Synthesis and Characterization of Rare Earth Ion Doped Nano ZnO
Corresponding Author: Rita John
Nano-Micro Letters,
Vol. 4 No. 2 (2012), Article Number: 65-72
Abstract
Zinc oxide (ZnO) doped with erbium at different concentrations was synthesized by solid-state reaction method and characterized by X-ray diffraction (XRD), scanning electron microscopic (SEM), UV-absorption spectroscopy, photoluminescence (PL) study and vibrating sample magnetometer. The XRD studies exhibit the presence of wurtzite crystal structure similar to the parent compound ZnO in 1% Er3+ doped ZnO, suggesting that doped Er3+ ions sit at the regular Zn2+ sites. However, same studies spread over the samples with Er3+ content>1% reveals the occurrence of secondary phase. SEM images of 1% Er3+ doped ZnO show the polycrystalline nature of the synthesized sample. UV-visible absorption spectrum of Er3+ doped ZnO nanocrystals shows a strong absorption peak at 388 nm due to ZnO band to band transition. The PL study exhibits emission in the visible region, due to excitonic as well as defect related transitions. The magnetization-field curve of Er3+ doped ZnO nanocrystals showed ferromagnetic property at room-temperature.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- V. I. Klimov, S. A. Ivanov, J. Nanda, M. Achermann, I. Bezel, J. A. McGuire and A. Piryatinski, Nature 447, 441 (2007). http://dx.doi.org/10.1038/nature05839
- X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir and S. Weiss, Science 307, 538 (2005). http://dx.doi.org/10.1126/science.1104274
- I. Gur, N. A. Fromer, M. L. Geier and A. P. Alivisatos, Science 310, 462 (2005). http://dx.doi.org/10.1126/science.1117908
- P. Alivisatos, Science 271, 933 (1996). http://dx.doi.org/10.1126/science.271.5251.933
- A. I. Ekinov, I. A. Kudryavtsev, M. G Ivanor and A. L. Efros, J. Lumi. 46, 83 (1990).
- N. Rakov, F. E. Ramos, G. Hirata and M. Xiao, Appl. Phys. Lett. 83, 272 (2003). http://dx.doi.org/10.1063/1.1592636
- H. Ishizumi and Y. Kanemitsu, Appl. Phys. Lett. 86, 253106 (2005). http://dx.doi.org/10.1063/1.1952576
- R. John, F. S. Sasi, R. Rajaram and T. Endo, J. Ceram. Soc. 118, 329 (2010). http://dx.doi.org/10.2109/jcersj2.118.329
- C. Ting, S. Chen, W. Hsich and H. Lee, J. Appl. Phys. 90, 5564 (2001). http://dx.doi.org/10.1063/1.1413490
- P. C. Becker, N. A. Olison and J. R. Simpson, Erbium doped fiber amplifiers fundamental and technology, Harcourt Brace & Company, London, 1999.
- A. Polman, J. Appl. Phys. 82, 1 (1997). http://dx.doi.org/10.1063/1.366265
- B. Julian, R. Corberan, E. Cordoncillo, P. Esoribano, B. Viana and C. Sanchez, Nanotechnol. 16, 2707 (2005). http://dx.doi.org/10.1088/0957-4484/16/11/040
- C. Falcony, A. Ortiz, M. Garcia and J. S. Helman, J. Appl. Phys. 63, 2378 (1988). http://dx.doi.org/10.1063/1.341055
- A. Ortiz, C. Falcony, M. Garcia and A. Sanchez, J. Phys. D 20, 670 (1987). http://dx.doi.org/10.1088/0022-3727/20/5/019
- D. V. Voort, A. Imbof and G. J. Blasse, Solid State Chem. 96, 311 (1992). http://dx.doi.org/10.1016/S0022-4596(05)80264-6
- F. Gu, S. F. Wang, M. K. Lu, G. J. Zhou, D. Xu and D. R. Yuan, Langmuir, 20, 3528 (2004). http://dx.doi.org/10.1021/la049874f
- R. Garcia, G. A. Hirata and J. Mckittick, J. Mater. Res. 16, 1059 (2001). http://dx.doi.org/10.1557/JMR.2001.0147
- G. K. Williamson and W. H. Hall, Acta Metall. 1, 22 (1953). http://dx.doi.org/10.1016/0001-6160(53)90006-6
- K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant and J. A. Voigt, J. Appl. Phys. 79, 7983 (1996). http://dx.doi.org/10.1063/1.362349
- A. Zunger, S. Lany and S. Raebige, Physics 3, 53 (2010). http://dx.doi.org/10.1103/Physics.3.53
- R. Nascimento, A. J. A. de Oliveira, A. A. Correa, L. O. Bulhoes, E. C. Pereira, V. M. Souza and L. Walmsley, Phys. Rev. B 67, 144422 (2003). http://dx.doi.org/10.1103/PhysRevB.67.144422
- F. R. de Paula, L. Walmsley, E. C. Pereira and A. J. A. Oliveira, J. Magn. Magn. Mater. 320, e193 (2008). http://dx.doi.org/10.1016/j.jmmm.2008.02.045
- D. Gao, Z. Zhang, J. Fu, Y. Xu, J. Qi and D. Xue, Appl. Phys. 105, 113928 (2009).
- S. Deng, K. P. Loh, J. B. Yi, J. Ding, H. R. Tan, M. Lin, Y. L. Foo, M. Zheng and C. H. Sow, Appl. Phys. Lett. 93, 193111 (2009). http://dx.doi.org/10.1063/1.3025853
- O. V. Yazyev, Rep. Prog. Phys. 73, 056501 (2010). http://dx.doi.org/10.1088/0034-4885/73/5/056501
- A. Sundaresan and C. N. Rao, Sol. Sta. Comm. 149, 1197 (2009). http://dx.doi.org/10.1016/j.ssc.2009.04.028
- A. Sundaresan, R. Bhargavi, N. Rangarajan, U. Siddesh and C. N. Rao, Phys. Rev. B 74, 161306(R) (2006).
References
V. I. Klimov, S. A. Ivanov, J. Nanda, M. Achermann, I. Bezel, J. A. McGuire and A. Piryatinski, Nature 447, 441 (2007). http://dx.doi.org/10.1038/nature05839
X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir and S. Weiss, Science 307, 538 (2005). http://dx.doi.org/10.1126/science.1104274
I. Gur, N. A. Fromer, M. L. Geier and A. P. Alivisatos, Science 310, 462 (2005). http://dx.doi.org/10.1126/science.1117908
P. Alivisatos, Science 271, 933 (1996). http://dx.doi.org/10.1126/science.271.5251.933
A. I. Ekinov, I. A. Kudryavtsev, M. G Ivanor and A. L. Efros, J. Lumi. 46, 83 (1990).
N. Rakov, F. E. Ramos, G. Hirata and M. Xiao, Appl. Phys. Lett. 83, 272 (2003). http://dx.doi.org/10.1063/1.1592636
H. Ishizumi and Y. Kanemitsu, Appl. Phys. Lett. 86, 253106 (2005). http://dx.doi.org/10.1063/1.1952576
R. John, F. S. Sasi, R. Rajaram and T. Endo, J. Ceram. Soc. 118, 329 (2010). http://dx.doi.org/10.2109/jcersj2.118.329
C. Ting, S. Chen, W. Hsich and H. Lee, J. Appl. Phys. 90, 5564 (2001). http://dx.doi.org/10.1063/1.1413490
P. C. Becker, N. A. Olison and J. R. Simpson, Erbium doped fiber amplifiers fundamental and technology, Harcourt Brace & Company, London, 1999.
A. Polman, J. Appl. Phys. 82, 1 (1997). http://dx.doi.org/10.1063/1.366265
B. Julian, R. Corberan, E. Cordoncillo, P. Esoribano, B. Viana and C. Sanchez, Nanotechnol. 16, 2707 (2005). http://dx.doi.org/10.1088/0957-4484/16/11/040
C. Falcony, A. Ortiz, M. Garcia and J. S. Helman, J. Appl. Phys. 63, 2378 (1988). http://dx.doi.org/10.1063/1.341055
A. Ortiz, C. Falcony, M. Garcia and A. Sanchez, J. Phys. D 20, 670 (1987). http://dx.doi.org/10.1088/0022-3727/20/5/019
D. V. Voort, A. Imbof and G. J. Blasse, Solid State Chem. 96, 311 (1992). http://dx.doi.org/10.1016/S0022-4596(05)80264-6
F. Gu, S. F. Wang, M. K. Lu, G. J. Zhou, D. Xu and D. R. Yuan, Langmuir, 20, 3528 (2004). http://dx.doi.org/10.1021/la049874f
R. Garcia, G. A. Hirata and J. Mckittick, J. Mater. Res. 16, 1059 (2001). http://dx.doi.org/10.1557/JMR.2001.0147
G. K. Williamson and W. H. Hall, Acta Metall. 1, 22 (1953). http://dx.doi.org/10.1016/0001-6160(53)90006-6
K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant and J. A. Voigt, J. Appl. Phys. 79, 7983 (1996). http://dx.doi.org/10.1063/1.362349
A. Zunger, S. Lany and S. Raebige, Physics 3, 53 (2010). http://dx.doi.org/10.1103/Physics.3.53
R. Nascimento, A. J. A. de Oliveira, A. A. Correa, L. O. Bulhoes, E. C. Pereira, V. M. Souza and L. Walmsley, Phys. Rev. B 67, 144422 (2003). http://dx.doi.org/10.1103/PhysRevB.67.144422
F. R. de Paula, L. Walmsley, E. C. Pereira and A. J. A. Oliveira, J. Magn. Magn. Mater. 320, e193 (2008). http://dx.doi.org/10.1016/j.jmmm.2008.02.045
D. Gao, Z. Zhang, J. Fu, Y. Xu, J. Qi and D. Xue, Appl. Phys. 105, 113928 (2009).
S. Deng, K. P. Loh, J. B. Yi, J. Ding, H. R. Tan, M. Lin, Y. L. Foo, M. Zheng and C. H. Sow, Appl. Phys. Lett. 93, 193111 (2009). http://dx.doi.org/10.1063/1.3025853
O. V. Yazyev, Rep. Prog. Phys. 73, 056501 (2010). http://dx.doi.org/10.1088/0034-4885/73/5/056501
A. Sundaresan and C. N. Rao, Sol. Sta. Comm. 149, 1197 (2009). http://dx.doi.org/10.1016/j.ssc.2009.04.028
A. Sundaresan, R. Bhargavi, N. Rangarajan, U. Siddesh and C. N. Rao, Phys. Rev. B 74, 161306(R) (2006).