, H.B. Moore, L.Z. Kornblith, M.D. Neal, M. Hoffman et al. Trauma-induced coagulopathy. Nat. Rev. Dis. Primers. 7(1), 30 (2021). https://doi.org/10.1038/s41572-021-00270-5
- S. Zhu, M. Li, Z. Wang, Q. Feng, H. Gao et al., Bioactive glasses-based nanozymes composite macroporous cryogel with antioxidative, antibacterial, and pro-healing properties for diabetic infected wound repair. Adv. Healthc. Mater. 12, e2302073 (2023). https://doi.org/10.1002/adhm.202302073
- N. Asadi, H. Pazoki-Toroudi, A.R. Del Bakhshayesh, A. Akbarzadeh, S. Davaran et al., Multifunctional hydrogels for wound healing: special focus on biomacromolecular based hydrogels. Int. J. Biol. Macromol. 170, 728–750 (2021). https://doi.org/10.1016/j.ijbiomac.2020.12.202
- C. Wang, Y. Liang, Y. Huang, M. Li, B. Guo, Porous photothermal antibacterial antioxidant dual–crosslinked cryogel based on hyaluronic acid/polydopamine for non-compressible hemostasis and infectious wound repair. J. Mater. Sci. Technol. 121, 207–219 (2022). https://doi.org/10.1016/j.jmst.2021.12.054
- Y. Huang, L. Bai, Y. Yang, Z. Yin, B. Guo, Biodegradable gelatin/silver nanop composite cryogel with excellent antibacterial and antibiofilm activity and hemostasis for Pseudomonas aeruginosa-infected burn wound healing. J. Colloid Interface Sci. 608, 2278–2289 (2022). https://doi.org/10.1016/j.jcis.2021.10.131
- K. Kim, J.H. Ryu, M.-Y. Koh, S.P. Yun, S. Kim, J.P. Park, C.-W. Jung, M.S. Lee, H.-I. Seo, J.H. Kim, H. Lee, Coagulopathy-independent, bioinspired hemostatic materials: a full research story from preclinical models to a human clinical trial. Sci. Adv. (2021). https://doi.org/10.1126/sciadv.abc9992
- S. Jiang, S. Liu, S. Lau, J. Li, Hemostatic biomaterials to halt non-compressible hemorrhage. J. Mater. Chem. B 10, 7239–7259 (2022). https://doi.org/10.1039/d2tb00546h
- W. Qi, N. Dong, L. Wu, X. Zhang, H. Li et al., Promoting oral mucosal wound healing using a DCS-RuB2A2 hydrogel based on a photoreactive antibacterial and sustained release of BMSCs. Bioact. Mater. 23, 53–68 (2022). https://doi.org/10.1016/j.bioactmat.2022.10.027
- G. Chen, Y. Yu, X. Wu, G. Wang, J. Ren et al., Bioinspired multifunctional hybrid hydrogel promotes wound healing. Adv. Funct. Mater. 28, 1801386 (2018). https://doi.org/10.1002/adfm.201801386
- F. Wang, J. Sun, H. Shi, J. Zhou, X. Ma et al., Multifunctionalized alginate/polydopamine cryogel for hemostasis, antibacteria and promotion of wound healing. Int. J. Biol. Macromol. 224, 1373–1381 (2023). https://doi.org/10.1016/j.ijbiomac.2022.10.223
- L. Teng, Z. Shao, Q. Bai, X. Zhang, Y.-S. He et al., Biomimetic glycopolypeptide hydrogels with tunable adhesion and microporous structure for fast hemostasis and highly efficient wound healing. Adv. Funct. Mater. 31, 2105628 (2021). https://doi.org/10.1002/adfm.202105628
- H. Wang, Z. Xu, Q. Li, J. Wu, Application of metal-based biomaterials in wound repair. Eng. Regen. 2, 137–153 (2021). https://doi.org/10.1016/j.engreg.2021.09.005
- N. Singh, M.A. Savanur, S. Srivastava, P. D’Silva, G. Mugesh, A manganese oxide nanozyme prevents the oxidative damage of biomolecules without affecting the endogenous antioxidant system. Nanoscale 11, 3855–3863 (2019). https://doi.org/10.1039/c8nr09397k
- A. Gupta, R. Das, G.Y. Tonga, T. Mizuhara, V.M. Rotello, Charge-switchable nanozymes for bioorthogonal imaging of biofilm-associated infections. ACS Nano 12(1), 89–94 (2018). https://doi.org/10.1021/acsnano.7b07496
- Y. Gao, Z. Qiu, L. Liu, M. Li, B. Xu et al., Multifunctional fibrous wound dressings for refractory wound healing. J. Polym. Sci. 60, 2191–2212 (2022). https://doi.org/10.1002/pol.20220008
- G. Yang, L. Xu, Y. Chao, J. Xu, X. Sun et al., Hollow MnO2 as a tumor-microenvironment-responsive biodegradable nano-platform for combination therapy favoring antitumor immune responses. Nat. Commun. 8, 902 (2017). https://doi.org/10.1038/s41467-017-01050-0
- T. Zhou, J. Ran, P. Xu, L. Shen, Y. He et al., A hyaluronic acid/platelet-rich plasma hydrogel containing MnO2 nanozymes efficiently alleviates osteoarthritis in vivo. Carbohydr. Polym. 292, 119667 (2022). https://doi.org/10.1016/j.carbpol.2022.119667
- L. Wang, S. Guan, Y. Weng, S.-M. Xu, H. Lu et al., Highly efficient vacancy-driven photothermal therapy mediated by ultrathin MnO2 nanosheets. ACS Appl. Mater. Interfaces 11, 6267–6275 (2019). https://doi.org/10.1021/acsami.8b20639
- B. Chen, L. Cai, R. Fan, M. Mu, D. Chuan et al., Multifunctional Ce6-loaded MnO2 as an oxygen-elevated nanoplatform for synergistic photodynamic/photothermal therapy. Mater. Des. 227, 111702 (2023). https://doi.org/10.1016/j.matdes.2023.111702
- L. Kong, Z. Wu, H. Zhao, H. Cui, J. Shen et al., Bioactive injectable hydrogels containing desferrioxamine and bioglass for diabetic wound healing. ACS Appl. Mater. Interfaces 10, 30103–30114 (2018). https://doi.org/10.1021/acsami.8b09191
- Y. Zhu, W. Zhou, J. Xiang, M. Wu, Z. Chen et al., Deferoxamine-loaded Janus electrospun nanofiber dressing with spatially designed structure for diabetic wound healing. Mater. Des. 233, 112166 (2023). https://doi.org/10.1016/j.matdes.2023.112166
- S. Yang, W. Chen, W. Li, J. Song, Y. Gao et al., CD44-targeted pH-responsive micelles for enhanced cellular internalization and intracellular on-demand release of doxorubicin. Artif. Cells Nanomed. Biotechnol. 49, 173–184 (2021). https://doi.org/10.1080/21691401.2021.1884085
- Y. Du, L. Li, H. Peng, H. Zheng, S. Cao et al., A spray-filming self-healing hydrogel fabricated from modified sodium alginate and gelatin as a bacterial barrier. Macromol. Biosci. 20, e1900303 (2020). https://doi.org/10.1002/mabi.201900303
- Y. Huang, X. Zhao, Z. Zhang, Y. Liang, Z. Yin et al., Degradable gelatin-based IPN cryogel hemostat for rapidly stopping deep noncompressible hemorrhage and simultaneously improving wound healing. Chem. Mater. 32, 6595–6610 (2020). https://doi.org/10.1021/acs.chemmater.0c02030
- J. Wang, J. He, Y. Yang, X. Jin, J. Li et al., Hemostatic, antibacterial, conductive and vascular regenerative integrated cryogel for accelerating the whole wound healing process. Chem. Eng. J. 479, 147577 (2024). https://doi.org/10.1016/j.cej.2023.147577
- Z. Cimen, S. Babadag, S. Odabas, S. Altuntas, G. Demirel et al., Injectable and self-healable pH-responsive gelatin–PEG/laponite hybrid hydrogels as long-acting implants for local cancer treatment. ACS Appl. Polym. Mater. 3, 3504–3518 (2021). https://doi.org/10.1021/acsapm.1c00419
- X. Xu, W. Zhen, S. Bian, Structure, performance and crystallization behavior of poly (lactic acid)/humic acid amide composites. Polym. Plast. Technol. Eng. 57, 1858–1872 (2018). https://doi.org/10.1080/03602559.2018.1434670
- S.J. Ge, N. Ji, S.N. Cui, W. Xie, M. Li et al., Coordination of covalent cross-linked gelatin hydrogels via oxidized tannic acid and ferric ions with strong mechanical properties. J. Agric. Food Chem. 67, 11489–11497 (2019). https://doi.org/10.1021/acs.jafc.9b03947
- Y. Ma, P. Qi, J. Ju, Q. Wang, L. Hao et al., Gelatin/alginate composite nanofiber membranes for effective and even adsorption of cationic dyes. Compos. Part B Eng. 162, 671–677 (2019). https://doi.org/10.1016/j.compositesb.2019.01.048
- W. Sun, H. Yu, D. Wang, Y. Li, B. Tian et al., MnO2 nanoflowers as a multifunctional nano-platform for enhanced photothermal/photodynamic therapy and MR imaging. Biomater. Sci. 9, 3662–3674 (2021). https://doi.org/10.1039/d1bm00033k
- X. Qi, W. Pan, X. Tong, T. Gao, Y. Xiang et al., ε-Polylysine-stabilized agarose/polydopamine hydrogel dressings with robust photothermal property for wound healing. Carbohydr. Polym. 264, 118046 (2021). https://doi.org/10.1016/j.carbpol.2021.118046
- Y. He, K. Liu, S. Guo, R. Chang, C. Zhang et al., Multifunctional hydrogel with reactive oxygen species scavenging and photothermal antibacterial activity accelerates infected diabetic wound healing. Acta Biomater. 155, 199–217 (2023). https://doi.org/10.1016/j.actbio.2022.11.023
- H. Guo, S. Huang, A. Xu, W. Xue, Injectable adhesive self-healing multiple-dynamic-bond crosslinked hydrogel with photothermal antibacterial activity for infected wound healing. Chem. Mater. 34, 2655–2671 (2022). https://doi.org/10.1021/acs.chemmater.1c03944
- L. Teng, Y. Song, Y. Hu, J. Lu, C.-M. Dong, Biomimetic and wound microenvironment-modulating PEGylated glycopolypeptide hydrogels for arterial massive hemorrhage and wound prohealing. Biomacromol 25, 4317–4328 (2024). https://doi.org/10.1021/acs.biomac.4c00389
- L. Teng, Y. Song, L. Hu, Q. Bai, X. Zhang et al., Nitric oxide-releasing poly(L-glutamic acid) hybrid hydrogels for accelerating diabetic wound healing. Chin. J. Chem. 41, 2103–2112 (2023). https://doi.org/10.1002/cjoc.202300142
- Y. Wang, Y. Zhang, Y.-P. Yang, M.-Y. Jin, S. Huang et al., Versatile dopamine-functionalized hyaluronic acid-recombinant human collagen hydrogel promoting diabetic wound healing via inflammation control and vascularization tissue regeneration. Bioact. Mater. 35, 330–345 (2024). https://doi.org/10.1016/j.bioactmat.2024.02.010
- G. Chen, S. Yan, C. Ouyang, L. Qiu, J. Liu et al., A new hydrogel to promote healing of bacteria infected wounds: enzyme-like catalytic activity based on MnO2 nanocrytal. Chem. Eng. J. 470, 143986 (2023). https://doi.org/10.1016/j.cej.2023.143986
- Y. Wang, Y. Jin, W. Chen, J. Wang, H. Chen et al., Construction of nanomaterials with targeting phototherapy properties to inhibit resistant bacteria and biofilm infections. Chem. Eng. J. 358, 74–90 (2019). https://doi.org/10.1016/j.cej.2018.10.002
- C.M. Desmet, V. Préat, B. Gallez, Nanomedicines and gene therapy for the delivery of growth factors to improve perfusion and oxygenation in wound healing. Adv. Drug Deliv. Rev. 129, 262–284 (2018). https://doi.org/10.1016/j.addr.2018.02.001
- Z. Luo, Y. Wang, J. Li, J. Wang, Y. Yu et al., Tailoring hyaluronic acid hydrogels for biomedical applications. Adv. Funct. Mater. 33, 2306554 (2023). https://doi.org/10.1002/adfm.202306554
- M. Liu, R. Ding, Z. Li, N. Xu, Y. Gong et al., Hyaluronidase-responsive bactericidal cryogel for promoting healing of infected wounds: inflammatory attenuation, ROS scavenging, and immune regulation. Adv. Sci. 11, e2306602 (2024). https://doi.org/10.1002/advs.202306602
- H. Geng, X. Zheng, Y. Zhang, X. Cui, Z. Li et al., Microenvironment-responsive hydrogels with detachable skin adhesion and mild-temperature photothermal property for chronic wound healing. Adv. Funct. Mater. 33, 2305154 (2023). https://doi.org/10.1002/adfm.202305154
- J. He, Z. Li, J. Wang, T. Li, J. Chen et al., Photothermal antibacterial antioxidant conductive self-healing hydrogel with nitric oxide release accelerates diabetic wound healing. Compos. Part B Eng. 266, 110985 (2023). https://doi.org/10.1016/j.compositesb.2023.110985
- Y. Guo, J. Huang, Y. Fang, H. Huang, J. Wu, 1D, 2D, and 3D scaffolds promoting angiogenesis for enhanced wound healing. Chem. Eng. J. 437, 134690 (2022). https://doi.org/10.1016/j.cej.2022.134690
- L.J. Eggermont, Z.J. Rogers, T. Colombani, A. Memic, S.A. Bencherif, Injectable cryogels for biomedical applications. Trends Biotechnol. 38, 418–431 (2020). https://doi.org/10.1016/j.tibtech.2019.09.008
- R. Fan, D. Chuan, Z. Liu, H. Chen, C. Chen et al., Antioxidant MnO2 nanozymes-encapsulated hydrogel synergistically regulate the spinal ROS microenvironment and promote spinal cord repair. Chem. Eng. J. 478, 147148 (2023). https://doi.org/10.1016/j.cej.2023.147148
- K. Ono, M. Sumiya, N. Yoshinobu, T. Dode, T. Katayama et al., Angiogenesis promotion by combined administration of DFO and vein endothelial cells using injectable, biodegradable, nanocomposite hydrogel scaffolds. ACS Appl. Bio Mater. 5, 471–482 (2022). https://doi.org/10.1021/acsabm.1c00870
- H. Shen, C. Zhang, Y. Meng, Y. Qiao, Y. Ma et al., Biomimetic hydrogel containing copper sulfide nanops and deferoxamine for photothermal therapy of infected diabetic wounds. Adv. Healthc. Mater. 13, e2303000 (2024). https://doi.org/10.1002/adhm.202303000
- Y. Liang, J. He, B. Guo, Functional hydrogels as wound dressing to enhance wound healing. ACS Nano 15, 12687–12722 (2021). https://doi.org/10.1021/acsnano.1c04206
- D.A. Hickman, C.L. Pawlowski, U.D.S. Sekhon, J. Marks, A.S. Gupta, Biomaterials and advanced technologies for hemostatic management of bleeding. Adv. Mater. 30, 1700859 (2018). https://doi.org/10.1002/adma.201700859
- X. Zhao, B. Guo, H. Wu, Y. Liang, P.X. Ma, Injectable antibacterial conductive nanocomposite cryogels with rapid shape recovery for noncompressible hemorrhage and wound healing. Nat. Commun. 9, 2784 (2018). https://doi.org/10.1038/s41467-018-04998-9
References
M. Naghavi, A.A. Abajobir, C. Abbafati, K.M. Abbas, F. Abd-Allah et al., Collaborators Global, regional, and national age-sex specific mortality for 264 causes of death, 1980–2016: a systematic analysis for the global burden of disease study 2016. Lancet 390, 1151–1210 (2017). https://doi.org/10.1016/S0140-6736(17)32152-9
M. Li, Q. Dai, S. Zhu, Q. Feng, Z. Qin et al., An ultrafast water absorption composite cryogel containing iron-doped bioactive glass with rapid hemostatic ability for non-compressible and coagulopathic bleeding. Chem. Eng. J. 469, 143758 (2023). https://doi.org/10.1016/j.cej.2023.143758
E.E. Moore, H.B. Moore, L.Z. Kornblith, M.D. Neal, M. Hoffman et al. Trauma-induced coagulopathy. Nat. Rev. Dis. Primers. 7(1), 30 (2021). https://doi.org/10.1038/s41572-021-00270-5
S. Zhu, M. Li, Z. Wang, Q. Feng, H. Gao et al., Bioactive glasses-based nanozymes composite macroporous cryogel with antioxidative, antibacterial, and pro-healing properties for diabetic infected wound repair. Adv. Healthc. Mater. 12, e2302073 (2023). https://doi.org/10.1002/adhm.202302073
N. Asadi, H. Pazoki-Toroudi, A.R. Del Bakhshayesh, A. Akbarzadeh, S. Davaran et al., Multifunctional hydrogels for wound healing: special focus on biomacromolecular based hydrogels. Int. J. Biol. Macromol. 170, 728–750 (2021). https://doi.org/10.1016/j.ijbiomac.2020.12.202
C. Wang, Y. Liang, Y. Huang, M. Li, B. Guo, Porous photothermal antibacterial antioxidant dual–crosslinked cryogel based on hyaluronic acid/polydopamine for non-compressible hemostasis and infectious wound repair. J. Mater. Sci. Technol. 121, 207–219 (2022). https://doi.org/10.1016/j.jmst.2021.12.054
Y. Huang, L. Bai, Y. Yang, Z. Yin, B. Guo, Biodegradable gelatin/silver nanop composite cryogel with excellent antibacterial and antibiofilm activity and hemostasis for Pseudomonas aeruginosa-infected burn wound healing. J. Colloid Interface Sci. 608, 2278–2289 (2022). https://doi.org/10.1016/j.jcis.2021.10.131
K. Kim, J.H. Ryu, M.-Y. Koh, S.P. Yun, S. Kim, J.P. Park, C.-W. Jung, M.S. Lee, H.-I. Seo, J.H. Kim, H. Lee, Coagulopathy-independent, bioinspired hemostatic materials: a full research story from preclinical models to a human clinical trial. Sci. Adv. (2021). https://doi.org/10.1126/sciadv.abc9992
S. Jiang, S. Liu, S. Lau, J. Li, Hemostatic biomaterials to halt non-compressible hemorrhage. J. Mater. Chem. B 10, 7239–7259 (2022). https://doi.org/10.1039/d2tb00546h
W. Qi, N. Dong, L. Wu, X. Zhang, H. Li et al., Promoting oral mucosal wound healing using a DCS-RuB2A2 hydrogel based on a photoreactive antibacterial and sustained release of BMSCs. Bioact. Mater. 23, 53–68 (2022). https://doi.org/10.1016/j.bioactmat.2022.10.027
G. Chen, Y. Yu, X. Wu, G. Wang, J. Ren et al., Bioinspired multifunctional hybrid hydrogel promotes wound healing. Adv. Funct. Mater. 28, 1801386 (2018). https://doi.org/10.1002/adfm.201801386
F. Wang, J. Sun, H. Shi, J. Zhou, X. Ma et al., Multifunctionalized alginate/polydopamine cryogel for hemostasis, antibacteria and promotion of wound healing. Int. J. Biol. Macromol. 224, 1373–1381 (2023). https://doi.org/10.1016/j.ijbiomac.2022.10.223
L. Teng, Z. Shao, Q. Bai, X. Zhang, Y.-S. He et al., Biomimetic glycopolypeptide hydrogels with tunable adhesion and microporous structure for fast hemostasis and highly efficient wound healing. Adv. Funct. Mater. 31, 2105628 (2021). https://doi.org/10.1002/adfm.202105628
H. Wang, Z. Xu, Q. Li, J. Wu, Application of metal-based biomaterials in wound repair. Eng. Regen. 2, 137–153 (2021). https://doi.org/10.1016/j.engreg.2021.09.005
N. Singh, M.A. Savanur, S. Srivastava, P. D’Silva, G. Mugesh, A manganese oxide nanozyme prevents the oxidative damage of biomolecules without affecting the endogenous antioxidant system. Nanoscale 11, 3855–3863 (2019). https://doi.org/10.1039/c8nr09397k
A. Gupta, R. Das, G.Y. Tonga, T. Mizuhara, V.M. Rotello, Charge-switchable nanozymes for bioorthogonal imaging of biofilm-associated infections. ACS Nano 12(1), 89–94 (2018). https://doi.org/10.1021/acsnano.7b07496
Y. Gao, Z. Qiu, L. Liu, M. Li, B. Xu et al., Multifunctional fibrous wound dressings for refractory wound healing. J. Polym. Sci. 60, 2191–2212 (2022). https://doi.org/10.1002/pol.20220008
G. Yang, L. Xu, Y. Chao, J. Xu, X. Sun et al., Hollow MnO2 as a tumor-microenvironment-responsive biodegradable nano-platform for combination therapy favoring antitumor immune responses. Nat. Commun. 8, 902 (2017). https://doi.org/10.1038/s41467-017-01050-0
T. Zhou, J. Ran, P. Xu, L. Shen, Y. He et al., A hyaluronic acid/platelet-rich plasma hydrogel containing MnO2 nanozymes efficiently alleviates osteoarthritis in vivo. Carbohydr. Polym. 292, 119667 (2022). https://doi.org/10.1016/j.carbpol.2022.119667
L. Wang, S. Guan, Y. Weng, S.-M. Xu, H. Lu et al., Highly efficient vacancy-driven photothermal therapy mediated by ultrathin MnO2 nanosheets. ACS Appl. Mater. Interfaces 11, 6267–6275 (2019). https://doi.org/10.1021/acsami.8b20639
B. Chen, L. Cai, R. Fan, M. Mu, D. Chuan et al., Multifunctional Ce6-loaded MnO2 as an oxygen-elevated nanoplatform for synergistic photodynamic/photothermal therapy. Mater. Des. 227, 111702 (2023). https://doi.org/10.1016/j.matdes.2023.111702
L. Kong, Z. Wu, H. Zhao, H. Cui, J. Shen et al., Bioactive injectable hydrogels containing desferrioxamine and bioglass for diabetic wound healing. ACS Appl. Mater. Interfaces 10, 30103–30114 (2018). https://doi.org/10.1021/acsami.8b09191
Y. Zhu, W. Zhou, J. Xiang, M. Wu, Z. Chen et al., Deferoxamine-loaded Janus electrospun nanofiber dressing with spatially designed structure for diabetic wound healing. Mater. Des. 233, 112166 (2023). https://doi.org/10.1016/j.matdes.2023.112166
S. Yang, W. Chen, W. Li, J. Song, Y. Gao et al., CD44-targeted pH-responsive micelles for enhanced cellular internalization and intracellular on-demand release of doxorubicin. Artif. Cells Nanomed. Biotechnol. 49, 173–184 (2021). https://doi.org/10.1080/21691401.2021.1884085
Y. Du, L. Li, H. Peng, H. Zheng, S. Cao et al., A spray-filming self-healing hydrogel fabricated from modified sodium alginate and gelatin as a bacterial barrier. Macromol. Biosci. 20, e1900303 (2020). https://doi.org/10.1002/mabi.201900303
Y. Huang, X. Zhao, Z. Zhang, Y. Liang, Z. Yin et al., Degradable gelatin-based IPN cryogel hemostat for rapidly stopping deep noncompressible hemorrhage and simultaneously improving wound healing. Chem. Mater. 32, 6595–6610 (2020). https://doi.org/10.1021/acs.chemmater.0c02030
J. Wang, J. He, Y. Yang, X. Jin, J. Li et al., Hemostatic, antibacterial, conductive and vascular regenerative integrated cryogel for accelerating the whole wound healing process. Chem. Eng. J. 479, 147577 (2024). https://doi.org/10.1016/j.cej.2023.147577
Z. Cimen, S. Babadag, S. Odabas, S. Altuntas, G. Demirel et al., Injectable and self-healable pH-responsive gelatin–PEG/laponite hybrid hydrogels as long-acting implants for local cancer treatment. ACS Appl. Polym. Mater. 3, 3504–3518 (2021). https://doi.org/10.1021/acsapm.1c00419
X. Xu, W. Zhen, S. Bian, Structure, performance and crystallization behavior of poly (lactic acid)/humic acid amide composites. Polym. Plast. Technol. Eng. 57, 1858–1872 (2018). https://doi.org/10.1080/03602559.2018.1434670
S.J. Ge, N. Ji, S.N. Cui, W. Xie, M. Li et al., Coordination of covalent cross-linked gelatin hydrogels via oxidized tannic acid and ferric ions with strong mechanical properties. J. Agric. Food Chem. 67, 11489–11497 (2019). https://doi.org/10.1021/acs.jafc.9b03947
Y. Ma, P. Qi, J. Ju, Q. Wang, L. Hao et al., Gelatin/alginate composite nanofiber membranes for effective and even adsorption of cationic dyes. Compos. Part B Eng. 162, 671–677 (2019). https://doi.org/10.1016/j.compositesb.2019.01.048
W. Sun, H. Yu, D. Wang, Y. Li, B. Tian et al., MnO2 nanoflowers as a multifunctional nano-platform for enhanced photothermal/photodynamic therapy and MR imaging. Biomater. Sci. 9, 3662–3674 (2021). https://doi.org/10.1039/d1bm00033k
X. Qi, W. Pan, X. Tong, T. Gao, Y. Xiang et al., ε-Polylysine-stabilized agarose/polydopamine hydrogel dressings with robust photothermal property for wound healing. Carbohydr. Polym. 264, 118046 (2021). https://doi.org/10.1016/j.carbpol.2021.118046
Y. He, K. Liu, S. Guo, R. Chang, C. Zhang et al., Multifunctional hydrogel with reactive oxygen species scavenging and photothermal antibacterial activity accelerates infected diabetic wound healing. Acta Biomater. 155, 199–217 (2023). https://doi.org/10.1016/j.actbio.2022.11.023
H. Guo, S. Huang, A. Xu, W. Xue, Injectable adhesive self-healing multiple-dynamic-bond crosslinked hydrogel with photothermal antibacterial activity for infected wound healing. Chem. Mater. 34, 2655–2671 (2022). https://doi.org/10.1021/acs.chemmater.1c03944
L. Teng, Y. Song, Y. Hu, J. Lu, C.-M. Dong, Biomimetic and wound microenvironment-modulating PEGylated glycopolypeptide hydrogels for arterial massive hemorrhage and wound prohealing. Biomacromol 25, 4317–4328 (2024). https://doi.org/10.1021/acs.biomac.4c00389
L. Teng, Y. Song, L. Hu, Q. Bai, X. Zhang et al., Nitric oxide-releasing poly(L-glutamic acid) hybrid hydrogels for accelerating diabetic wound healing. Chin. J. Chem. 41, 2103–2112 (2023). https://doi.org/10.1002/cjoc.202300142
Y. Wang, Y. Zhang, Y.-P. Yang, M.-Y. Jin, S. Huang et al., Versatile dopamine-functionalized hyaluronic acid-recombinant human collagen hydrogel promoting diabetic wound healing via inflammation control and vascularization tissue regeneration. Bioact. Mater. 35, 330–345 (2024). https://doi.org/10.1016/j.bioactmat.2024.02.010
G. Chen, S. Yan, C. Ouyang, L. Qiu, J. Liu et al., A new hydrogel to promote healing of bacteria infected wounds: enzyme-like catalytic activity based on MnO2 nanocrytal. Chem. Eng. J. 470, 143986 (2023). https://doi.org/10.1016/j.cej.2023.143986
Y. Wang, Y. Jin, W. Chen, J. Wang, H. Chen et al., Construction of nanomaterials with targeting phototherapy properties to inhibit resistant bacteria and biofilm infections. Chem. Eng. J. 358, 74–90 (2019). https://doi.org/10.1016/j.cej.2018.10.002
C.M. Desmet, V. Préat, B. Gallez, Nanomedicines and gene therapy for the delivery of growth factors to improve perfusion and oxygenation in wound healing. Adv. Drug Deliv. Rev. 129, 262–284 (2018). https://doi.org/10.1016/j.addr.2018.02.001
Z. Luo, Y. Wang, J. Li, J. Wang, Y. Yu et al., Tailoring hyaluronic acid hydrogels for biomedical applications. Adv. Funct. Mater. 33, 2306554 (2023). https://doi.org/10.1002/adfm.202306554
M. Liu, R. Ding, Z. Li, N. Xu, Y. Gong et al., Hyaluronidase-responsive bactericidal cryogel for promoting healing of infected wounds: inflammatory attenuation, ROS scavenging, and immune regulation. Adv. Sci. 11, e2306602 (2024). https://doi.org/10.1002/advs.202306602
H. Geng, X. Zheng, Y. Zhang, X. Cui, Z. Li et al., Microenvironment-responsive hydrogels with detachable skin adhesion and mild-temperature photothermal property for chronic wound healing. Adv. Funct. Mater. 33, 2305154 (2023). https://doi.org/10.1002/adfm.202305154
J. He, Z. Li, J. Wang, T. Li, J. Chen et al., Photothermal antibacterial antioxidant conductive self-healing hydrogel with nitric oxide release accelerates diabetic wound healing. Compos. Part B Eng. 266, 110985 (2023). https://doi.org/10.1016/j.compositesb.2023.110985
Y. Guo, J. Huang, Y. Fang, H. Huang, J. Wu, 1D, 2D, and 3D scaffolds promoting angiogenesis for enhanced wound healing. Chem. Eng. J. 437, 134690 (2022). https://doi.org/10.1016/j.cej.2022.134690
L.J. Eggermont, Z.J. Rogers, T. Colombani, A. Memic, S.A. Bencherif, Injectable cryogels for biomedical applications. Trends Biotechnol. 38, 418–431 (2020). https://doi.org/10.1016/j.tibtech.2019.09.008
R. Fan, D. Chuan, Z. Liu, H. Chen, C. Chen et al., Antioxidant MnO2 nanozymes-encapsulated hydrogel synergistically regulate the spinal ROS microenvironment and promote spinal cord repair. Chem. Eng. J. 478, 147148 (2023). https://doi.org/10.1016/j.cej.2023.147148
K. Ono, M. Sumiya, N. Yoshinobu, T. Dode, T. Katayama et al., Angiogenesis promotion by combined administration of DFO and vein endothelial cells using injectable, biodegradable, nanocomposite hydrogel scaffolds. ACS Appl. Bio Mater. 5, 471–482 (2022). https://doi.org/10.1021/acsabm.1c00870
H. Shen, C. Zhang, Y. Meng, Y. Qiao, Y. Ma et al., Biomimetic hydrogel containing copper sulfide nanops and deferoxamine for photothermal therapy of infected diabetic wounds. Adv. Healthc. Mater. 13, e2303000 (2024). https://doi.org/10.1002/adhm.202303000
Y. Liang, J. He, B. Guo, Functional hydrogels as wound dressing to enhance wound healing. ACS Nano 15, 12687–12722 (2021). https://doi.org/10.1021/acsnano.1c04206
D.A. Hickman, C.L. Pawlowski, U.D.S. Sekhon, J. Marks, A.S. Gupta, Biomaterials and advanced technologies for hemostatic management of bleeding. Adv. Mater. 30, 1700859 (2018). https://doi.org/10.1002/adma.201700859
X. Zhao, B. Guo, H. Wu, Y. Liang, P.X. Ma, Injectable antibacterial conductive nanocomposite cryogels with rapid shape recovery for noncompressible hemorrhage and wound healing. Nat. Commun. 9, 2784 (2018). https://doi.org/10.1038/s41467-018-04998-9