Controllable Hydrothermal Synthesis and Properties of ZnO Hierarchical Micro/Nanostructures
Corresponding Author: Yangang Sun
Nano-Micro Letters,
Vol. 4 No. 2 (2012), Article Number: 98-102
Abstract
A simple hydrothermal route has been developed for the fabricating ZnO hierarchical micro/nanostructure with excellent reproducibility. SEM and TEM analysis show that the hierarchical rod is a single-crystal, suggesting that many single-crystal micro/nanorods are assembled into ZnO hierarchical micro/nanostructures. The morphologies of the hierarchical rods can be conveniently tailored by changing the reaction parameters. And we also found citric acid plays a crucial role in the formation process of ZnO micro/nanostructures. Room-temperature photoluminescence spectra reveals that the ZnO hierarchical micro/nanostructures have a strong emission peak at 440 nm and several weak emission peaks at 420, 471 and 541 nm, respectively.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Z. L. Wang, Mater. Today. 7, 26 (2004). http://dx.doi.org/10.1016/S1369-7021(04)00286-X
- J. S. Na, B. Gong, G. Scarel and G. N. Parsons, ACS Nano.3, 319 (2009). http://dx.doi.org/10.1021/nn900702e
- M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo and P. Yang, Science 292, 1897 (2009). http://dx.doi.org/10.1126/science.1060367
- G. Boschloo, T. Edvinsson and A. Hagfeldt, in Nanos-tructured Materials for Solar Energy Conversion, (Ed. T. Soga), Elsevier, 227 (2009).
- W. I. Park and G. C. Yi, Adv. Mater. 16, 87 (2004). http://dx.doi.org/10.1002/adma.200305729
- Y. K. Tseng, C. J. Huang, H. M. Cheng, I. N. Lin, K. S. Liu and I. C. Chen, Adv. Funct. Mater. 13, 811 (2003). http://dx.doi.org/10.1002/adfm.200304434
- M. Law, L. Greene, J. C. Johnson, R. Saykally, and P. Yang, Nat. Mater. 4, 455 (2005). http://dx.doi.org/10.1038/nmat1387
- X. F. Gao and L. Jiang, Nature. 432, 36 (2004). http://dx.doi.org/10.1038/432036a
- L. Shi, Y. M. Xu, S. K. Hark, Y. Liu, S. Wang, L. M. Peng, K. W. Wong and Q. Li, Nano Lett. 7, 3559 (2007). http://dx.doi.org/10.1021/nl0707959
- M. Shang, W. Z. Wang, W. Z. Yin, J. Ren, S. M. Sun and L. Zhang, Chem. Eur. J. 16, 11412 (2010). http://dx.doi.org/10.1002/chem.201000639
- X. W. Lou, L. A. Archer and Z. Yang, Adv. Mater. 20, 3987 (2008). http://dx.doi.org/10.1002/adma.200800854
- J. Elias, C. Lévy-Clément, M. Bechelany, J. Michler, G. Y. Wang, Z. Wang and L. Philippe, Adv. Mater. 22, 1607 (2010). http://dx.doi.org/10.1002/adma.200903098
- Y. G. Sun, J. Q. Hu, N. Wang, R. J. Zou, J. H. Wu, Y. L. Song, H. H. Chen, H. H. Chen and Z. G. Chen, New J. Chem. 34, 732 (2010). http://dx.doi.org/10.1039/b9nj00708c
- L. P. Xu, Y. L. Hu, C. Pelligra, C. H. Chen, L. Jin, H. Huang, S. Sithambaram, M. Aindow, R. Joesten and S. L. Suib, Chem. Mater. 21, 2875 (2009). http://dx.doi.org/10.1021/cm900608d
- A. Umar, S. Lee, Y. H. Im and Y. B. Hahn, Nanotechnology. 16, 2462 (2005). http://dx.doi.org/10.1088/0957-4484/16/10/079
- N. S. Ramgir, I. S. Mulla and V. K. Pillai, J. Phys. Chem. B, 110, 3995 (2006). http://dx.doi.org/10.1021/jp056629b
- S. Jung, E. Oh, K. Lee, Y. Yang, C. G. Park, W. Park and S. Jeong, Crystal Growth & Design. 8, 265 (2008). http://dx.doi.org/10.1021/cg070296l
- J. Zhang, L. Sun, J. Yin, H. Su, C. Liao and C. Yan, Chem. Mater. 14, 4172 (2002). http://dx.doi.org/10.1021/cm020077h
- U. Choppali and B. P. Gorman, J. Am. Ceram. Soc. 90, 433 (2007). http://dx.doi.org/10.1111/j.1551-2916.2006.01437.x
- Y. J. Kim, J. Y. Yoo, B. H. Kwon, Y. J. Hong, C. H. Lee and G. C. Yi, Nanotechnology. 19, 315202 (2008). http://dx.doi.org/10.1088/0957-4484/19/31/315202
- J. F. Banfield, S. A. Welch, H. Z. Zhang, T. T. Ebert and R. L. Penn, Science 289, 751 (2000). http://dx.doi.org/10.1126/science.289.5480.751
- X. Liao and X. Zhang, J. Phys. Chem. C. 111, 9081 (2007). http://dx.doi.org/10.1021/jp0663208
- Z. Wang, X. F. Qian, J. Yin and Z. K. Zhu, Langmuir. 20, 3441 (2004). http://dx.doi.org/10.1021/la036098n
- J. Zhanghttp://dx.doi.org/10.1021/cm020077h
- B. M. Wen, Y. Z. Huang and J. J. Boland, J. Phys. Chem. C. 112, 106 (2008). http://dx.doi.org/10.1021/jp076789i
- E. M. Wong and P. C. Searson, Appl. Phys. Lett. 74, 2939 (1999). http://dx.doi.org/10.1063/1.123972
- A. B. Djurisilfnd Y. H. Leung, Small. 2, 944 (2006). http://dx.doi.org/10.1002/smll.200600134
- B. J. Jin, S. H. Bae, S. Y. Lee and S. Im, Mater. Sci. Eng. B. 71, 301 (2000). http://dx.doi.org/10.1016/S0921-5107(99)00395-5
- Y. Li, G. S. Cheng and L. D. Zhang, J. Mater. Res. 15, 2305 (2000). http://dx.doi.org/10.1557/JMR.2000.0331
References
Z. L. Wang, Mater. Today. 7, 26 (2004). http://dx.doi.org/10.1016/S1369-7021(04)00286-X
J. S. Na, B. Gong, G. Scarel and G. N. Parsons, ACS Nano.3, 319 (2009). http://dx.doi.org/10.1021/nn900702e
M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo and P. Yang, Science 292, 1897 (2009). http://dx.doi.org/10.1126/science.1060367
G. Boschloo, T. Edvinsson and A. Hagfeldt, in Nanos-tructured Materials for Solar Energy Conversion, (Ed. T. Soga), Elsevier, 227 (2009).
W. I. Park and G. C. Yi, Adv. Mater. 16, 87 (2004). http://dx.doi.org/10.1002/adma.200305729
Y. K. Tseng, C. J. Huang, H. M. Cheng, I. N. Lin, K. S. Liu and I. C. Chen, Adv. Funct. Mater. 13, 811 (2003). http://dx.doi.org/10.1002/adfm.200304434
M. Law, L. Greene, J. C. Johnson, R. Saykally, and P. Yang, Nat. Mater. 4, 455 (2005). http://dx.doi.org/10.1038/nmat1387
X. F. Gao and L. Jiang, Nature. 432, 36 (2004). http://dx.doi.org/10.1038/432036a
L. Shi, Y. M. Xu, S. K. Hark, Y. Liu, S. Wang, L. M. Peng, K. W. Wong and Q. Li, Nano Lett. 7, 3559 (2007). http://dx.doi.org/10.1021/nl0707959
M. Shang, W. Z. Wang, W. Z. Yin, J. Ren, S. M. Sun and L. Zhang, Chem. Eur. J. 16, 11412 (2010). http://dx.doi.org/10.1002/chem.201000639
X. W. Lou, L. A. Archer and Z. Yang, Adv. Mater. 20, 3987 (2008). http://dx.doi.org/10.1002/adma.200800854
J. Elias, C. Lévy-Clément, M. Bechelany, J. Michler, G. Y. Wang, Z. Wang and L. Philippe, Adv. Mater. 22, 1607 (2010). http://dx.doi.org/10.1002/adma.200903098
Y. G. Sun, J. Q. Hu, N. Wang, R. J. Zou, J. H. Wu, Y. L. Song, H. H. Chen, H. H. Chen and Z. G. Chen, New J. Chem. 34, 732 (2010). http://dx.doi.org/10.1039/b9nj00708c
L. P. Xu, Y. L. Hu, C. Pelligra, C. H. Chen, L. Jin, H. Huang, S. Sithambaram, M. Aindow, R. Joesten and S. L. Suib, Chem. Mater. 21, 2875 (2009). http://dx.doi.org/10.1021/cm900608d
A. Umar, S. Lee, Y. H. Im and Y. B. Hahn, Nanotechnology. 16, 2462 (2005). http://dx.doi.org/10.1088/0957-4484/16/10/079
N. S. Ramgir, I. S. Mulla and V. K. Pillai, J. Phys. Chem. B, 110, 3995 (2006). http://dx.doi.org/10.1021/jp056629b
S. Jung, E. Oh, K. Lee, Y. Yang, C. G. Park, W. Park and S. Jeong, Crystal Growth & Design. 8, 265 (2008). http://dx.doi.org/10.1021/cg070296l
J. Zhang, L. Sun, J. Yin, H. Su, C. Liao and C. Yan, Chem. Mater. 14, 4172 (2002). http://dx.doi.org/10.1021/cm020077h
U. Choppali and B. P. Gorman, J. Am. Ceram. Soc. 90, 433 (2007). http://dx.doi.org/10.1111/j.1551-2916.2006.01437.x
Y. J. Kim, J. Y. Yoo, B. H. Kwon, Y. J. Hong, C. H. Lee and G. C. Yi, Nanotechnology. 19, 315202 (2008). http://dx.doi.org/10.1088/0957-4484/19/31/315202
J. F. Banfield, S. A. Welch, H. Z. Zhang, T. T. Ebert and R. L. Penn, Science 289, 751 (2000). http://dx.doi.org/10.1126/science.289.5480.751
X. Liao and X. Zhang, J. Phys. Chem. C. 111, 9081 (2007). http://dx.doi.org/10.1021/jp0663208
Z. Wang, X. F. Qian, J. Yin and Z. K. Zhu, Langmuir. 20, 3441 (2004). http://dx.doi.org/10.1021/la036098n
J. Zhanghttp://dx.doi.org/10.1021/cm020077h
B. M. Wen, Y. Z. Huang and J. J. Boland, J. Phys. Chem. C. 112, 106 (2008). http://dx.doi.org/10.1021/jp076789i
E. M. Wong and P. C. Searson, Appl. Phys. Lett. 74, 2939 (1999). http://dx.doi.org/10.1063/1.123972
A. B. Djurisilfnd Y. H. Leung, Small. 2, 944 (2006). http://dx.doi.org/10.1002/smll.200600134
B. J. Jin, S. H. Bae, S. Y. Lee and S. Im, Mater. Sci. Eng. B. 71, 301 (2000). http://dx.doi.org/10.1016/S0921-5107(99)00395-5
Y. Li, G. S. Cheng and L. D. Zhang, J. Mater. Res. 15, 2305 (2000). http://dx.doi.org/10.1557/JMR.2000.0331