Nanofluid Applications in Future Automobiles: Comprehensive Review of Existing Data
Corresponding Author: R. Gangadevi
Nano-Micro Letters,
Vol. 2 No. 4 (2010), Article Number: 306-310
Abstract
In recent years fluids containing suspension of nanometer sized particles have been an active area of research due to their enhanced thermo physical properties over the base fluids like water, oil etc. Nanofluids possess immense potential applications to improve heat transfer and energy efficient in several areas including automobile, micro electronics, nuclear, space and power generation. Nowadays most of the researchers are trying to use the nanofluids in automobile for various applications such as coolant, fuel additives, lubricant, shock absorber and refrigerant. The goal of this paper is to create the awareness on the promise of nanofluids and the impact it will have on the future automotive industry. This paper also presents a comprehensive data of nanofluids application in automobile for various aspects.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Kluwer Academic Publ., J. Nanopart. Res. 3, 353 (2001). doi:10.1023/A:1013248621015
- S. U. S. Choi, ASME, 99 (1995).
- S. U. S. Choi, Korea-U.S. Technical Conference on Strategic Technologies, Vienna, VA (1998).
- S. Lee, S. U. S. Choi, S. Li and J. A. Eastman, J. Heat Transf. 121, 280 (1999). doi:10.1115/1.2825978
- J. A. Eastman, S. U. S. Choi, S. Li, W. Yu and L. J. Thompson, Appl. Phys. Lett. 78, 718 (2001). doi:10.1063/1.1341218
- S. A. Putanm, D. G. Cahill and P. V. Braun, J. Appl. Phys. 99, 084308 (2006). doi:10.1063/1.2189933
- R. Rusconi, E. Rodari and R. Piazza, Appl. Phys. Lett. 89, 261916 (2006). doi:10.1063/1.2425015
- J. Buongiorno, J. Heat Transf. 128, 240 (2006). doi:10.1115/1.2150834
- R. Chein and G. Huang, Appl. Therm. Eng. 25, 3104 (2005). doi:10.1016/j.applthermaleng.2005.03.008
- S. G. Etemad, S. Z. Heris and M. N. Esfahany, Int. J. Heat Mass Transfer 33, 529 (2006). doi:10.1016/j.icheatmasstransfer.2006.01.005
- M. A. M. Said and R. K. Agarwal, 38th AIAA Thermophysics Conference, Toronto, Ontario, Canada 1 (2005).
- Y. Xuan and Q. Li, J. Heat Transf. 125, 151 (2003). doi:10.1115/1.1532008
- J. Kim, Y. T. Kang and C. K. Choi, Phys. Fluids 16, 2395 (2004a). doi:10.1063/1.1739247
- W. Yu, D. M. France, J. L. Routbort and S. U. S. Choi, Heat Transfer Eng. 29, 432 (2008).
- D. Singh, J. Toutbourt, G. Chen et al, Annual report Argonee National lab (2006).
- V. Vasu, K. Ramakrishna and A. C. S. kumar, Int. J. Nano Technol. Appl. 2, 75 (2008).
- S. T. Zeng, C. Lin and K. Huang, Acta. Mechanica. 179, 11 (2005). doi:10.1007/s00707-005-0248-9
- Z. Zhang and Q. Que, Wear 209, 8 (1997).
- Interagency working group on nano science, national nano technology initiative: Leading to the next industrial revolution, Technology National Science and Technology Council, USA, February (2000).
- M. J. Kao, C. C. Tin, B. F. Lin et al., J. Test. Eval. 36, 186 (2007).
- V. A. M. Selvan, R. B. Anand and M. Udayakumar, J. Eng. Appl. Sci. 4, 1 (2009).
- H. Masuda, A. Ebata, K. Teramae and N. Hishinuma, Netsu Bussei (Japan) 7, 227 (1993).
- J. A. Eastman, S. U. S. Choi, S. Li, L. J. Thompson and S. Lee, Fall Meeting of the Materials Research Society (MRS), Boston, USA, (1996).
- B. C. Pak and Y. I. Cho, Exp. Heat Transfer 11(2), 151 (1998). doi:10.1080/08916159808946559
- X. Wang, X. Xu and S. U. S. Choi, J. Thermophys. Heat Tr. 13(4), 474 (1999).
- S. Lee, S. U. S. Choi, S. Li and J. A. Eastman, Transactions of the ASME. J. Heat Transf. 121(2), 280 (1999). doi:10.1115/1.2825978
- H. E. Patel, S. K. Das, T. Sundararajan, A. Sreekumaran Nair, B. George and T. Pradeep, Appl. Phys. Lett. 83(14), 2931 (2003). doi:10.1063/1.1602578
- H. W. Xie, T. J. Xi, Y. Liu, F. Ai and Q. Wu, J. Appl. Phys. 91(7), 4568 (2002). doi:10.1063/1.1454184
- R. Prasher, P. Bhattacharya and P. E. Phelan, Phys. Rev. Lett. 94(2), 025901 (2005). doi:10.1103/PhysRevLett. 94.025901
- S. Krishnamurthy, P. Bhattacharya, P. E. Phelan and R. S. Prasher, Nano Lett. 6(3), 419 (2006). doi:10.1021/nl0 522532
- M. S. Liu, C. C. Lin, I. T. Huang and C. C. Wang, Chem. Eng. Technol. 29(1), 72 (2006). doi:10.1002/ceat.200 500184
- S. M. S. Murshed, K. C. Leong and C. Yang, Int. J. Therm. Sci. 44(4), 367 (2005). doi:10.1016/j.ijthermalsci.2004.12.005
- Z. W. Li, C. J. Ho and L. C. Wei, Appl. Therm. Eng. 30, 96 (2010). doi:10.1016/j.applthermaleng.2009.07.003
- S. V. Ravikanth, K. D. Debendra and K. N. Praveen, Int. J. Heat Fluid Flow 31, 613 (2010). doi:10.1016/j.ijheat fluidflow.2010.02.016
- P. K. Devdatta, S. V. Ravikanth, K. D. Debendra and O. Daniel, Appl. Therm. Eng. 28, 1774 (2008). doi:10.1016/j.applthermaleng.2007.11.017
- G. Paul, T. Pal and I. Manna, J. Colloid Interface Sci. 349, 434 (2010). doi:10.1016/j.jcis.2010.05.086
- B. A. Hernández, J. L. Viesca, R. González, D. Blanco, E. Asedegbega and A. Osorio, Wear 268, 325 (2010).
- M. J. Kao and C. R. Lin, J. Alloy. Compd. 483, 456 (2009). doi:10.1016/j.jallcom.2008.07.223
- Y. Gan and L. Qiao, Combustion and Flame 158, 354 (2011).
References
Kluwer Academic Publ., J. Nanopart. Res. 3, 353 (2001). doi:10.1023/A:1013248621015
S. U. S. Choi, ASME, 99 (1995).
S. U. S. Choi, Korea-U.S. Technical Conference on Strategic Technologies, Vienna, VA (1998).
S. Lee, S. U. S. Choi, S. Li and J. A. Eastman, J. Heat Transf. 121, 280 (1999). doi:10.1115/1.2825978
J. A. Eastman, S. U. S. Choi, S. Li, W. Yu and L. J. Thompson, Appl. Phys. Lett. 78, 718 (2001). doi:10.1063/1.1341218
S. A. Putanm, D. G. Cahill and P. V. Braun, J. Appl. Phys. 99, 084308 (2006). doi:10.1063/1.2189933
R. Rusconi, E. Rodari and R. Piazza, Appl. Phys. Lett. 89, 261916 (2006). doi:10.1063/1.2425015
J. Buongiorno, J. Heat Transf. 128, 240 (2006). doi:10.1115/1.2150834
R. Chein and G. Huang, Appl. Therm. Eng. 25, 3104 (2005). doi:10.1016/j.applthermaleng.2005.03.008
S. G. Etemad, S. Z. Heris and M. N. Esfahany, Int. J. Heat Mass Transfer 33, 529 (2006). doi:10.1016/j.icheatmasstransfer.2006.01.005
M. A. M. Said and R. K. Agarwal, 38th AIAA Thermophysics Conference, Toronto, Ontario, Canada 1 (2005).
Y. Xuan and Q. Li, J. Heat Transf. 125, 151 (2003). doi:10.1115/1.1532008
J. Kim, Y. T. Kang and C. K. Choi, Phys. Fluids 16, 2395 (2004a). doi:10.1063/1.1739247
W. Yu, D. M. France, J. L. Routbort and S. U. S. Choi, Heat Transfer Eng. 29, 432 (2008).
D. Singh, J. Toutbourt, G. Chen et al, Annual report Argonee National lab (2006).
V. Vasu, K. Ramakrishna and A. C. S. kumar, Int. J. Nano Technol. Appl. 2, 75 (2008).
S. T. Zeng, C. Lin and K. Huang, Acta. Mechanica. 179, 11 (2005). doi:10.1007/s00707-005-0248-9
Z. Zhang and Q. Que, Wear 209, 8 (1997).
Interagency working group on nano science, national nano technology initiative: Leading to the next industrial revolution, Technology National Science and Technology Council, USA, February (2000).
M. J. Kao, C. C. Tin, B. F. Lin et al., J. Test. Eval. 36, 186 (2007).
V. A. M. Selvan, R. B. Anand and M. Udayakumar, J. Eng. Appl. Sci. 4, 1 (2009).
H. Masuda, A. Ebata, K. Teramae and N. Hishinuma, Netsu Bussei (Japan) 7, 227 (1993).
J. A. Eastman, S. U. S. Choi, S. Li, L. J. Thompson and S. Lee, Fall Meeting of the Materials Research Society (MRS), Boston, USA, (1996).
B. C. Pak and Y. I. Cho, Exp. Heat Transfer 11(2), 151 (1998). doi:10.1080/08916159808946559
X. Wang, X. Xu and S. U. S. Choi, J. Thermophys. Heat Tr. 13(4), 474 (1999).
S. Lee, S. U. S. Choi, S. Li and J. A. Eastman, Transactions of the ASME. J. Heat Transf. 121(2), 280 (1999). doi:10.1115/1.2825978
H. E. Patel, S. K. Das, T. Sundararajan, A. Sreekumaran Nair, B. George and T. Pradeep, Appl. Phys. Lett. 83(14), 2931 (2003). doi:10.1063/1.1602578
H. W. Xie, T. J. Xi, Y. Liu, F. Ai and Q. Wu, J. Appl. Phys. 91(7), 4568 (2002). doi:10.1063/1.1454184
R. Prasher, P. Bhattacharya and P. E. Phelan, Phys. Rev. Lett. 94(2), 025901 (2005). doi:10.1103/PhysRevLett. 94.025901
S. Krishnamurthy, P. Bhattacharya, P. E. Phelan and R. S. Prasher, Nano Lett. 6(3), 419 (2006). doi:10.1021/nl0 522532
M. S. Liu, C. C. Lin, I. T. Huang and C. C. Wang, Chem. Eng. Technol. 29(1), 72 (2006). doi:10.1002/ceat.200 500184
S. M. S. Murshed, K. C. Leong and C. Yang, Int. J. Therm. Sci. 44(4), 367 (2005). doi:10.1016/j.ijthermalsci.2004.12.005
Z. W. Li, C. J. Ho and L. C. Wei, Appl. Therm. Eng. 30, 96 (2010). doi:10.1016/j.applthermaleng.2009.07.003
S. V. Ravikanth, K. D. Debendra and K. N. Praveen, Int. J. Heat Fluid Flow 31, 613 (2010). doi:10.1016/j.ijheat fluidflow.2010.02.016
P. K. Devdatta, S. V. Ravikanth, K. D. Debendra and O. Daniel, Appl. Therm. Eng. 28, 1774 (2008). doi:10.1016/j.applthermaleng.2007.11.017
G. Paul, T. Pal and I. Manna, J. Colloid Interface Sci. 349, 434 (2010). doi:10.1016/j.jcis.2010.05.086
B. A. Hernández, J. L. Viesca, R. González, D. Blanco, E. Asedegbega and A. Osorio, Wear 268, 325 (2010).
M. J. Kao and C. R. Lin, J. Alloy. Compd. 483, 456 (2009). doi:10.1016/j.jallcom.2008.07.223
Y. Gan and L. Qiao, Combustion and Flame 158, 354 (2011).