Enhanced Photocatalytic Activity of ZnO/CuO Nanocomposites Synthesized by Hydrothermal Method
Corresponding Author: Zijiong Li
Nano-Micro Letters,
Vol. 5 No. 3 (2013), Article Number: 163-168
Abstract
In this paper, we have demonstrated a facile and low-cost synthesis of the ZnO/CuO nanocomposites by two-step hydrothermal methods. The photocatalytic properties of the as-synthesized ZnO/CuO nanocomposites have been evaluated by the photodegradation of methylene blue (MB) and methyleneorange (MO) under UV irradiation. Experimental results show that MB and MO can be degraded completely within 15 and 25 min by the ZnO/CuO nanocomposites and its photodegradation rate is 6 times faster than that of pure ZnO. This enhanced photocatalytic activity can be ascribed to the low recombination probability of photo-induced carriers due to the efficient charge transfer in the nanocomposites. The as-synthesized ZnO/CuO nanocomposite may be a promising candidate for dye photodegradation of wastewaters.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- C. G. Tian, Q. Zhang, A. P. Wu, M. J. Jiang, Z. L. Liang, B. J. Jiang and H. G. Fu, “Cost-effective large-scale synthesis of ZnO photocatalyst with excellent performance for dye photodegradation”, Chem. Commun. 48(23), 2858–2860 (2012). http://dx.doi.org/10.1039/c2cc16434e
- Y. J. Jang, C. Simer and T. Ohm, “Comparison of zinc oxide nanoparticles and its nano-crystalline particles on the photocatalytic degradation of methylene blue”, Mater. Res. Bull. 41(1), 67–77 (2006). http://dx.doi.org/10.1016/j.materresbull.2005.07.038
- J. Kaur, S. Bansal and S. Singha, “Photocatalytic degradation of methyl orange using ZnO nanopowders synthesized via thermal decomposition of oxalate precursor method”, Physica B 416, 33–38 (2013). http://dx.doi.org/10.1016/j.physb.2013.02.005
- R. Kumar, Girish Kumar and A. Umar, “ZnO nano-mushrooms for photocatalytic degradation of methyl orange”, Mater. Lett. 97, 100–103 (2013). http://dx.doi.org/10.1016/j.matlet.2013.01.044
- D. Lutic, C. Coromelci-Pastravanu, I. Cretescu, I. Poulios and C. D. Stan, “Photocatalytic treatment of Rhodamine 6G in wastewater using photoactive ZnO”, Inter. J. Photoenergy 2012, 47513–8 (2012). http://dx.doi.org/10.1155/2012/475131
- J. G. Yu and X. X. Yu, “Hydrothermal synthesis and photocatalytic activity of zinc oxide hollow spheres”, Environ. Sci. Technol. 42 (13), 4902–4907 (2008). http://dx.doi.org/10.1021/es800036n
- Y. X. Wang, X. Y. Li, N. Wang, X. Quan and Y. Y. Chen, “Controllable synthesis of ZnO nanoflowers and their morphology-dependent photocatalytic activities”, Sep. Purif. Technol. 62(3), 727–732 (2008). http://dx.doi.org/10.1016/j.seppur.2008.03.035
- Y. X. Wang, Y. Li, G. Lu, G. H. Chen and Y. Y. Chen, “Synthesis and photo-catalytic degradation property of nanostructured-ZnO with different morphology”, Mater. Lett. 62(15), 2359–2362 (2008). http://dx.doi.org/10.1016/j.matlet.2007.12.019
- R. Georgekutty, M. K. Seery and S. C. Pillai, “A highly efficient Ag-ZnO photocatalyst: synthesis, properties, and mechanism”, J. Phys. Chem. C 112(35), 13563–13570 (2008). http://dx.doi.org/10.1021/jp802729a
- P. Pawinrat, O. Mekasuwandumrong and J. Panpranot, “Synthesis of Au-ZnO and Pt-ZnO nanocomposites by one-step flame spray pyrolysis and its application for photocatalytic degradation of dyes”, Catal. Commun. 10(10), 1380–1385 (2009). http://dx.doi.org/10.1016/j.catcom.2009.03.002
- Z. Y. Zhan, L. X. Zheng, Y. Z. Pan, G. Z. Sun and L. Li, “Self-powered, visible-light photodetector based on thermally reduced graphene oxide-ZnO (rGO-ZnO) hybrid nanostructure”, J. Mater. Chem. 22, 2589–2595 (2012). http://dx.doi.org/10.1039/c1jm13920g
- T. A. Saleh, M. A. Gondal and Q. A. Drmosh, “Preparation of a MWCNT/ZnO nanocomposite and its photocatalytic activity for the removal of cyanide from water using a laser”, Nanotechnology 21(49), 495705–8 (2010). http://dx.doi.org/10.1088/0957-4484/21/49/495705
- B. J. Li and H. Q. Cao, “ZnO@graphene composite with enhanced performance for the removal of dye from water”, J. Mater. Chem. 21, 3346–3349 (2011). http://dx.doi.org/10.1039/c0jm03253k
- T. Xu, L. Zhang, H. Cheng and Y. F. Zhu, “Significantly enhanced photocatalytic performance of ZnO via graphene hybridization and the mechanism study”, Appl. Catal. B: Environmental 101(3), 382–387 (2011). http://dx.doi.org/10.1016/j.apcatb.2010.10.007
- C. Zhang, L. W. Yin, L. Y. Zhang, Y. X. Qi and N. Lun, “Preparation and photocatalytic activity of hollow ZnO and ZnO-CuO composite spheres”, Mater. Lett. 67(1), 303–307 (2012). http://dx.doi.org/10.1016/j.matlet.2011.09.073
- A. Wei, L. Xiong, L. Sun, Y. J. Liu and W. W. Li, “CuO nanoparticle modified ZnO nanorods with improved photocatalytic activity”, Chin. Phys. Lett. 30(4), 046202–5(2013). http://dx.doi.org/10.1088/0256-307X/30/4/046202
- C. Wang, X. M. Wang, B. Q. Xu, J. C. Zhao, B. X. Mai, P. A. Peng, G. Y. Sheng and J. M. Fu, “Enhanced photocatalytic performance of nanosized coupled ZnO/SnO2 photocatalysts for methyl orange degradation”, J. Photochem. Photobio. A: Chem. 168(1), 47–52 (2004). http://dx.doi.org/10.1016/j.jphotochem.2004.05.014
- G. Li, N. M. Dimitrijevic, L. Chen, T. Rajh and K. A. Gray, “Role of surface/interfacial Cu2+ sites in the photocatalytic activity of coupled CuO-TiO2 nanocomposites”, J. Phys. Chem. C 112, 19040–19044 (2008).
- Z. L. Liu, J. C. Deng, J. J. Deng and F. F. Li, “Fabrication and photocatalysis of CuO/ZnO nano-composites via a new method”, Mater. Sci. Eng. B 150, 99–104 (2008). http://dx.doi.org/10.1016/j.mseb.2008.04.002
- B. X. Li and Y. F. Wang, “Facile synthesis and photocatalytic activity of ZnO-CuO nanocomposite”, Superlattice. Microst. 47, 615–623 (2010). http://dx.doi.org/10.1016/j.spmi.2010.02.005
- J. Wang, X. M. Fana, D. Z. Wu, J. Dai, H. Liu, H. R. Liu and Z. W. Zhou, “Fabrication of CuO/T-ZnOw nanocomposites using photo-deposition and their photocatalytic property”, Appl. Surf. Sci. 258, 1797–1805 (2011). http://dx.doi.org/10.1016/j.apsusc.2011.10.048
- K. G. Chandrappa and Thimmappa V. Venkatesha, “Electrochemical synthesis and photo-catalytic property of zinc oxide nanoparticles”, Nano-Micro Lett. 4(1), 14–24 (2012). http://dx.doi.org/10.3786/nml.v4i1.p14-24
- J. G. Yu, Y. Hai and M. Jaroniec, “Photocatalytic hydrogen production over CuO-modified titania”, J. Colloid Interf. Sci. 357(1), 223–228 (2011). http://dx.doi.org/10.1016/j.jcis.2011.01.101
- S. Jung and K. Yong, “Fabrication of CuO-ZnO nanowires on a stainless steel mesh for highly efficient photocatalytic applications”, Chem. Commun. 47, 2643–2645 (2011). http://dx.doi.org/10.1039/c0cc04985a
- Z. G. Liu, H. W. Bai and D. D. Sun, “Hierarchical CuO/ZnO membranes for environmental applications under the irradiation of visible light”, Inter. J. Photoenergy 2012, 804840–11 (2012). http://dx.doi.org/10.1155/2012/804840
- Q. J. Xiang, J. G. Yu and P. K. Wong, “Quantitative characterization of hydroxyl radicals produced by various photocatalysts”, J. Colloid Interf. Sci. 357(1), 163–167 (2011). http://dx.doi.org/10.1016/j.jcis.2011.01.093
References
C. G. Tian, Q. Zhang, A. P. Wu, M. J. Jiang, Z. L. Liang, B. J. Jiang and H. G. Fu, “Cost-effective large-scale synthesis of ZnO photocatalyst with excellent performance for dye photodegradation”, Chem. Commun. 48(23), 2858–2860 (2012). http://dx.doi.org/10.1039/c2cc16434e
Y. J. Jang, C. Simer and T. Ohm, “Comparison of zinc oxide nanoparticles and its nano-crystalline particles on the photocatalytic degradation of methylene blue”, Mater. Res. Bull. 41(1), 67–77 (2006). http://dx.doi.org/10.1016/j.materresbull.2005.07.038
J. Kaur, S. Bansal and S. Singha, “Photocatalytic degradation of methyl orange using ZnO nanopowders synthesized via thermal decomposition of oxalate precursor method”, Physica B 416, 33–38 (2013). http://dx.doi.org/10.1016/j.physb.2013.02.005
R. Kumar, Girish Kumar and A. Umar, “ZnO nano-mushrooms for photocatalytic degradation of methyl orange”, Mater. Lett. 97, 100–103 (2013). http://dx.doi.org/10.1016/j.matlet.2013.01.044
D. Lutic, C. Coromelci-Pastravanu, I. Cretescu, I. Poulios and C. D. Stan, “Photocatalytic treatment of Rhodamine 6G in wastewater using photoactive ZnO”, Inter. J. Photoenergy 2012, 47513–8 (2012). http://dx.doi.org/10.1155/2012/475131
J. G. Yu and X. X. Yu, “Hydrothermal synthesis and photocatalytic activity of zinc oxide hollow spheres”, Environ. Sci. Technol. 42 (13), 4902–4907 (2008). http://dx.doi.org/10.1021/es800036n
Y. X. Wang, X. Y. Li, N. Wang, X. Quan and Y. Y. Chen, “Controllable synthesis of ZnO nanoflowers and their morphology-dependent photocatalytic activities”, Sep. Purif. Technol. 62(3), 727–732 (2008). http://dx.doi.org/10.1016/j.seppur.2008.03.035
Y. X. Wang, Y. Li, G. Lu, G. H. Chen and Y. Y. Chen, “Synthesis and photo-catalytic degradation property of nanostructured-ZnO with different morphology”, Mater. Lett. 62(15), 2359–2362 (2008). http://dx.doi.org/10.1016/j.matlet.2007.12.019
R. Georgekutty, M. K. Seery and S. C. Pillai, “A highly efficient Ag-ZnO photocatalyst: synthesis, properties, and mechanism”, J. Phys. Chem. C 112(35), 13563–13570 (2008). http://dx.doi.org/10.1021/jp802729a
P. Pawinrat, O. Mekasuwandumrong and J. Panpranot, “Synthesis of Au-ZnO and Pt-ZnO nanocomposites by one-step flame spray pyrolysis and its application for photocatalytic degradation of dyes”, Catal. Commun. 10(10), 1380–1385 (2009). http://dx.doi.org/10.1016/j.catcom.2009.03.002
Z. Y. Zhan, L. X. Zheng, Y. Z. Pan, G. Z. Sun and L. Li, “Self-powered, visible-light photodetector based on thermally reduced graphene oxide-ZnO (rGO-ZnO) hybrid nanostructure”, J. Mater. Chem. 22, 2589–2595 (2012). http://dx.doi.org/10.1039/c1jm13920g
T. A. Saleh, M. A. Gondal and Q. A. Drmosh, “Preparation of a MWCNT/ZnO nanocomposite and its photocatalytic activity for the removal of cyanide from water using a laser”, Nanotechnology 21(49), 495705–8 (2010). http://dx.doi.org/10.1088/0957-4484/21/49/495705
B. J. Li and H. Q. Cao, “ZnO@graphene composite with enhanced performance for the removal of dye from water”, J. Mater. Chem. 21, 3346–3349 (2011). http://dx.doi.org/10.1039/c0jm03253k
T. Xu, L. Zhang, H. Cheng and Y. F. Zhu, “Significantly enhanced photocatalytic performance of ZnO via graphene hybridization and the mechanism study”, Appl. Catal. B: Environmental 101(3), 382–387 (2011). http://dx.doi.org/10.1016/j.apcatb.2010.10.007
C. Zhang, L. W. Yin, L. Y. Zhang, Y. X. Qi and N. Lun, “Preparation and photocatalytic activity of hollow ZnO and ZnO-CuO composite spheres”, Mater. Lett. 67(1), 303–307 (2012). http://dx.doi.org/10.1016/j.matlet.2011.09.073
A. Wei, L. Xiong, L. Sun, Y. J. Liu and W. W. Li, “CuO nanoparticle modified ZnO nanorods with improved photocatalytic activity”, Chin. Phys. Lett. 30(4), 046202–5(2013). http://dx.doi.org/10.1088/0256-307X/30/4/046202
C. Wang, X. M. Wang, B. Q. Xu, J. C. Zhao, B. X. Mai, P. A. Peng, G. Y. Sheng and J. M. Fu, “Enhanced photocatalytic performance of nanosized coupled ZnO/SnO2 photocatalysts for methyl orange degradation”, J. Photochem. Photobio. A: Chem. 168(1), 47–52 (2004). http://dx.doi.org/10.1016/j.jphotochem.2004.05.014
G. Li, N. M. Dimitrijevic, L. Chen, T. Rajh and K. A. Gray, “Role of surface/interfacial Cu2+ sites in the photocatalytic activity of coupled CuO-TiO2 nanocomposites”, J. Phys. Chem. C 112, 19040–19044 (2008).
Z. L. Liu, J. C. Deng, J. J. Deng and F. F. Li, “Fabrication and photocatalysis of CuO/ZnO nano-composites via a new method”, Mater. Sci. Eng. B 150, 99–104 (2008). http://dx.doi.org/10.1016/j.mseb.2008.04.002
B. X. Li and Y. F. Wang, “Facile synthesis and photocatalytic activity of ZnO-CuO nanocomposite”, Superlattice. Microst. 47, 615–623 (2010). http://dx.doi.org/10.1016/j.spmi.2010.02.005
J. Wang, X. M. Fana, D. Z. Wu, J. Dai, H. Liu, H. R. Liu and Z. W. Zhou, “Fabrication of CuO/T-ZnOw nanocomposites using photo-deposition and their photocatalytic property”, Appl. Surf. Sci. 258, 1797–1805 (2011). http://dx.doi.org/10.1016/j.apsusc.2011.10.048
K. G. Chandrappa and Thimmappa V. Venkatesha, “Electrochemical synthesis and photo-catalytic property of zinc oxide nanoparticles”, Nano-Micro Lett. 4(1), 14–24 (2012). http://dx.doi.org/10.3786/nml.v4i1.p14-24
J. G. Yu, Y. Hai and M. Jaroniec, “Photocatalytic hydrogen production over CuO-modified titania”, J. Colloid Interf. Sci. 357(1), 223–228 (2011). http://dx.doi.org/10.1016/j.jcis.2011.01.101
S. Jung and K. Yong, “Fabrication of CuO-ZnO nanowires on a stainless steel mesh for highly efficient photocatalytic applications”, Chem. Commun. 47, 2643–2645 (2011). http://dx.doi.org/10.1039/c0cc04985a
Z. G. Liu, H. W. Bai and D. D. Sun, “Hierarchical CuO/ZnO membranes for environmental applications under the irradiation of visible light”, Inter. J. Photoenergy 2012, 804840–11 (2012). http://dx.doi.org/10.1155/2012/804840
Q. J. Xiang, J. G. Yu and P. K. Wong, “Quantitative characterization of hydroxyl radicals produced by various photocatalysts”, J. Colloid Interf. Sci. 357(1), 163–167 (2011). http://dx.doi.org/10.1016/j.jcis.2011.01.093