Synthesis of Micron-sized Hexagonal and Flower-like Nanostructures of Lead Oxide (PbO2) by Anodic Oxidation of Lead
Corresponding Author: Dinesh Pratap Singh
Nano-Micro Letters,
Vol. 3 No. 4 (2011), Article Number: 223-227
Abstract
Micron sized hexagon- and flower-like nanostructures of lead oxide (α-PbO2) have been synthesized by very simple and cost effective route of anodic oxidation of lead sheet. These structures were easily obtained by the simple variation of applied voltage from 2–6 V between the electrodes. Lead sheet was used as an anode and platinum sheet served as a cathode. Anodic oxidation at 2 V resulted in the variable edge sized (1–2 μm) hexagon-like structures in the electrolyte. When the applied potential was increased to 4 V a structure of distorted hexagons consisting of some flower-like structures were obtained. Further increment of potential up to 6 V resulted in flower like structures of α-PbO2 having six petals. The diameter of the flower-like structures was ∼200–500 nm and the size of a petal was ∼100–200 nm.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- P. Jing, F. J. Cizeron and V. L. Colvin, J. Am. Chem. Soc. 121, 7957 (1999). http://dx.doi.org/10.1021/ja991321h
- H. Gau, S. Herminghaus, P. Lenz and R. Lipowsky, Science 283, 46 (1999). http://dx.doi.org/10.1126/science.283.5398.46
- T. A. Taton, G. L. Lu and C. A. Mirkin, J. Am. Chem. Soc. 123, 5164 (2001). http://dx.doi.org/10.1021/ja0102639
- J. H. Fendler, Chem. Mater. 13, 3196 (2001). http://dx.doi.org/10.1021/cm010165m
- A. Stein, Microporous Mesoporous Mater. 227, 227 (2001). http://dx.doi.org/10.1016/S1387-1811(01)00189-5
- I. V. Kityk, J. Non-Cryst. Solids 292, 184 (2001). http://dx.doi.org/10.1016/S0022-3093(01)00860-2
- Y. R. Uhm, J. Kim, S. Lee, J. Jeon and C. K. Rhee, Ind. Eng. Chem. Res. 50, 4478 (2011). http://dx.doi.org/10.1021/ie102300x
- K. Konstantinov, S. H. Ng, J. Z. Wang, G. X. Wang, D. Wexler and H. K. Liu, J. Power Sources 159, 241 (2006). http://dx.doi.org/10.1016/j.jpowsour.2006.04.029
- Q. Wang, X. Sun, S. Luo, L. Sun, X. Wu, M. Cao and C. Hu, Crystal Growth & Design 7, 2665 (2007). http://dx.doi.org/10.1021/cg0605178
- H. Karami, M. A. Karimi, S. Haghdar, Mater. Res. Bull. 43, 3054 (2008). http://dx.doi.org/10.1016/j.materresbull.2007.11.014
- M. M. K. Motlagh, M. K. Mahmoudabad, J. Sol-Gel Sci. Technol. 59, 106 (2011). http://dx.doi.org/10.1007/s10971-011-2467-y
- A. T. Kuhn Ed., “The Electrochemistry of Lead”, Academic Press, London, (1979).
- J. P. Pohl and H. Rickert, in: S. Trasatti Ed., “Electrodes of Conductive Metal Oxides: Part A”, Elsevier, Amsterdam 183, (1980).
- Yu. D. Dunaev Ed., “Insoluble Anodes from Alloys and Based Lead”, Science, Alma-Ata (1978).
- S. R. Ellis, N. A. Hampson, M. C. Ball and F. Wilkinson, J. Appl. Electrochem. 16, 159 (1986). http://dx.doi.org/10.1007/BF01093347
- A. M. Couper, D. Pletcher and F. C. Walsh, Chem. Rev. 90, 847 (1990). http://dx.doi.org/10.1021/cr00103a010
- M. Musiani, J. Electroanal. Chem. 465, 160 (1999). http://dx.doi.org/10.1016/S0022-0728(99)00080-7
- A. Mehdinia, M. F. Mousavi, Shamsipur, J. Chromatography A 1134, 24 (2006).
- Y. Wang, Y. Xie, W. Li, Z. Wang, and D. E. Giammar, Environ. Sci. Technol. 44, 8950 (2010). http://dx.doi.org/10.1021/es102318z
- G. Xi, Y. Peng, L. Xu, M. Zhang, W. Yu and Y. Qian, Inorg. Chem. Communications 7, 607 (2004). http://dx.doi.org/10.1016/j.inoche.2004.03.001
- J. Lee, S. Sim, K. Kim, K. Cho and S. Kim, Mater. Sci. Eng. B 122, 85 (2005). http://dx.doi.org/10.1016/j.mseb.2005.04.020
- U. Casellato, S. Cattarin and M. Musiani, Electrochimica Acta 48, 3991 (2003). http://dx.doi.org/10.1016/S0013-4686(03)00527-9
- Z. W. Pan, Z. R. Dai and Z. L. Wanga, Appl. Phys. Lett. 80, 309 (2002). http://dx.doi.org/10.1063/1.1432749
- T. Mahalingam, S. Velumani, M. Raja, S. Thanikaikarasan, J. P. Chu, S. F. Wang and Y. D. Kim, Mater. Character. 58, 817 (2007). http://dx.doi.org/10.1016/j.matchar.2006.11.021
- L. Shi, Y. Xu and Q. Li, Crystal Growth & Design, 8, 3521 (2008). http://dx.doi.org/10.1021/cg700909v
- S. Ghasemi, M. F. Mousavi, M. Shamsipur and H. Karami, Ultrason. Sonochem. 15, 448 (2008). http://dx.doi.org/10.1016/j.ultsonch.2007.05.006
- L. Hashemi and A. Morsali, J. Inorg. Organomet. Polym. 20, 856 (2010). http://dx.doi.org/10.1007/s10904-010-9404-3
- A. Ramazani, S. Hamidi and A. Morsali, J. Molecular Liquids 157, 73 (2010). http://dx.doi.org/10.1016/j.molliq.2010.08.012
- H. Sadeghzadeh and A. Morsali, Ultrason. Sonochem. 18, 80 (2011). http://dx.doi.org/10.1016/j.ultsonch.2010.01.011
- A. B. Velichenko and D. Devilliers, J. Fluorine Chem. 128, 269 (2007). http://dx.doi.org/10.1016/j.jfluchem.2006.11.010
- J. Lee, H. Varela, S. Uhm, Y. Tak, Electrochem. Commun. 2, 646 (2000). http://dx.doi.org/10.1016/S1388-2481(00)00095-3
- D. P. Singh, N. R. Neti, A. S. K. Sinha and O. N. Srivastava, J. Phys. Chem. C 111, 1638 (2007). http://dx.doi.org/10.1021/jp0657179
- D. P. Singh and O. N. Srivastava, J. Nanosci. Nanotech. 9, 5515 (2009).
References
P. Jing, F. J. Cizeron and V. L. Colvin, J. Am. Chem. Soc. 121, 7957 (1999). http://dx.doi.org/10.1021/ja991321h
H. Gau, S. Herminghaus, P. Lenz and R. Lipowsky, Science 283, 46 (1999). http://dx.doi.org/10.1126/science.283.5398.46
T. A. Taton, G. L. Lu and C. A. Mirkin, J. Am. Chem. Soc. 123, 5164 (2001). http://dx.doi.org/10.1021/ja0102639
J. H. Fendler, Chem. Mater. 13, 3196 (2001). http://dx.doi.org/10.1021/cm010165m
A. Stein, Microporous Mesoporous Mater. 227, 227 (2001). http://dx.doi.org/10.1016/S1387-1811(01)00189-5
I. V. Kityk, J. Non-Cryst. Solids 292, 184 (2001). http://dx.doi.org/10.1016/S0022-3093(01)00860-2
Y. R. Uhm, J. Kim, S. Lee, J. Jeon and C. K. Rhee, Ind. Eng. Chem. Res. 50, 4478 (2011). http://dx.doi.org/10.1021/ie102300x
K. Konstantinov, S. H. Ng, J. Z. Wang, G. X. Wang, D. Wexler and H. K. Liu, J. Power Sources 159, 241 (2006). http://dx.doi.org/10.1016/j.jpowsour.2006.04.029
Q. Wang, X. Sun, S. Luo, L. Sun, X. Wu, M. Cao and C. Hu, Crystal Growth & Design 7, 2665 (2007). http://dx.doi.org/10.1021/cg0605178
H. Karami, M. A. Karimi, S. Haghdar, Mater. Res. Bull. 43, 3054 (2008). http://dx.doi.org/10.1016/j.materresbull.2007.11.014
M. M. K. Motlagh, M. K. Mahmoudabad, J. Sol-Gel Sci. Technol. 59, 106 (2011). http://dx.doi.org/10.1007/s10971-011-2467-y
A. T. Kuhn Ed., “The Electrochemistry of Lead”, Academic Press, London, (1979).
J. P. Pohl and H. Rickert, in: S. Trasatti Ed., “Electrodes of Conductive Metal Oxides: Part A”, Elsevier, Amsterdam 183, (1980).
Yu. D. Dunaev Ed., “Insoluble Anodes from Alloys and Based Lead”, Science, Alma-Ata (1978).
S. R. Ellis, N. A. Hampson, M. C. Ball and F. Wilkinson, J. Appl. Electrochem. 16, 159 (1986). http://dx.doi.org/10.1007/BF01093347
A. M. Couper, D. Pletcher and F. C. Walsh, Chem. Rev. 90, 847 (1990). http://dx.doi.org/10.1021/cr00103a010
M. Musiani, J. Electroanal. Chem. 465, 160 (1999). http://dx.doi.org/10.1016/S0022-0728(99)00080-7
A. Mehdinia, M. F. Mousavi, Shamsipur, J. Chromatography A 1134, 24 (2006).
Y. Wang, Y. Xie, W. Li, Z. Wang, and D. E. Giammar, Environ. Sci. Technol. 44, 8950 (2010). http://dx.doi.org/10.1021/es102318z
G. Xi, Y. Peng, L. Xu, M. Zhang, W. Yu and Y. Qian, Inorg. Chem. Communications 7, 607 (2004). http://dx.doi.org/10.1016/j.inoche.2004.03.001
J. Lee, S. Sim, K. Kim, K. Cho and S. Kim, Mater. Sci. Eng. B 122, 85 (2005). http://dx.doi.org/10.1016/j.mseb.2005.04.020
U. Casellato, S. Cattarin and M. Musiani, Electrochimica Acta 48, 3991 (2003). http://dx.doi.org/10.1016/S0013-4686(03)00527-9
Z. W. Pan, Z. R. Dai and Z. L. Wanga, Appl. Phys. Lett. 80, 309 (2002). http://dx.doi.org/10.1063/1.1432749
T. Mahalingam, S. Velumani, M. Raja, S. Thanikaikarasan, J. P. Chu, S. F. Wang and Y. D. Kim, Mater. Character. 58, 817 (2007). http://dx.doi.org/10.1016/j.matchar.2006.11.021
L. Shi, Y. Xu and Q. Li, Crystal Growth & Design, 8, 3521 (2008). http://dx.doi.org/10.1021/cg700909v
S. Ghasemi, M. F. Mousavi, M. Shamsipur and H. Karami, Ultrason. Sonochem. 15, 448 (2008). http://dx.doi.org/10.1016/j.ultsonch.2007.05.006
L. Hashemi and A. Morsali, J. Inorg. Organomet. Polym. 20, 856 (2010). http://dx.doi.org/10.1007/s10904-010-9404-3
A. Ramazani, S. Hamidi and A. Morsali, J. Molecular Liquids 157, 73 (2010). http://dx.doi.org/10.1016/j.molliq.2010.08.012
H. Sadeghzadeh and A. Morsali, Ultrason. Sonochem. 18, 80 (2011). http://dx.doi.org/10.1016/j.ultsonch.2010.01.011
A. B. Velichenko and D. Devilliers, J. Fluorine Chem. 128, 269 (2007). http://dx.doi.org/10.1016/j.jfluchem.2006.11.010
J. Lee, H. Varela, S. Uhm, Y. Tak, Electrochem. Commun. 2, 646 (2000). http://dx.doi.org/10.1016/S1388-2481(00)00095-3
D. P. Singh, N. R. Neti, A. S. K. Sinha and O. N. Srivastava, J. Phys. Chem. C 111, 1638 (2007). http://dx.doi.org/10.1021/jp0657179
D. P. Singh and O. N. Srivastava, J. Nanosci. Nanotech. 9, 5515 (2009).