Singular Sheet Etching of Graphene with Oxygen Plasma
Corresponding Author: Lixin Dong
Nano-Micro Letters,
Vol. 6 No. 2 (2014), Article Number: 116-124
Abstract
This paper reports a simple and controllable post-synthesis method for engineering the number of graphene layers based on oxygen plasma etching. Singular sheet etching (SSE) of graphene was achieved with the optimum process duration of 38 seconds. As a demonstration of this SSE process, monolayer graphene films were produced from bilayer graphenes. Experimental investigations verified that the oxygen plasma etching removes a single layer graphene sheet in an anisotropic fashion rather than anisotropic mode. In addition, etching via the oxygen plasma at the ground electrodes introduced fewer defects to the bottom graphene layer compared with the conventional oxygen reactive ion etching using the powered electrodes. Such defects can further be reduced with an effective annealing treatment in an argon environment at 900–1000°C. These results demonstrate that our developed SSE method has enabled a microelectronics manufacturing compatible way for single sheet precision subtraction of graphene layers and a potential technique for producing large size graphenes with high yield from multilayer graphite materials.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A. K. Geim, “Graphene: Status and prospects”, Science 324(5934), 1530–1534 (2009). http://dx.doi.org/10.1126/science.1158877
- X. Du, I. Skachko, A. Barker and E. Y. Andrei, “Approaching ballistic transport in suspended graphene”, Nature Nanotech. 3(8), 491–495 (2008). http://dx.doi.org/10.1038/nnano.2008.199
- K. S. Novoselov, Z. Jiang, Y. Zhang, S. V. Morozov, H. L. Stormer, U. Zeitler, J. C. Maan, G. S. Boebinger, P. Kim and A. K. Geim, “Room-temperature quantum hall effect in graphene”, Science 315(5817), 1379–1379 (2007). http://dx.doi.org/10.1126/science.1137201
- A. K. Geim and K. S. Novoselov, “The rise of graphene”, Nat. Mater. 6(3), 183–191 (2007). http://dx.doi.org/10.1038/nmat1849
- C. N. R. Rao, A. K. Sood, K. S. Subrahmanyam and A. Govindaraj, “Graphene: The new two-dimensional nanomaterial”, Angew. Chem. Int. Edit. 48 (42), 7752–7777 (2009). http://dx.doi.org/10.1002/anie.200901678
- F. Schwierz, “Graphene transistors”, Nature Nanotech. 5(7), 487–496 (2010). http://dx.doi.org/10.1038/nnano.2010.89
- M. Wanunu, T. Dadosh, V. Ray, J. M. Jin, L. McReynolds and M. Drndic, “Rapid electronic detection of probe-specific microRNAs using thin nanopore sensors”, Nature Nanotech. 5(11), 807–814 (2010). http://dx.doi.org/10.1038/nnano.2010.202
- F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson and K. S. Novoselov, “Detection of individual gas molecules adsorbed on graphene”, Nat. Mater. 6(9), 652–655 (2007). http://dx.doi.org/10.1038/nmat1967
- Y. W. Zhu, S. Murali, M. D. Stoller, K. J. Ganesh, W. W. Cai, P. J. Ferreira, A. Pirkle, R. M. Wallace, K. A. Cychosz, M. Thommes, D. Su, E. A. Stach and R. S. Ruoff, “Carbon-based supercapacitors produced by activation of graphene”, Science 332(6037), 1537–1541 (2011). http://dx.doi.org/10.1126/science.1200770
- S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen and R. S. Ruoff, “Graphene-based composite materials”, Nature 442(7100), 282–286 (2006). http://dx.doi.org/10.1038/nature04969
- K. V. Emtsev, A. Bostwick, K. Horn, J. Jobst, G. L. Kellogg, L. Ley, J. L. McChesney, T. Ohta, S. A. Reshanov, J. Rohrl, E. Rotenberg, A. K. Schmid, D. Waldmann, H. B. Weber and T. Seyller, “Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide”, Nat. Mater. 8(3), 203–207 (2009). http://dx.doi.org/10.1038/nmat2382
- X. S. Li, W. W. Cai, J. H. An, S. Kim, J. Nah, D. X. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils”, Science 324(5932), 1312–1314 (2009). http://dx.doi.org/10.1126/science.1171245
- S. Bae, H. Kim, Y. Lee, X. F. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. J. Kim, K. S. Kim, B. Ozyilmaz, J. H. Ahn, B. H. Hong and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes”, Nature Nanotech. 5(8), 574–578 (2010). http://dx.doi.org/10.1038/nnano.2010.132
- X. L. Li, H. L. Wang, J. T. Robinson, H. Sanchez, G. Diankov and H. J. Dai, “Simultaneous nitrogen doping and reduction of graphene oxide”, J. Am. Chem. Soc. 131(43), 15939–15944 (2009). http://dx.doi.org/10.1021/ja907098f
- F. B. Rao, H. Almumen, Z. Fan, W. Li and L. X. Dong, “Inter-sheet-effect-inspired graphene sensors: design, fabrication and characterization”, Nature Nanotech. 23(10), 105501 (2012). doi:10.1088/0957-4484/23/10/105501
- Y. B. Zhang, T. T. Tang, C. Girit, Z. Hao, M. C. Martin, A. Zettl, M. F. Crommie, Y. R. Shen and F. Wang, “Direct observation of a widely tunable bandgap in bilayer graphene”, Nature 459(7248), 820–823 (2009). http://dx.doi.org/10.1038/nature08105
- G. X. Zhao, D. D. Shao, C. L. Chen and X. K. Wang, “Synthesis of few-layered graphene by H2O2 plasma etching of graphite”, Appl. Phys. Lett. 98(18), 183114 (2011). http://dx.doi.org/10.1063/1.3589354
- H. M. Wang, Y. H. Wu, Z. H. Ni and Z. X. Shen, “Electronic transport and layer engineering in multilayer graphene structures”, Appl. Phys. Lett. 92(5), 053504 (2008). http://dx.doi.org/10.1063/1.2840713
- C. X. Cong, T. Yu, H. M. Wang, K. H. Zheng, P. Q. Gao, X. D. Chen and Q. Zhang, “Self-limited oxidation: A route to form graphene layers from graphite by one-step heating”, Small 6(24), 2837–2841 (2010). http://dx.doi.org/10.1002/smll.201001184
- K. S. Hazra, J. Rafiee, M. A. Rafiee, A. Mathur, S. S. Roy, J. McLauhglin, N. Koratkar and D. S. Misra, “Thinning of multilayer graphene to monolayer graphene in a plasma environment”, Nature Nanotech. 22(2), 025704 (2011). http://dx.doi.org/10.1088/0957-4484/22/2/025704
- A. Dimiev, D. V. Kosynkin, A. Sinitskii, A. Slesarev, Z. Z. Sun and J. M. Tour, “Layer-by-layer removal of graphene for device patterning”, Science 331(6021), 1168–1172 (2011). http://dx.doi.org/10.1126/science.1199183
- W. S. Lim, Y. Y. Kim, H. Kim, S. Jang, N. Kwon, B. J. Park, J. H. Ahn, I. Chung, B. H. Hong and G. Y. Yeom, “Atomic layer etching of graphene for full graphene device fabrication”, Carbon 50(2), 429–435 (2012). http://dx.doi.org/10.1016/j.carbon.2011.08.058
- D. C. Kim, D. Y. Jeon, H. J. Chung, Y. Woo, J. K. Shin and S. Seo, “The structural and electrical evolution of graphene by oxygen plasma-induced disorder”, Nature Nanotech. 20(37), 375703 (2009). http://dx.doi.org/10.1088/0957-4484/20/37/375703
- A. Nourbakhsh, M. Cantoro, T. Vosch, G. Pourtois, F. Clemente, M. H. van der Veen, J. Hofkens, M. M. Heyns, S. De Gendt and B. F. Sels, “Bandgap opening in oxygen plasma-treated graphene”, Nature Nanotech. 21(43), 435203 (2010). doi:10.1088/0957-4484/21/43/435203
- A. Nourbakhsh, M. Cantoro, A. V. Klekachev, G. Pourtois, T. Vosch, J. Hofkens, M. H. van der Veen, M. M. Heyns, S. De Gendt and B. F. Sels, “Single layer vs bilayer graphene: a comparative study of the effects of oxygen plasma treatment on their electronic and optical properties”, J. Phys. Chem. C. 115(33), 16619–16624 (2011). http://dx.doi.org/10.1021/jp203010z
- T. Gokus, R. R. Nair, A. Bonetti, M. Bohmler, A. Lombardo, K. S. Novoselov, A. K. Geim, A. C. Ferrari and A. Hartschuh, “Making graphene luminescent by oxygen plasma treatment”, ACS Nano 5(12), 3963–3968 (2009). http://dx.doi.org/10.1021/nn9012753
- N. Xiao, X. C. Dong, L. Song, D. Y. Liu, Y. Tay, S. X. Wu, L. J. Li, Y. Zhao, T. Yu, H. Zhang, W. Huang, H. H. Hng, P. M. Ajayan and Q. Y. Yan, “Enhanced thermopower of graphene films with oxygen plasma treatment”, ACS Nano 5(4), 2749–2755 (2011). http://dx.doi.org/10.1021/nn2001849
- P. Blake, E. W. Hill, A. H. C. Neto, K. S. Novoselov, D. Jiang, R. Yang, T. J. Booth and A. K. Geim, “Making graphene visible”, Appl. Phys. Lett. 91(6), 063124 (2007). http://dx.doi.org/10.1063/1.2768624
- M. Ishigami, J. H. Chen, W. G. Cullen, M. S. Fuhrer and E. D. Williams, “Atomic structure of graphene on SiO2”, Nano Lett. 7(6), 1643–1648 (2007). http://dx.doi.org/10.1021/nl070613a
- L. C. Campos, V. R. Manfrinato, J. D. Sanchez-Yamagishi, J. Kong and P. Jarillo-Herrero, “Anisotropic etching and nanoribbon formation in single-layer graphene”, Nano Lett. 9(7), 2600–2604 (2009). http://dx.doi.org/10.1021/nl900811r
- A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth and A. K. Geim, “Raman spectrum of graphene and graphene layers”, Phys. Rev. Lett. 97(18), 187401 (2006). http://dx.doi.org/10.1103/PhysRevLett.97.187401
- D. Graf, F. Molitor, K. Ensslin, C. Stampfer, A. Jungen, C. Hierold and L. Wirtz, “Spatially resolved raman spectroscopy of single- and few-layer graphene”, Nano Lett. 7(2), 238–242 (2007). http://dx.doi.org/10.1021/nl061702a
- M. Batzill, “The surface science of graphene: Metal interfaces, CVD synthesis, nanoribbons, chemical modifications, and defects”, Surf. Sci. Rep. 67(3–4), 83–115 (2012). http://dx.doi.org/10.1016/j.surfrep.2011.12.001
- J. Campos-Delgado, Y. A. Kim, T. Hayashi, A. Morelos-Gomez, M. Hofmann, H. Muramatsu, M. Endo, H. Terrones, R. D. Shull, M. S. Dresselhaus and M. Terrones, “Thermal stability studies of CVD-grown graphene nanoribbons: Defect annealing and loop formation”, Chem. Phys. Lett. 469(1–3), 177–182 (2009). http://dx.doi.org/10.1016/j.cplett.2008.12.082
- D. C. Elias, R. R. Nair, T. M. G. Mohiuddin, S. V. Morozov, P. Blake, M. P. Halsall, A. C. Ferrari, D. W. Boukhvalov, M. I. Katsnelson, A. K. Geim and K. S. Novoselov, “Control of graphene’s properties by reversible hydrogenation: evidence for graphane”, Science 323(5914), 610–613 (2009). http://dx.doi.org/10.1126/science.1167130
- D. Teweldebrhan and A. A. Balandin, “Modification of graphene properties due to electron-beam irradiation”, Appl. Phys. Lett. 94(1), 013101 (2009). http://dx.doi.org/10.1063/1.3062851
References
A. K. Geim, “Graphene: Status and prospects”, Science 324(5934), 1530–1534 (2009). http://dx.doi.org/10.1126/science.1158877
X. Du, I. Skachko, A. Barker and E. Y. Andrei, “Approaching ballistic transport in suspended graphene”, Nature Nanotech. 3(8), 491–495 (2008). http://dx.doi.org/10.1038/nnano.2008.199
K. S. Novoselov, Z. Jiang, Y. Zhang, S. V. Morozov, H. L. Stormer, U. Zeitler, J. C. Maan, G. S. Boebinger, P. Kim and A. K. Geim, “Room-temperature quantum hall effect in graphene”, Science 315(5817), 1379–1379 (2007). http://dx.doi.org/10.1126/science.1137201
A. K. Geim and K. S. Novoselov, “The rise of graphene”, Nat. Mater. 6(3), 183–191 (2007). http://dx.doi.org/10.1038/nmat1849
C. N. R. Rao, A. K. Sood, K. S. Subrahmanyam and A. Govindaraj, “Graphene: The new two-dimensional nanomaterial”, Angew. Chem. Int. Edit. 48 (42), 7752–7777 (2009). http://dx.doi.org/10.1002/anie.200901678
F. Schwierz, “Graphene transistors”, Nature Nanotech. 5(7), 487–496 (2010). http://dx.doi.org/10.1038/nnano.2010.89
M. Wanunu, T. Dadosh, V. Ray, J. M. Jin, L. McReynolds and M. Drndic, “Rapid electronic detection of probe-specific microRNAs using thin nanopore sensors”, Nature Nanotech. 5(11), 807–814 (2010). http://dx.doi.org/10.1038/nnano.2010.202
F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson and K. S. Novoselov, “Detection of individual gas molecules adsorbed on graphene”, Nat. Mater. 6(9), 652–655 (2007). http://dx.doi.org/10.1038/nmat1967
Y. W. Zhu, S. Murali, M. D. Stoller, K. J. Ganesh, W. W. Cai, P. J. Ferreira, A. Pirkle, R. M. Wallace, K. A. Cychosz, M. Thommes, D. Su, E. A. Stach and R. S. Ruoff, “Carbon-based supercapacitors produced by activation of graphene”, Science 332(6037), 1537–1541 (2011). http://dx.doi.org/10.1126/science.1200770
S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen and R. S. Ruoff, “Graphene-based composite materials”, Nature 442(7100), 282–286 (2006). http://dx.doi.org/10.1038/nature04969
K. V. Emtsev, A. Bostwick, K. Horn, J. Jobst, G. L. Kellogg, L. Ley, J. L. McChesney, T. Ohta, S. A. Reshanov, J. Rohrl, E. Rotenberg, A. K. Schmid, D. Waldmann, H. B. Weber and T. Seyller, “Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide”, Nat. Mater. 8(3), 203–207 (2009). http://dx.doi.org/10.1038/nmat2382
X. S. Li, W. W. Cai, J. H. An, S. Kim, J. Nah, D. X. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils”, Science 324(5932), 1312–1314 (2009). http://dx.doi.org/10.1126/science.1171245
S. Bae, H. Kim, Y. Lee, X. F. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. J. Kim, K. S. Kim, B. Ozyilmaz, J. H. Ahn, B. H. Hong and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes”, Nature Nanotech. 5(8), 574–578 (2010). http://dx.doi.org/10.1038/nnano.2010.132
X. L. Li, H. L. Wang, J. T. Robinson, H. Sanchez, G. Diankov and H. J. Dai, “Simultaneous nitrogen doping and reduction of graphene oxide”, J. Am. Chem. Soc. 131(43), 15939–15944 (2009). http://dx.doi.org/10.1021/ja907098f
F. B. Rao, H. Almumen, Z. Fan, W. Li and L. X. Dong, “Inter-sheet-effect-inspired graphene sensors: design, fabrication and characterization”, Nature Nanotech. 23(10), 105501 (2012). doi:10.1088/0957-4484/23/10/105501
Y. B. Zhang, T. T. Tang, C. Girit, Z. Hao, M. C. Martin, A. Zettl, M. F. Crommie, Y. R. Shen and F. Wang, “Direct observation of a widely tunable bandgap in bilayer graphene”, Nature 459(7248), 820–823 (2009). http://dx.doi.org/10.1038/nature08105
G. X. Zhao, D. D. Shao, C. L. Chen and X. K. Wang, “Synthesis of few-layered graphene by H2O2 plasma etching of graphite”, Appl. Phys. Lett. 98(18), 183114 (2011). http://dx.doi.org/10.1063/1.3589354
H. M. Wang, Y. H. Wu, Z. H. Ni and Z. X. Shen, “Electronic transport and layer engineering in multilayer graphene structures”, Appl. Phys. Lett. 92(5), 053504 (2008). http://dx.doi.org/10.1063/1.2840713
C. X. Cong, T. Yu, H. M. Wang, K. H. Zheng, P. Q. Gao, X. D. Chen and Q. Zhang, “Self-limited oxidation: A route to form graphene layers from graphite by one-step heating”, Small 6(24), 2837–2841 (2010). http://dx.doi.org/10.1002/smll.201001184
K. S. Hazra, J. Rafiee, M. A. Rafiee, A. Mathur, S. S. Roy, J. McLauhglin, N. Koratkar and D. S. Misra, “Thinning of multilayer graphene to monolayer graphene in a plasma environment”, Nature Nanotech. 22(2), 025704 (2011). http://dx.doi.org/10.1088/0957-4484/22/2/025704
A. Dimiev, D. V. Kosynkin, A. Sinitskii, A. Slesarev, Z. Z. Sun and J. M. Tour, “Layer-by-layer removal of graphene for device patterning”, Science 331(6021), 1168–1172 (2011). http://dx.doi.org/10.1126/science.1199183
W. S. Lim, Y. Y. Kim, H. Kim, S. Jang, N. Kwon, B. J. Park, J. H. Ahn, I. Chung, B. H. Hong and G. Y. Yeom, “Atomic layer etching of graphene for full graphene device fabrication”, Carbon 50(2), 429–435 (2012). http://dx.doi.org/10.1016/j.carbon.2011.08.058
D. C. Kim, D. Y. Jeon, H. J. Chung, Y. Woo, J. K. Shin and S. Seo, “The structural and electrical evolution of graphene by oxygen plasma-induced disorder”, Nature Nanotech. 20(37), 375703 (2009). http://dx.doi.org/10.1088/0957-4484/20/37/375703
A. Nourbakhsh, M. Cantoro, T. Vosch, G. Pourtois, F. Clemente, M. H. van der Veen, J. Hofkens, M. M. Heyns, S. De Gendt and B. F. Sels, “Bandgap opening in oxygen plasma-treated graphene”, Nature Nanotech. 21(43), 435203 (2010). doi:10.1088/0957-4484/21/43/435203
A. Nourbakhsh, M. Cantoro, A. V. Klekachev, G. Pourtois, T. Vosch, J. Hofkens, M. H. van der Veen, M. M. Heyns, S. De Gendt and B. F. Sels, “Single layer vs bilayer graphene: a comparative study of the effects of oxygen plasma treatment on their electronic and optical properties”, J. Phys. Chem. C. 115(33), 16619–16624 (2011). http://dx.doi.org/10.1021/jp203010z
T. Gokus, R. R. Nair, A. Bonetti, M. Bohmler, A. Lombardo, K. S. Novoselov, A. K. Geim, A. C. Ferrari and A. Hartschuh, “Making graphene luminescent by oxygen plasma treatment”, ACS Nano 5(12), 3963–3968 (2009). http://dx.doi.org/10.1021/nn9012753
N. Xiao, X. C. Dong, L. Song, D. Y. Liu, Y. Tay, S. X. Wu, L. J. Li, Y. Zhao, T. Yu, H. Zhang, W. Huang, H. H. Hng, P. M. Ajayan and Q. Y. Yan, “Enhanced thermopower of graphene films with oxygen plasma treatment”, ACS Nano 5(4), 2749–2755 (2011). http://dx.doi.org/10.1021/nn2001849
P. Blake, E. W. Hill, A. H. C. Neto, K. S. Novoselov, D. Jiang, R. Yang, T. J. Booth and A. K. Geim, “Making graphene visible”, Appl. Phys. Lett. 91(6), 063124 (2007). http://dx.doi.org/10.1063/1.2768624
M. Ishigami, J. H. Chen, W. G. Cullen, M. S. Fuhrer and E. D. Williams, “Atomic structure of graphene on SiO2”, Nano Lett. 7(6), 1643–1648 (2007). http://dx.doi.org/10.1021/nl070613a
L. C. Campos, V. R. Manfrinato, J. D. Sanchez-Yamagishi, J. Kong and P. Jarillo-Herrero, “Anisotropic etching and nanoribbon formation in single-layer graphene”, Nano Lett. 9(7), 2600–2604 (2009). http://dx.doi.org/10.1021/nl900811r
A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth and A. K. Geim, “Raman spectrum of graphene and graphene layers”, Phys. Rev. Lett. 97(18), 187401 (2006). http://dx.doi.org/10.1103/PhysRevLett.97.187401
D. Graf, F. Molitor, K. Ensslin, C. Stampfer, A. Jungen, C. Hierold and L. Wirtz, “Spatially resolved raman spectroscopy of single- and few-layer graphene”, Nano Lett. 7(2), 238–242 (2007). http://dx.doi.org/10.1021/nl061702a
M. Batzill, “The surface science of graphene: Metal interfaces, CVD synthesis, nanoribbons, chemical modifications, and defects”, Surf. Sci. Rep. 67(3–4), 83–115 (2012). http://dx.doi.org/10.1016/j.surfrep.2011.12.001
J. Campos-Delgado, Y. A. Kim, T. Hayashi, A. Morelos-Gomez, M. Hofmann, H. Muramatsu, M. Endo, H. Terrones, R. D. Shull, M. S. Dresselhaus and M. Terrones, “Thermal stability studies of CVD-grown graphene nanoribbons: Defect annealing and loop formation”, Chem. Phys. Lett. 469(1–3), 177–182 (2009). http://dx.doi.org/10.1016/j.cplett.2008.12.082
D. C. Elias, R. R. Nair, T. M. G. Mohiuddin, S. V. Morozov, P. Blake, M. P. Halsall, A. C. Ferrari, D. W. Boukhvalov, M. I. Katsnelson, A. K. Geim and K. S. Novoselov, “Control of graphene’s properties by reversible hydrogenation: evidence for graphane”, Science 323(5914), 610–613 (2009). http://dx.doi.org/10.1126/science.1167130
D. Teweldebrhan and A. A. Balandin, “Modification of graphene properties due to electron-beam irradiation”, Appl. Phys. Lett. 94(1), 013101 (2009). http://dx.doi.org/10.1063/1.3062851