Electrochemical Synthesis and Photocatalytic Property of Zinc Oxide Nanoparticles
Corresponding Author: Thimmappa V. Venkatesha
Nano-Micro Letters,
Vol. 4 No. 1 (2012), Article Number: 14-24
Abstract
Zinc oxide (ZnO) nanoparticles of varying sizes (20, 44 and 73 nm) have been successfully synthesized by a hybrid electrochemical-thermal method using aqueous sodium bicarbonate electrolyte and sacrificial Zn anode and cathode in an undivided cell under galvanostatic mode at room temperature. The as-synthesized product was characterized by X-ray diffraction (XRD), X-ray photoelectron spectra (XPS), Scanning electron microscopy along with Energy dispersive analysis of X-ray (SEM/EDAX), Transmission electron microscopy (TEM), Ultra Violet - Diffuse reflectance spectroscopic methods (UV-DRS). and UV-DRS spectral methods. The as-synthesized compound were single-crystalline and Rietveld refinement of calcined samples exhibited hexagonal (Wurtzite) structure with space group of P63mc (No.186). The band gaps for synthesized ZnO nanoparticles were 3.07, 3.12 and 3.13 eV, respectively, based on the results of diffuse reflectance spectra (DRS). The electrochemically synthesized ZnO powder was used as photocatalysts for UV-induced degradation of Methylene blue (MB). Photodegradation was also found to be function of exposure time and dye solution pH. It has been found that as-synthesized powder has excellent photocatalytic activity with 92% degradation of MB, indicating ZnO nanoparticles can play an important role as a semiconductor photocatalyst.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y. H. Zheng, L. Zheng, Y. Y. Zhan, X. Y. Lin, Q. Zheng and K. Wei, Inorg. Chem. 46, 6980 (2007). http://dx.doi.org/10.1021/ic700688f
- G. Colon, M. C. Hidalgo, J. A. Navio, E. P. Melian, O. G. Diaz and J. M. Dona, Appl. Catal. B Environ 78, 176 (2008). http://dx.doi.org/10.1016/j.apcatb.2007.09.019
- H. G. Kim, P. H. Borse, W. Choi and J.S. Lee, Angew. Chem. Int. Ed 44, 4585 (2005). http://dx.doi.org/10.1002/anie.200500064
- G. Marci, V. Augugliaro, M. J. Lopez-Munoz, C. Martin, L. Palmisano, V. Rives, M. Schiavello, R.J.D. Tilley and A. M. Venezia, J. Phys. Chem. B 105, 1026, 1033 (2001).
- M. R. Hoffmann, S. T. Martin, W. Y. Choi and D. W. Bahnemann, Chem. Rev. 95, 69 (1995). http://dx.doi.org/10.1021/cr00033a004
- T. Sehili, P. Boule and J. Lemaire, J. Photochem, Photobiol. A. Chem. 50, 103 (1989).
- J. Villasenor, P. Reyes and G. Pecchi, J. Chem. Technol. Biotechnol. 72, 105 (1998). http://dx.doi.org/10.1002/(SICI)1097-4660(199806)72:2<105::AID-JCTB883>3.0.CO;2-0
- M. D. Driessen, T. M. Miller and V. H. Grassian, J. Mol. Catal. A. Chem. 131, 149 (1998). http://dx.doi.org/10.1016/S1381-1169(97)00262-8
- M. A. Behnajady, N. Modirshahla and R. Hamzavi, J. Hazard. Mater. B 133, 226 (2006). http://dx.doi.org/10.1016/j.jhazmat.2005.10.022
- M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo and P. D. Yang, Science 292, 1897 (2001). http://dx.doi.org/10.1126/science.1060367
- E. Comini, G. Faglia, G. Sberveglieri, Z. W. Pan and Z. L. Wang, Appl. Phys. Lett. 81, 1869 (2003). http://dx.doi.org/10.1063/1.1504867
- D. Han, X. L. Ren, D. Chen, F. Q. Tang, D. Wang and J. Ren, Photogr. Sci. Photochem. 23, 414 (2005).
- X. Y. Kong and Z. L. Wang, Nano. Lett. 3, 1625 (2003). http://dx.doi.org/10.1021/nl034463p
- S. J. Li, Z. C. Ma, J. Zhang and J. Z. Liu, Catal. Commun. 9, 1482 (2008). http://dx.doi.org/10.1016/j.catcom.2007.12.016
- Q. Zhang, W. Fan and L. Gao, Appl. Catal. B- Environ. 76, 168 (2007). http://dx.doi.org/10.1016/j.apcatb.2007.05.024
- L. Q. Jing, B. F. Xin, F. L. Yuan, L. P. Xue, B. Q. Wang and H. G. Fu, J. Phys. Chem. B 110, 17860 (2006). http://dx.doi.org/10.1021/jp063148z
- N. Pradhan, A. Pal and T. Pal, Langmuir 17, 1800 (2001). http://dx.doi.org/10.1021/la000862d
- C. A. K. Gouvea, F. Wypych and S. G. Moraes, Chemosphere 40, 433 (2000). http://dx.doi.org/10.1016/S0045-6535(99)00313-6
- K. R. Lee, S. Park, K. W. Lee and J. H. Lee, J. Mater. Sci. Lett. 22, 65 (2003). http://dx.doi.org/10.1023/A:1021738526590
- R. Ullah and J. Dutta, 2nd Inter. Conf. Emerging Tech. 353 (2006).
- H. M. Deng, J. Ding, Y. Shi, X. Y. Liu and J. Wang, J. Mater. Sci. 36, 3273 (2001). http://dx.doi.org/10.1023/A:1017902923289
- X. Jiaqiang, P. Qingyi, S. Yuan and L. Zhanchai, Chin. J. Inorg. Chem. 14, 355 (1998). (in Chinese)
- W. Wenliang, L. Dongsheng, H. Xiangyang, S. Zhenmin, W. Jiwu and Z. Caihua, Chem. Res. Appl. 13, 157 (2001). (in Chinese)
- N. Faal Hamedani and F. Farzaneh, J. Sci. Islamic. Rep. of Iran 17, 231 (2006).
- K.J. Rao, K. Mahesh and S. Kumar, Bull. Mater. Sci. 28, 19 (2005). http://dx.doi.org/10.1007/BF02711166
- M. Vafaee and M.S. Ghamsari, Mater. Lett. 61, 3265 (2007). http://dx.doi.org/10.1016/j.matlet.2006.11.089
- K. G. Chandrappa, T. V. Venkatesha, K. Vathsala and C. Shivakumara, J. Nanopart. Res. 12, 2667 (2010). http://dx.doi.org/10.1007/s11051-009-9846-0
- Y. GaoQing, J. Huanfeng, L. Chang and L. ShiJun, J. Cryst. Growth 303, 400 (2007).
- E. Boschke, U. Bohmer, J. Lange, M. Constapel, M. Schellentrager and T. Bley, Chemosphere 67, 2163 (2007). http://dx.doi.org/10.1016/j.chemosphere.2006.12.041
- H. Wang, C. Xie, W. Zhang, S. Cai, Z. Yang and Y. Gui, J. Hazard. Mater. 141, 645 (2007). http://dx.doi.org/10.1016/j.jhazmat.2006.07.021
- R. Y. Hong, J. H. Li, L. L. Chen, D. Q. Liu, H. Z. Li, Y. Zheng and J. Ding, Powder Technol. 189, 426 (2009). http://dx.doi.org/10.1016/j.powtec.2008.07.004
- R. M. Trommer, A. K. Alves and C. P. Bergmann, J. Alloys Compd. 491, 296 (2010). http://dx.doi.org/10.1016/j.jallcom.2009.10.147
- R. Xiangling, H. Dong, C. Dong and T. Fangqiong, Mater. Res. Bull. 42, 807 (2007). http://dx.doi.org/10.1016/j.materresbull.2006.08.030
- P. Scherrer, Nachr. Ges. Wiss. Gottingen Math. Phys. 2, 98 (1918).
- Siqingaowa, Zhaorigetu, Y. Hongxia and Garidi, Front. Chem. China 3, 277 (2006). http://dx.doi.org/10.1007/s11458-006-0036-7
- L. P. Berube and G. L. Esperance, J. Electrochem. Soc. 136, 2314 (1989). http://dx.doi.org/10.1149/1.2097318
- M. L. Curri, R. Comparelli, P. D. Cozzoli, G. Mascolo and A. Agostiano, Mater. Sci. Eng. C 23, 285 (2003). http://dx.doi.org/10.1016/S0928-4931(02)00250-3
References
Y. H. Zheng, L. Zheng, Y. Y. Zhan, X. Y. Lin, Q. Zheng and K. Wei, Inorg. Chem. 46, 6980 (2007). http://dx.doi.org/10.1021/ic700688f
G. Colon, M. C. Hidalgo, J. A. Navio, E. P. Melian, O. G. Diaz and J. M. Dona, Appl. Catal. B Environ 78, 176 (2008). http://dx.doi.org/10.1016/j.apcatb.2007.09.019
H. G. Kim, P. H. Borse, W. Choi and J.S. Lee, Angew. Chem. Int. Ed 44, 4585 (2005). http://dx.doi.org/10.1002/anie.200500064
G. Marci, V. Augugliaro, M. J. Lopez-Munoz, C. Martin, L. Palmisano, V. Rives, M. Schiavello, R.J.D. Tilley and A. M. Venezia, J. Phys. Chem. B 105, 1026, 1033 (2001).
M. R. Hoffmann, S. T. Martin, W. Y. Choi and D. W. Bahnemann, Chem. Rev. 95, 69 (1995). http://dx.doi.org/10.1021/cr00033a004
T. Sehili, P. Boule and J. Lemaire, J. Photochem, Photobiol. A. Chem. 50, 103 (1989).
J. Villasenor, P. Reyes and G. Pecchi, J. Chem. Technol. Biotechnol. 72, 105 (1998). http://dx.doi.org/10.1002/(SICI)1097-4660(199806)72:2<105::AID-JCTB883>3.0.CO;2-0
M. D. Driessen, T. M. Miller and V. H. Grassian, J. Mol. Catal. A. Chem. 131, 149 (1998). http://dx.doi.org/10.1016/S1381-1169(97)00262-8
M. A. Behnajady, N. Modirshahla and R. Hamzavi, J. Hazard. Mater. B 133, 226 (2006). http://dx.doi.org/10.1016/j.jhazmat.2005.10.022
M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo and P. D. Yang, Science 292, 1897 (2001). http://dx.doi.org/10.1126/science.1060367
E. Comini, G. Faglia, G. Sberveglieri, Z. W. Pan and Z. L. Wang, Appl. Phys. Lett. 81, 1869 (2003). http://dx.doi.org/10.1063/1.1504867
D. Han, X. L. Ren, D. Chen, F. Q. Tang, D. Wang and J. Ren, Photogr. Sci. Photochem. 23, 414 (2005).
X. Y. Kong and Z. L. Wang, Nano. Lett. 3, 1625 (2003). http://dx.doi.org/10.1021/nl034463p
S. J. Li, Z. C. Ma, J. Zhang and J. Z. Liu, Catal. Commun. 9, 1482 (2008). http://dx.doi.org/10.1016/j.catcom.2007.12.016
Q. Zhang, W. Fan and L. Gao, Appl. Catal. B- Environ. 76, 168 (2007). http://dx.doi.org/10.1016/j.apcatb.2007.05.024
L. Q. Jing, B. F. Xin, F. L. Yuan, L. P. Xue, B. Q. Wang and H. G. Fu, J. Phys. Chem. B 110, 17860 (2006). http://dx.doi.org/10.1021/jp063148z
N. Pradhan, A. Pal and T. Pal, Langmuir 17, 1800 (2001). http://dx.doi.org/10.1021/la000862d
C. A. K. Gouvea, F. Wypych and S. G. Moraes, Chemosphere 40, 433 (2000). http://dx.doi.org/10.1016/S0045-6535(99)00313-6
K. R. Lee, S. Park, K. W. Lee and J. H. Lee, J. Mater. Sci. Lett. 22, 65 (2003). http://dx.doi.org/10.1023/A:1021738526590
R. Ullah and J. Dutta, 2nd Inter. Conf. Emerging Tech. 353 (2006).
H. M. Deng, J. Ding, Y. Shi, X. Y. Liu and J. Wang, J. Mater. Sci. 36, 3273 (2001). http://dx.doi.org/10.1023/A:1017902923289
X. Jiaqiang, P. Qingyi, S. Yuan and L. Zhanchai, Chin. J. Inorg. Chem. 14, 355 (1998). (in Chinese)
W. Wenliang, L. Dongsheng, H. Xiangyang, S. Zhenmin, W. Jiwu and Z. Caihua, Chem. Res. Appl. 13, 157 (2001). (in Chinese)
N. Faal Hamedani and F. Farzaneh, J. Sci. Islamic. Rep. of Iran 17, 231 (2006).
K.J. Rao, K. Mahesh and S. Kumar, Bull. Mater. Sci. 28, 19 (2005). http://dx.doi.org/10.1007/BF02711166
M. Vafaee and M.S. Ghamsari, Mater. Lett. 61, 3265 (2007). http://dx.doi.org/10.1016/j.matlet.2006.11.089
K. G. Chandrappa, T. V. Venkatesha, K. Vathsala and C. Shivakumara, J. Nanopart. Res. 12, 2667 (2010). http://dx.doi.org/10.1007/s11051-009-9846-0
Y. GaoQing, J. Huanfeng, L. Chang and L. ShiJun, J. Cryst. Growth 303, 400 (2007).
E. Boschke, U. Bohmer, J. Lange, M. Constapel, M. Schellentrager and T. Bley, Chemosphere 67, 2163 (2007). http://dx.doi.org/10.1016/j.chemosphere.2006.12.041
H. Wang, C. Xie, W. Zhang, S. Cai, Z. Yang and Y. Gui, J. Hazard. Mater. 141, 645 (2007). http://dx.doi.org/10.1016/j.jhazmat.2006.07.021
R. Y. Hong, J. H. Li, L. L. Chen, D. Q. Liu, H. Z. Li, Y. Zheng and J. Ding, Powder Technol. 189, 426 (2009). http://dx.doi.org/10.1016/j.powtec.2008.07.004
R. M. Trommer, A. K. Alves and C. P. Bergmann, J. Alloys Compd. 491, 296 (2010). http://dx.doi.org/10.1016/j.jallcom.2009.10.147
R. Xiangling, H. Dong, C. Dong and T. Fangqiong, Mater. Res. Bull. 42, 807 (2007). http://dx.doi.org/10.1016/j.materresbull.2006.08.030
P. Scherrer, Nachr. Ges. Wiss. Gottingen Math. Phys. 2, 98 (1918).
Siqingaowa, Zhaorigetu, Y. Hongxia and Garidi, Front. Chem. China 3, 277 (2006). http://dx.doi.org/10.1007/s11458-006-0036-7
L. P. Berube and G. L. Esperance, J. Electrochem. Soc. 136, 2314 (1989). http://dx.doi.org/10.1149/1.2097318
M. L. Curri, R. Comparelli, P. D. Cozzoli, G. Mascolo and A. Agostiano, Mater. Sci. Eng. C 23, 285 (2003). http://dx.doi.org/10.1016/S0928-4931(02)00250-3