Electrochemical Synthesis of Novel Zn-Doped TiO2 Nanotube/ZnO Nanoflake Heterostructure with Enhanced DSSC Efficiency
Corresponding Author: Rachel Reena Philip
Nano-Micro Letters,
Vol. 8 No. 4 (2016), Article Number: 381-387
Abstract
The paper reports the fabrication of Zn-doped TiO2 nanotubes (Zn-TONT)/ZnO nanoflakes heterostructure for the first time, which shows improved performance as a photoanode in dye-sensitized solar cell (DSSC). The layered structure of this novel nanoporous structure has been analyzed unambiguously by Rutherford backscattering spectroscopy, scanning electron microscopy, and X-ray diffractometer. The cell using the heterostructure as photoanode manifests an enhancement of about an order in the magnitude of the short circuit current and a seven-fold increase in efficiency, over pure TiO2 photoanodes. Characterizations further reveal that the Zn-TONT is preferentially oriented in [001] direction and there is a Ti metal-depleted interface layer which leads to better band alignment in DSSC.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- I. Concina, A. Vomiero, Metal oxide semiconductor for dye and quantum-dot sensitized solar cells. Small 11(15), 1744–1774 (2015). doi:10.1002/smll.201402334
- H. Cai, Q. Yang, Z. Hu, Z. Duan, Q. You, J. Sun, N. Xu, J. Wu, Enhanced photo electrochemical activity of vertically aligned ZnO coated TiO2 nanotubes. Appl. Phys. Lett. 104, 053114 (2014). doi:10.1063/1.4863852
- A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, H. Pettersson, Dye sensitized solar cells. Chem. Rev. 110(11), 6595–6663 (2010). doi:10.1021/cr900356p
- T.P. Gujarati, A.G. Ashish, M. Rai, M.M. Shajumon, Highly ordered vertical arrays of TiO2/ZnO hybrid nanowires: synthesis and electrochemical characterization. J. Nanosci. Nanotech. 15(8), 5833–5839 (2015). doi:10.1166/jnn.2015.10040
- B. Zhang, F. Wang, C. Zhu, Q. Li, J. Song, M. Zheng, L. Ma, W. Shen, A facile self-assembly synthesis of hexagonal ZnO nanosheet films and their photoelectrochemical properties. Nano-Micro Lett. 8(2), 137–142 (2016). doi:10.1007/s40820-015-0068-y
- P.E. De Jongh, E.A. Meulenkamp, D. Vanmackelbergh, J.J. Kelly, Charge carrier dynamics in illuminated particulate ZnO electrode. J. Phys. Chem. B 104(32), 7686–7693 (2000). doi:10.1021/jp000616a
- G.H. Schoenmakers, D. Vanmackelbergh, J.J. Kelly, Study of charge carrier dynamics at illuminated ZnO photoanodes. J. Phys. Chem. 100(8), 3215–3220 (1996). doi:10.1021/jp952392f
- A.J. Frank, N. Kopidakis, J.V. De Langemaat, Electrons in nanostructured TiO2 solar cells; transport, recombination and photovoltaic properties. Coord. Chem. Rev. 248(13–14), 1165–1179 (2004). doi:10.1016/j.ccr.2004.03.015
- Y. Liu, H. Zhou, J. Li, H. Chen, D. Li, B. Zhou, W. Cai, Enhanced photoelectrochemical properties of Cu2O-loaded short TiO2 nanotube array electrode prepared by sonoelectrochemical deposition. Nano-Micro Lett. 2(4), 277–284 (2010). doi:10.3786/nml.v2i4.p277-284
- U. Diebold, The surface science of titanium dioxide. Surf. Sci. Rep. 48(5–8), 53–229 (2003). doi:10.1016/S0167-5729(02)00100-0
- A.B. Djurišić, X. Chen, V.H. Leung, A.M. Ching, Ng, ZnO nanostructures: growth, properties and applications. J. Mater. Chem. 22(14), 6526–6535 (2012). doi:10.1088/0953-8984/16/25/R01
- Y. Yang, X. Wang, C. Sun, L. Li, Photoluminescence of ZnO nanorod-TiO2 nanotube hybrid arrays produced by electrodeposition. J. Appl. Phys. 105, 094304 (2009). doi:10.1063/1.3121202
- H. Cai, Q. You, Z. Hu, Z. Duan, Y. Cui, J. Sun, N. Xu, J. Wu, Fabrication and correlation between photoluminescence and photo electrochemical properties of vertically aligned ZnO coated TiO2 nanotube arrays. Sol. Energy Mater. Sol. Cells 123, 233–238 (2014). doi:10.1016/j.solmat.2014.01.033
- Y.C. Huang, S.Y. Chang, C.F. Lin, W.J. Tseng, Synthesis of ZnO nanorod grafted TiO2 nanotube 3-D array heterostructure as supporting platform for nanoparticle deposition. J. Mater. Chem. 21(36), 14056–14061 (2011). doi:10.1039/c1jm11659b
- W. Liu, P. Su, S. Chen, N. Wang, Y. Ma, Y. Liu, J. Wang, Z. Zhang, H. Li, T.J. Webster, Synthesis of TiO2 nanotubes with ZnO nanoparticles to achieve antibacterial properties and stem cell compatibility. Nanoscale 6(15), 9050–9062 (2014). doi:10.1039/C4NR01531B
- Y. Let, G. Zhao, M. Liu, Z. Zhang, X. Tong, T. Cao, Fabrication characterization and photoelectrocatalytic application of ZnO nanorods grafted on vertically aligned TiO2 nanotubes. J. Phys. Chem. C 113(44), 19067–19076 (2009). doi:10.1021/jp9071179
- F.X. Xiao, S.F. Hung, H.B. Tao, J. Miao, H.B. Yang, B. Liu, Spatially branched hierarchical ZnO nanorod-TiO2 nanotube array heterostructures for versatile photocatalytic and photoelectrocatalytic applications: towards intimate integration of 1D–1D nanostructures. Nanoscale 6(24), 14950–14961 (2014). doi:10.1039/c4nr04886e
- J. Ren, W. Que, X. Yin, Y. He, H.M.A. Javed, Novel fabrication of TiO2/ZnO nanotube array heterojunction for dye sensitized solar cells. RSC Adv. 4(15), 7454–7460 (2014). doi:10.1039/c3ra45741a
- S.S. Kim, S.I. Na, Y.C. Nah, TiO2 nanotubes decorated with ZnO rod like nanostructures for efficient dye sensitized solar cells. Electrochim. Acta 58(1), 503–509 (2011). doi:10.1016/j.electacta.2011.09.076
- P. Roy, S. Berger, P. Schmuki, TiO2 Nanotubes: synthesis and applications. Angew. Chem. Int. Ed. 50(13), 2904–2939 (2011). doi:10.1002/anie.201001374
- M. Mayer, SIMNRA User’s Guide, Report IPP 9/113 (Max-Planck-InstitutfürPlasmaphysik, Garching, 1997)
- J.K. Aijo, N. Johns, S. Mallick, T. Shripathi, T. Manju, R.P. Reena, Novel cost effective fabrication technique for highly preferential oriented TiO2 nanotubes. Nanoscale 7(48), 20386–20390 (2015). doi:10.1039/C5NR06328K
- C.S. Chou, F.C. Chou, Y.G. Ding, P. Wu, The effect of ZnO coating on the performance of a dye sensitized solar cell. Sol. Energy 86(5), 1435–1442 (2012). doi:10.1016/j.solener.2012.02.003
References
I. Concina, A. Vomiero, Metal oxide semiconductor for dye and quantum-dot sensitized solar cells. Small 11(15), 1744–1774 (2015). doi:10.1002/smll.201402334
H. Cai, Q. Yang, Z. Hu, Z. Duan, Q. You, J. Sun, N. Xu, J. Wu, Enhanced photo electrochemical activity of vertically aligned ZnO coated TiO2 nanotubes. Appl. Phys. Lett. 104, 053114 (2014). doi:10.1063/1.4863852
A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, H. Pettersson, Dye sensitized solar cells. Chem. Rev. 110(11), 6595–6663 (2010). doi:10.1021/cr900356p
T.P. Gujarati, A.G. Ashish, M. Rai, M.M. Shajumon, Highly ordered vertical arrays of TiO2/ZnO hybrid nanowires: synthesis and electrochemical characterization. J. Nanosci. Nanotech. 15(8), 5833–5839 (2015). doi:10.1166/jnn.2015.10040
B. Zhang, F. Wang, C. Zhu, Q. Li, J. Song, M. Zheng, L. Ma, W. Shen, A facile self-assembly synthesis of hexagonal ZnO nanosheet films and their photoelectrochemical properties. Nano-Micro Lett. 8(2), 137–142 (2016). doi:10.1007/s40820-015-0068-y
P.E. De Jongh, E.A. Meulenkamp, D. Vanmackelbergh, J.J. Kelly, Charge carrier dynamics in illuminated particulate ZnO electrode. J. Phys. Chem. B 104(32), 7686–7693 (2000). doi:10.1021/jp000616a
G.H. Schoenmakers, D. Vanmackelbergh, J.J. Kelly, Study of charge carrier dynamics at illuminated ZnO photoanodes. J. Phys. Chem. 100(8), 3215–3220 (1996). doi:10.1021/jp952392f
A.J. Frank, N. Kopidakis, J.V. De Langemaat, Electrons in nanostructured TiO2 solar cells; transport, recombination and photovoltaic properties. Coord. Chem. Rev. 248(13–14), 1165–1179 (2004). doi:10.1016/j.ccr.2004.03.015
Y. Liu, H. Zhou, J. Li, H. Chen, D. Li, B. Zhou, W. Cai, Enhanced photoelectrochemical properties of Cu2O-loaded short TiO2 nanotube array electrode prepared by sonoelectrochemical deposition. Nano-Micro Lett. 2(4), 277–284 (2010). doi:10.3786/nml.v2i4.p277-284
U. Diebold, The surface science of titanium dioxide. Surf. Sci. Rep. 48(5–8), 53–229 (2003). doi:10.1016/S0167-5729(02)00100-0
A.B. Djurišić, X. Chen, V.H. Leung, A.M. Ching, Ng, ZnO nanostructures: growth, properties and applications. J. Mater. Chem. 22(14), 6526–6535 (2012). doi:10.1088/0953-8984/16/25/R01
Y. Yang, X. Wang, C. Sun, L. Li, Photoluminescence of ZnO nanorod-TiO2 nanotube hybrid arrays produced by electrodeposition. J. Appl. Phys. 105, 094304 (2009). doi:10.1063/1.3121202
H. Cai, Q. You, Z. Hu, Z. Duan, Y. Cui, J. Sun, N. Xu, J. Wu, Fabrication and correlation between photoluminescence and photo electrochemical properties of vertically aligned ZnO coated TiO2 nanotube arrays. Sol. Energy Mater. Sol. Cells 123, 233–238 (2014). doi:10.1016/j.solmat.2014.01.033
Y.C. Huang, S.Y. Chang, C.F. Lin, W.J. Tseng, Synthesis of ZnO nanorod grafted TiO2 nanotube 3-D array heterostructure as supporting platform for nanoparticle deposition. J. Mater. Chem. 21(36), 14056–14061 (2011). doi:10.1039/c1jm11659b
W. Liu, P. Su, S. Chen, N. Wang, Y. Ma, Y. Liu, J. Wang, Z. Zhang, H. Li, T.J. Webster, Synthesis of TiO2 nanotubes with ZnO nanoparticles to achieve antibacterial properties and stem cell compatibility. Nanoscale 6(15), 9050–9062 (2014). doi:10.1039/C4NR01531B
Y. Let, G. Zhao, M. Liu, Z. Zhang, X. Tong, T. Cao, Fabrication characterization and photoelectrocatalytic application of ZnO nanorods grafted on vertically aligned TiO2 nanotubes. J. Phys. Chem. C 113(44), 19067–19076 (2009). doi:10.1021/jp9071179
F.X. Xiao, S.F. Hung, H.B. Tao, J. Miao, H.B. Yang, B. Liu, Spatially branched hierarchical ZnO nanorod-TiO2 nanotube array heterostructures for versatile photocatalytic and photoelectrocatalytic applications: towards intimate integration of 1D–1D nanostructures. Nanoscale 6(24), 14950–14961 (2014). doi:10.1039/c4nr04886e
J. Ren, W. Que, X. Yin, Y. He, H.M.A. Javed, Novel fabrication of TiO2/ZnO nanotube array heterojunction for dye sensitized solar cells. RSC Adv. 4(15), 7454–7460 (2014). doi:10.1039/c3ra45741a
S.S. Kim, S.I. Na, Y.C. Nah, TiO2 nanotubes decorated with ZnO rod like nanostructures for efficient dye sensitized solar cells. Electrochim. Acta 58(1), 503–509 (2011). doi:10.1016/j.electacta.2011.09.076
P. Roy, S. Berger, P. Schmuki, TiO2 Nanotubes: synthesis and applications. Angew. Chem. Int. Ed. 50(13), 2904–2939 (2011). doi:10.1002/anie.201001374
M. Mayer, SIMNRA User’s Guide, Report IPP 9/113 (Max-Planck-InstitutfürPlasmaphysik, Garching, 1997)
J.K. Aijo, N. Johns, S. Mallick, T. Shripathi, T. Manju, R.P. Reena, Novel cost effective fabrication technique for highly preferential oriented TiO2 nanotubes. Nanoscale 7(48), 20386–20390 (2015). doi:10.1039/C5NR06328K
C.S. Chou, F.C. Chou, Y.G. Ding, P. Wu, The effect of ZnO coating on the performance of a dye sensitized solar cell. Sol. Energy 86(5), 1435–1442 (2012). doi:10.1016/j.solener.2012.02.003