The Effect of Fabrication Conditions for GDC Buffer Layer on Electrochemical Performance of Solid Oxide Fuel Cells
Corresponding Author: Hyung-Tae Lim
Nano-Micro Letters,
Vol. 5 No. 3 (2013), Article Number: 151-158
Abstract
A Gd-doped ceria (GDC) buffer layer is required between a conventional yttria-stabilized zirconia (YSZ) electrolyte and a La-Sr-Co-Fe-O3 (LSCF) cathode to prevent their chemical reaction. In this study, the effect of varying the conditions for fabricating the GDC buffer layer, such as sintering temperature and amount of sintering aid, on the solid oxide fuel cell (SOFC) performance was investigated. A finer GDC powder (i.e., ultra-high surface area), a higher sintering temperature (∼1290°C), and a larger amount of sintering aid (∼12%) resulted in improved densification of the buffer layer; however, the electrochemical performance of an anode-supported cell containing this GDC buffer layer was poor. These conflicting results are attributed to the formation of (Zr, Ce)O2 and/or excess cobalt grain boundaries (GBs) at higher sintering temperatures with a large amount of sintering aid (i.e., cobalt oxide). A cell comprising of a cobalt-free GDC buffer layer, which was fabricated using a low-temperature process, had lower cell resistance and higher stability. The results indicate that electrochemical performance and stability of SOFCs strongly depend on fabrication conditions for the GDC buffer layer.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J. P. P. Huijsmans, F. P. F Berkel and G. M. Christie, “Intermediate temperature SOFC-a promise for the 21st century”, J. Power Sources 71(1-0), 107–110 (1998). http://dx.doi.org/10.1016/S0378-7753(97)02789-4
- A. Mai, V. A. C. Haanappel, U. Uhlenbruck, F. Tietz and D. Stöver, “Ferrite-based perovskites as cathode materials for anode-supported solid oxide fuel cells: Part I. Variation of composition”, Solid State Ionics 176(15-16), 1341–1350 (2005). http://dx.doi.org/10.1016/j.ssi.2005.03.009
- Y. Teraoka, H. M. Zhang, K. Okamoto and N. Yamazoe, “Mixed ionic-electronic conductivity of La1−xSrxCo1−yFeyO3−δ perovskite-type oxides”, Mater. Res. Bull 23(1), 51–58 (1998). http://dx.doi.org/10.1016/0025-5408(88)90224-3
- S. P. Scott, D. Mantzavinos, A. Hartley, M. Sahibzada and I. S. Metcalfe, “Reactivity of LSCF perovskites”, Solid State Ionics 15–153, 777–781 (2002). http://dx.doi.org/10.1016/S0167-2738(02)00327-2
- A. Mai, M. Becker, W. Assenmacher, F. Tietz, D. Hathiramani, E. Ivers-Tiffee, D. Stover and W. Mader, “Time-dependent performance of mixed-conducting SOFC cathodes”, Solid State Ionics 177(19-25), 1965–1968 (2006). http://dx.doi.org/10.1016/j.ssi.2006.06.021
- H. Uchida, S. Arisaka and M. Watanabe, “High Performance Electrode for Medium-Temperature Solid Oxide Fuel Cells La(Sr)CoO3 Cathode with Ceria Interlayer on Zirconia Electrolyte”, Electrochem. Solid. St. 2(9), 428–430 (1999). http://dx.doi.org/10.1149/1.1390860
- H. L. Tuller and A. S. Nowick, “Doped ceria as a solid oxide electrolyte”, J. Electrochem. Soc. 122(2), 255- 259 (1979).http://dx.doi.org/10.1149/1.213419010.1149/1.1390860
- B. C. H. Steele, High conductivity solid ionic conductors. In: Takahashi, T. (Eds.), World Scientific, Singapore (1989).
- M. Mogensen, N. M. Sammes and G. A. Tompsett, “Physical, chemical and electrochemical properties of pure and doped ceria”, Solid State Ionics, 129(1-4), 63–94 (2000). http://dx.doi.org/10.1016/S0167-2738(99)00318-5
- A. Tsoga, A. Gupta, A. Naouidis and P. Nikolopoulos, “Gadolinia-doped ceria and yttria stabilized zirconia interfaces: regarding their application for SOFC technology”, Acta Materialia, 48(18-19), 4709–4714 (2000). http://dx.doi.org/10.1016/S1359-6454(00)00261-5
- V. Petrovsky, T. Suzuki, P. Jasinski and H. U. Anderson, “Low-Temperature Processed Anode for Solid Oxide Fuel Cells”, Electrochem. Solid. St. 8(7), A341–A343 (2005). http://dx.doi.org/10.1149/1.1928237
- V. Petrovsky, T. Suzuki, P. Jasinski, T. Petrovsky and H. U. Anderson, “Low-Temperature Processing of Thin-Film Electrolyte for Electrochemical Devices”, Electrochem. Solid. St. 7(6), A138–A139 (2004). http://dx.doi.org/10.1149/1.1697904
- Jung-Hoon Song, Sun-Il Park, Hwan Moon, Sang-Hoon Hyun, Seongjae Boo, Nigel M. Sammes and Ho-Sung Kim, “Fabrication and Characterization of Anode-Supported Planar Solid Oxide Fuel Cell Manufactured by a Tape Casting Process”, J. Fuel Cell Sci. Tech. 5(2), 021003–1 (2008). http://dx.doi.org/10.1115/1.2885401
- J.-H. Song, S.-I. Park, J.-H. Lee and H.-S. Kim, “Fabrication characteristics of an anode-supported thin-film electrolyte fabricated by the tape casting method for IT-SOFC”, J. Mater. Process. Tech. 198(1-3), 414–418 (2008). http://dx.doi.org/10.1016/j.jmatprotec.2007.07.030
- Y. M. Park, H. J. Lee, H. Y. Bae, J. S. Ahn and H. Kim, “Effect of anode thickness on impedance response of anode-supported solid oxide fuel cells”, Int. J. Hydrogen Energy 37(5), 4394–4400 (2012). http://dx.doi.org/10.1016/j.ijhydene.2011.11.152
- Z. Zhang, W. Sigle, M. Ruhle, E. Jud and L. J. Gauckler, “Microstructure characterization of a cobalt-oxide-doped cerium-gadolinium-oxide by analytical and high-resolution TEM”, Acta Materialia 55(8), 2907–2917 (2007). http://dx.doi.org/10.1016/j.actamat.2006.12.039
- T. L. Nguyen, K. Kobayashi, T. Honda, Y. Iimura, K. Kato, A. Neghisi, K. Nozaki, F. Tappero, K. Sasaki, H. Shirahama, K. Ota, M. Dokiya and T. Kato, “Preparation and evaluation of doped ceria interlayer on supported stabilized zirconia electrolyte SOFCs by wet ceramic processes”, Solid State Ionics 174(1-4), 163–174 (2004). http://dx.doi.org/10.1016/j.ssi.2004.06.017
- S. P. Simmer, M. D. Anderson and M. H. Engelhard, “Degradation Mechanisms of La-Sr-Co-Fe-O3 SOFC Cathodes”, Electrochem. Solid-State Lett. 9(10), A478–A481 (2006). http://dx.doi.org/10.1149/1.2266160
- H. Yokokawa, H. Tu, B. Iwanschitz and A. Mai, “Fundamental mechanism limiting solid oxide fuel cell durability”, J. Power Sources, 182(2), 400–412 (2008). http://dx.doi.org/10.1016/j.jpowsour.2008.02.016
References
J. P. P. Huijsmans, F. P. F Berkel and G. M. Christie, “Intermediate temperature SOFC-a promise for the 21st century”, J. Power Sources 71(1-0), 107–110 (1998). http://dx.doi.org/10.1016/S0378-7753(97)02789-4
A. Mai, V. A. C. Haanappel, U. Uhlenbruck, F. Tietz and D. Stöver, “Ferrite-based perovskites as cathode materials for anode-supported solid oxide fuel cells: Part I. Variation of composition”, Solid State Ionics 176(15-16), 1341–1350 (2005). http://dx.doi.org/10.1016/j.ssi.2005.03.009
Y. Teraoka, H. M. Zhang, K. Okamoto and N. Yamazoe, “Mixed ionic-electronic conductivity of La1−xSrxCo1−yFeyO3−δ perovskite-type oxides”, Mater. Res. Bull 23(1), 51–58 (1998). http://dx.doi.org/10.1016/0025-5408(88)90224-3
S. P. Scott, D. Mantzavinos, A. Hartley, M. Sahibzada and I. S. Metcalfe, “Reactivity of LSCF perovskites”, Solid State Ionics 15–153, 777–781 (2002). http://dx.doi.org/10.1016/S0167-2738(02)00327-2
A. Mai, M. Becker, W. Assenmacher, F. Tietz, D. Hathiramani, E. Ivers-Tiffee, D. Stover and W. Mader, “Time-dependent performance of mixed-conducting SOFC cathodes”, Solid State Ionics 177(19-25), 1965–1968 (2006). http://dx.doi.org/10.1016/j.ssi.2006.06.021
H. Uchida, S. Arisaka and M. Watanabe, “High Performance Electrode for Medium-Temperature Solid Oxide Fuel Cells La(Sr)CoO3 Cathode with Ceria Interlayer on Zirconia Electrolyte”, Electrochem. Solid. St. 2(9), 428–430 (1999). http://dx.doi.org/10.1149/1.1390860
H. L. Tuller and A. S. Nowick, “Doped ceria as a solid oxide electrolyte”, J. Electrochem. Soc. 122(2), 255- 259 (1979).http://dx.doi.org/10.1149/1.213419010.1149/1.1390860
B. C. H. Steele, High conductivity solid ionic conductors. In: Takahashi, T. (Eds.), World Scientific, Singapore (1989).
M. Mogensen, N. M. Sammes and G. A. Tompsett, “Physical, chemical and electrochemical properties of pure and doped ceria”, Solid State Ionics, 129(1-4), 63–94 (2000). http://dx.doi.org/10.1016/S0167-2738(99)00318-5
A. Tsoga, A. Gupta, A. Naouidis and P. Nikolopoulos, “Gadolinia-doped ceria and yttria stabilized zirconia interfaces: regarding their application for SOFC technology”, Acta Materialia, 48(18-19), 4709–4714 (2000). http://dx.doi.org/10.1016/S1359-6454(00)00261-5
V. Petrovsky, T. Suzuki, P. Jasinski and H. U. Anderson, “Low-Temperature Processed Anode for Solid Oxide Fuel Cells”, Electrochem. Solid. St. 8(7), A341–A343 (2005). http://dx.doi.org/10.1149/1.1928237
V. Petrovsky, T. Suzuki, P. Jasinski, T. Petrovsky and H. U. Anderson, “Low-Temperature Processing of Thin-Film Electrolyte for Electrochemical Devices”, Electrochem. Solid. St. 7(6), A138–A139 (2004). http://dx.doi.org/10.1149/1.1697904
Jung-Hoon Song, Sun-Il Park, Hwan Moon, Sang-Hoon Hyun, Seongjae Boo, Nigel M. Sammes and Ho-Sung Kim, “Fabrication and Characterization of Anode-Supported Planar Solid Oxide Fuel Cell Manufactured by a Tape Casting Process”, J. Fuel Cell Sci. Tech. 5(2), 021003–1 (2008). http://dx.doi.org/10.1115/1.2885401
J.-H. Song, S.-I. Park, J.-H. Lee and H.-S. Kim, “Fabrication characteristics of an anode-supported thin-film electrolyte fabricated by the tape casting method for IT-SOFC”, J. Mater. Process. Tech. 198(1-3), 414–418 (2008). http://dx.doi.org/10.1016/j.jmatprotec.2007.07.030
Y. M. Park, H. J. Lee, H. Y. Bae, J. S. Ahn and H. Kim, “Effect of anode thickness on impedance response of anode-supported solid oxide fuel cells”, Int. J. Hydrogen Energy 37(5), 4394–4400 (2012). http://dx.doi.org/10.1016/j.ijhydene.2011.11.152
Z. Zhang, W. Sigle, M. Ruhle, E. Jud and L. J. Gauckler, “Microstructure characterization of a cobalt-oxide-doped cerium-gadolinium-oxide by analytical and high-resolution TEM”, Acta Materialia 55(8), 2907–2917 (2007). http://dx.doi.org/10.1016/j.actamat.2006.12.039
T. L. Nguyen, K. Kobayashi, T. Honda, Y. Iimura, K. Kato, A. Neghisi, K. Nozaki, F. Tappero, K. Sasaki, H. Shirahama, K. Ota, M. Dokiya and T. Kato, “Preparation and evaluation of doped ceria interlayer on supported stabilized zirconia electrolyte SOFCs by wet ceramic processes”, Solid State Ionics 174(1-4), 163–174 (2004). http://dx.doi.org/10.1016/j.ssi.2004.06.017
S. P. Simmer, M. D. Anderson and M. H. Engelhard, “Degradation Mechanisms of La-Sr-Co-Fe-O3 SOFC Cathodes”, Electrochem. Solid-State Lett. 9(10), A478–A481 (2006). http://dx.doi.org/10.1149/1.2266160
H. Yokokawa, H. Tu, B. Iwanschitz and A. Mai, “Fundamental mechanism limiting solid oxide fuel cell durability”, J. Power Sources, 182(2), 400–412 (2008). http://dx.doi.org/10.1016/j.jpowsour.2008.02.016