Mixed Phase Anatase/rutile Titanium Dioxide Nanotubes for Enhanced Photocatalytic Degradation of Methylene-blue
Corresponding Author: Mario Boehme
Nano-Micro Letters,
Vol. 3 No. 4 (2011), Article Number: 236-241
Abstract
Titanium dioxide Nanotubes (TNTs) prepared by electroless deposition have been annealed at air ambient and low temperature. As a result, the anatase/rutile phase composition of the TNTs can be tailored to the needs of later applications. Nanotubes with anatase/rutile mixed phase ratio of 4:1 have been produced in this report and further examined for their photocatalytical behavior. The photocatalytical properties of the TNTs have been observed by degradation of methylene-blue in aqueous solution under low power UV-light irradiation. The results shown in this report are based on the synergetic effect between rutile and anatase, which results in the mixed phase TiO2 nanotubes having enhanced photocatalytical properties.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- R. J. Tayade, T. S. Natarajan and H. C. Bajaj, Ind. Eng. Chem. Res. 48, 10262 (2009). http://dx.doi.org/10.1021/ie9012437
- M. R. Hoffmann, S. T. Martin, W. Choi and D. W. Bahnemann, Chem. Rev. 95, 69 (1995). http://dx.doi.org/10.1021/cr00033a004
- B. Li, X. Wang, M. Yan and L. Li, Mater. Chem. Phys. 78, 184 (2003). http://www.sciencedirect.com/science/article/B6TX4-46SG3DN-4/2/d7c686b81aaf493c4d2f290a744bc767
- A. Fujishima, T. N. Rao and D. A. Tryk, J. Photochem. Photobio. C: Photochem. Rev. 1, 1 (2000). http://www.sciencedirect.com/science/article/B6W79-41R3GCK-2/2/97df01d046ea84e4d6250e0193e020a1
- A. L. Linsebigler, G. Lu and J. T. Yates, Chem. Rev. 95, 735 (1995). http://dx.doi.org/10.1021/cr00035a013
- H. Tada, M. Yamamoto and S. Ito, Langmuir 15, 3699 (1999). http://dx.doi.org/10.1021/la9816712
- J. C. Yu, J. Yu and J. Zhao, Appl. Catal. B: Environ. 36, 31 (2002). http://www.sciencedirect.com/science/article/B6TF6-44B6YGW-3/2/caa0a37cb0941c52b769a0814c1cabd8
- L. Kavan, M. Grätzel, S. E. Gilbert, C. Klemenz and H. J. Scheel, J. Am. Chem. Soc. 118, 6716 (1996). http://dx.doi.org/10.1021/ja954172l
- D. Li and Y. Xia, Nano Letters 4, 933 (2004). http://dx.doi.org/10.1021/nl049590f
- A. Sadeghzadeh Attar, M. Sasani Ghamsari, F. Hajiesmaeilbaigi, S. Mirdamadi, K. Katagiri and K. Koumoto, J. Mater. Sci. 43, 5924 (2008). http://dx.doi.org/10.1007/s10853-008-2872-y
- T. Maiyalagan, B. Viswanathan and U. V. Varadaraju, Bull. Mater. Sci. 7, 3 (2006). http://203.199.213.48/52/
- W. Li, S. Ismat Shah, C. P. Huang, O. Jung and C. Ni, Mater. Sci. Eng. B 96, 247 (2002). http://www.sciencedirect.com/science/article/B6TXF-46YXMJ1-1/2/595f05b79496b0458624c7c4ff5a7bdb
- T. Maiyalagan, B. Viswanathan and U. V. Varadaraju, Bull. Mater. Sci. 29, 705 (2006). http://203.199.213.48/52/
- M. Paulose, K. Shankar, S. Yoriya, H. E. Prakasam, O. K. Varghese, G. K. Mor, T. A. Latempa, A. Fitzgerald and C. A. Grimes, J. Phys. Chem. B 110, 16179 (2006). http://dx.doi.org/10.1021/jp064020k
- H. Imai, Y. Takei, K. Shimizu, M. Matsuda and H. Hirashima, J. Mater. Chem. 9, 2971 (1999). http://dx.doi.org/10.1039/A906005G
- M. Boehme, G. Fu, E. Ionescu and W. Ensinger, Nano-Micro Letters 2, 22 (2010). http://www.nmletters.org/index.php?journal=nml&page=article&op=view&path[]=46
- T. Ohno, K. Sarukawa, K. Tokieda and M. Matsumura, J. Catal. 203, 82 (2001). http://www.sciencedirect.com/science/article/B6WHJ-45BCC6C-3G/2/3fe6aa560b59039fe084f2b46ed6d269
- R. R. Bacsa and J. Kiwi, Appl. Catal. B: Environ. 16, 19 (1998). http://www.sciencedirect.com/science/article/B6TF6-3VN03K2-2/2/58d61c1a346ba4b25b4155184585c137
- K. Tanaka, M. F. V. Capule and T. Hisanaga, Chem. Phys. Lett. 187, 73 (1991). http://www.sciencedirect.com/science/article/B6TFN-44K955N-2J/2/c4b6c0ff995216d03eb2d99becf28aaa
- G. Blondeel, A. Harriman and D. Williams, Solar Energy Materials 9, 217 http://www.sciencedirect.com/science/article/B7571-481F872-2B/2/749c5e596ca2041e8ca7f8b743cb31e1
- H. Tada, A. Hattori, Y. Tokihisa, K. Imai, N. Tohge and S. Ito, J. Phys. Chem. B 104, 4585 (2000). http://dx.doi.org/10.1021/jp000049r
- T. Kawahara, Y. Konishi, H. Tada, N. Tohge and S. Ito, Langmuir 17, 7442 (2001). http://dx.doi.org/10.1021/la010307r
- F. Ye and A. Ohmori, Surf. Coat. Tech. 160, 62 (2002). http://www.sciencedirect.com/science/article/B6TVV-46H7SJB-7/2/a7b863dda086dee2ad8d310cf5e650b6
- H. Zhang, M. Finnegan and J. F. Banfield, Nano Letters 1, 81 (2000). http://dx.doi.org/10.1021/nl0055198
- T. Sugimoto, X. Zhou and A. Muramatsu, J. Coll. Inter. Sci. 259, 43 (2003). http://www.sciencedirect.com/science/article/B6WHR-480CK3K-J/2/b39fd8acd70b423260ca1cc5bbf2a53d
- S. Kittaka, K. Matsuno and S. Takahara, J. Solid State Chem. 132, 447 (1997). http://www.sciencedirect.com/science/article/B6WM2-45K153M-5V/2/ded00fb7136b292ced79ceb592dcc450
- H. M. Lu, W. X. Zhang and Q. Jiang, Adv. Eng. Mater. 5, 787 (2003). http://dx.doi.org/10.1002/adem.200300359
- K. J. A. Raj and B. Viswanathan, Indian J. Chem. 48A, 1378 (2009). http://nopr.niscair.res.in/handle/123456789/6124
- J. Arbiol, J. Cerda, G. Dezanneau, A. Cirera, F. Peiro, A. Cornet and J. R. Morante, J. Appl. Phys. 92, 853 (2002). http://link.aip.org/link/?JAP/92/853/1
- H. Zhang and J. F. Banfield, J. Mater. Chem. 8, 2073 (1998). http://dx.doi.org/10.1039/A802619J
- H. Zhang and J. F. Banfield, J. Phys. Chem. B 104, 3481 (2000). http://dx.doi.org/10.1021/jp000499j
- P. I. Gouma and M. J. Mills, J. Am. Ceramic Soc. 84, 619 (2001). http://dx.doi.org/10.1111/j.1151-2916.2001.tb00709.x
- F. Akbal, Environ. Prog. 24, 317 (2005). http://dx.doi.org/10.1002/ep.10092
- J. Yao and C. Wang, Int. J. Photoenergy 2010, 643182 (2010). www.hindawi.com/journals/ijp/2010/643182/
- R. I. Bickley, T. Gonzalez-Carreno, J. S. Lees, L. Palmisano and R. J. D. Tilley, J. Solid State Chem. 92, 178 (1991). http://www.sciencedirect.com/science/article/B6WM2-4B6NWG7-F7/2/21faed756bc30f5acf3966ea0fdb6e4e
- D. C. Hurum, A. G. Agrios, K. A. Gray, T. Rajh and M. C. Thurnauer, J. Phys. Chem. B 107, 4545 (2003). http://dx.doi.org/10.1021/jp0273934
- V. Collins-Martínez, A. López Ortiz and A. Aguilar Elguézabal, Int. J. Chem. React. Engin. 5, (2007). http://www.bepress.com/ijcre/vol5/A92/
- R. A. Spurr and H. Myers, Analytical Chemistry 29, 760 (1957). http://dx.doi.org/10.1021/ac60125a006
References
R. J. Tayade, T. S. Natarajan and H. C. Bajaj, Ind. Eng. Chem. Res. 48, 10262 (2009). http://dx.doi.org/10.1021/ie9012437
M. R. Hoffmann, S. T. Martin, W. Choi and D. W. Bahnemann, Chem. Rev. 95, 69 (1995). http://dx.doi.org/10.1021/cr00033a004
B. Li, X. Wang, M. Yan and L. Li, Mater. Chem. Phys. 78, 184 (2003). http://www.sciencedirect.com/science/article/B6TX4-46SG3DN-4/2/d7c686b81aaf493c4d2f290a744bc767
A. Fujishima, T. N. Rao and D. A. Tryk, J. Photochem. Photobio. C: Photochem. Rev. 1, 1 (2000). http://www.sciencedirect.com/science/article/B6W79-41R3GCK-2/2/97df01d046ea84e4d6250e0193e020a1
A. L. Linsebigler, G. Lu and J. T. Yates, Chem. Rev. 95, 735 (1995). http://dx.doi.org/10.1021/cr00035a013
H. Tada, M. Yamamoto and S. Ito, Langmuir 15, 3699 (1999). http://dx.doi.org/10.1021/la9816712
J. C. Yu, J. Yu and J. Zhao, Appl. Catal. B: Environ. 36, 31 (2002). http://www.sciencedirect.com/science/article/B6TF6-44B6YGW-3/2/caa0a37cb0941c52b769a0814c1cabd8
L. Kavan, M. Grätzel, S. E. Gilbert, C. Klemenz and H. J. Scheel, J. Am. Chem. Soc. 118, 6716 (1996). http://dx.doi.org/10.1021/ja954172l
D. Li and Y. Xia, Nano Letters 4, 933 (2004). http://dx.doi.org/10.1021/nl049590f
A. Sadeghzadeh Attar, M. Sasani Ghamsari, F. Hajiesmaeilbaigi, S. Mirdamadi, K. Katagiri and K. Koumoto, J. Mater. Sci. 43, 5924 (2008). http://dx.doi.org/10.1007/s10853-008-2872-y
T. Maiyalagan, B. Viswanathan and U. V. Varadaraju, Bull. Mater. Sci. 7, 3 (2006). http://203.199.213.48/52/
W. Li, S. Ismat Shah, C. P. Huang, O. Jung and C. Ni, Mater. Sci. Eng. B 96, 247 (2002). http://www.sciencedirect.com/science/article/B6TXF-46YXMJ1-1/2/595f05b79496b0458624c7c4ff5a7bdb
T. Maiyalagan, B. Viswanathan and U. V. Varadaraju, Bull. Mater. Sci. 29, 705 (2006). http://203.199.213.48/52/
M. Paulose, K. Shankar, S. Yoriya, H. E. Prakasam, O. K. Varghese, G. K. Mor, T. A. Latempa, A. Fitzgerald and C. A. Grimes, J. Phys. Chem. B 110, 16179 (2006). http://dx.doi.org/10.1021/jp064020k
H. Imai, Y. Takei, K. Shimizu, M. Matsuda and H. Hirashima, J. Mater. Chem. 9, 2971 (1999). http://dx.doi.org/10.1039/A906005G
M. Boehme, G. Fu, E. Ionescu and W. Ensinger, Nano-Micro Letters 2, 22 (2010). http://www.nmletters.org/index.php?journal=nml&page=article&op=view&path[]=46
T. Ohno, K. Sarukawa, K. Tokieda and M. Matsumura, J. Catal. 203, 82 (2001). http://www.sciencedirect.com/science/article/B6WHJ-45BCC6C-3G/2/3fe6aa560b59039fe084f2b46ed6d269
R. R. Bacsa and J. Kiwi, Appl. Catal. B: Environ. 16, 19 (1998). http://www.sciencedirect.com/science/article/B6TF6-3VN03K2-2/2/58d61c1a346ba4b25b4155184585c137
K. Tanaka, M. F. V. Capule and T. Hisanaga, Chem. Phys. Lett. 187, 73 (1991). http://www.sciencedirect.com/science/article/B6TFN-44K955N-2J/2/c4b6c0ff995216d03eb2d99becf28aaa
G. Blondeel, A. Harriman and D. Williams, Solar Energy Materials 9, 217 http://www.sciencedirect.com/science/article/B7571-481F872-2B/2/749c5e596ca2041e8ca7f8b743cb31e1
H. Tada, A. Hattori, Y. Tokihisa, K. Imai, N. Tohge and S. Ito, J. Phys. Chem. B 104, 4585 (2000). http://dx.doi.org/10.1021/jp000049r
T. Kawahara, Y. Konishi, H. Tada, N. Tohge and S. Ito, Langmuir 17, 7442 (2001). http://dx.doi.org/10.1021/la010307r
F. Ye and A. Ohmori, Surf. Coat. Tech. 160, 62 (2002). http://www.sciencedirect.com/science/article/B6TVV-46H7SJB-7/2/a7b863dda086dee2ad8d310cf5e650b6
H. Zhang, M. Finnegan and J. F. Banfield, Nano Letters 1, 81 (2000). http://dx.doi.org/10.1021/nl0055198
T. Sugimoto, X. Zhou and A. Muramatsu, J. Coll. Inter. Sci. 259, 43 (2003). http://www.sciencedirect.com/science/article/B6WHR-480CK3K-J/2/b39fd8acd70b423260ca1cc5bbf2a53d
S. Kittaka, K. Matsuno and S. Takahara, J. Solid State Chem. 132, 447 (1997). http://www.sciencedirect.com/science/article/B6WM2-45K153M-5V/2/ded00fb7136b292ced79ceb592dcc450
H. M. Lu, W. X. Zhang and Q. Jiang, Adv. Eng. Mater. 5, 787 (2003). http://dx.doi.org/10.1002/adem.200300359
K. J. A. Raj and B. Viswanathan, Indian J. Chem. 48A, 1378 (2009). http://nopr.niscair.res.in/handle/123456789/6124
J. Arbiol, J. Cerda, G. Dezanneau, A. Cirera, F. Peiro, A. Cornet and J. R. Morante, J. Appl. Phys. 92, 853 (2002). http://link.aip.org/link/?JAP/92/853/1
H. Zhang and J. F. Banfield, J. Mater. Chem. 8, 2073 (1998). http://dx.doi.org/10.1039/A802619J
H. Zhang and J. F. Banfield, J. Phys. Chem. B 104, 3481 (2000). http://dx.doi.org/10.1021/jp000499j
P. I. Gouma and M. J. Mills, J. Am. Ceramic Soc. 84, 619 (2001). http://dx.doi.org/10.1111/j.1151-2916.2001.tb00709.x
F. Akbal, Environ. Prog. 24, 317 (2005). http://dx.doi.org/10.1002/ep.10092
J. Yao and C. Wang, Int. J. Photoenergy 2010, 643182 (2010). www.hindawi.com/journals/ijp/2010/643182/
R. I. Bickley, T. Gonzalez-Carreno, J. S. Lees, L. Palmisano and R. J. D. Tilley, J. Solid State Chem. 92, 178 (1991). http://www.sciencedirect.com/science/article/B6WM2-4B6NWG7-F7/2/21faed756bc30f5acf3966ea0fdb6e4e
D. C. Hurum, A. G. Agrios, K. A. Gray, T. Rajh and M. C. Thurnauer, J. Phys. Chem. B 107, 4545 (2003). http://dx.doi.org/10.1021/jp0273934
V. Collins-Martínez, A. López Ortiz and A. Aguilar Elguézabal, Int. J. Chem. React. Engin. 5, (2007). http://www.bepress.com/ijcre/vol5/A92/
R. A. Spurr and H. Myers, Analytical Chemistry 29, 760 (1957). http://dx.doi.org/10.1021/ac60125a006