Shape-controlled Synthesis of Porous SnO2 Nanostructures via Morphologically Conserved Transformation from SnC2O4 Precursor Approach
Corresponding Author: Dewei Wang
Nano-Micro Letters,
Vol. 3 No. 1 (2011), Article Number: 34-42
Abstract
Porous SnO2 nanostructures with controlled shapes were synthesized by a facile morphologically conserved transformation from SnC2O4 precursor approach. Well-defined SnC2O4 nanostructures can be obtained through a solution-based precipitation process at ambient conditions without any surfactant. The formation mechanism of such microstructures was tentatively proposed on the basis of intrinsic crystal structure and the reaction conditions. We found that the morphologies of precursor were well maintained while numerous pores were formed during the annealing process. The combined techniques of X-ray diffraction, nitrogen absorption-desorption, field emission scanning electron microscopy, and (high-resolution) transmission electron microscopy were used to characterize the as-prepared SnO2 products. Moreover, cyclic voltammetry (CV) study shows that the shape of CV presents a current response like roughly rectangular mirror images with respect to the zero-current line without obvious redox peaks, which indicating an ideal capacitive behavior of the SnO2 electrodes. The photoluminescence (PL) spectrum study suggests that the as-obtained porous SnO2 nanostructures might have a large number of defects, vacancies of oxygen, and local lattice disorder at the interface, interior and exterior surfaces.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- E. N. Dattoli, Q. Wan, W. Guo, Y. B. Chen, X. Q. Pan and W. Lu, Nano Lett. 7, 2463 (2007). http://dx.doi.org/10.1021/nl0712217
- Y. Idota, T. Kubota, A. Matsufuji, Y. Maekawa and T. Miyasaka, Science 276, 1395 (1997). http://dx.doi.org/10.1126/science.276.5317.1395
- S. Gubbala, V. Chakrapani, V. Kumar and M. K. Sunkara, Adv. Funct. Mater. 18, 2411 (2008). http://dx.doi.org/10.1002/adfm.200800099
- A. Heilig, N. Barsan, U. Weimar, M. Schweizer-Berberich, J. W. Gardner and W. Gopel, Sens. Actuators B 43, 45 (1997). http://dx.doi.org/10.1016/S0925-4005(97)00096-8
- X. G. Han, M. S. Jin, S. F. Xie, Q. Kuang, Z. Y. Jiang, Y. Q. Jiang, Z. X. Xie and L. S. Zheng, Angew. Chem. Int. Ed. 48, 9180 (2009). http://dx.doi.org/10.1002/anie.200903926
- H. G. Yang and H. C. Zeng, Angew. Chem. Int. Ed. 43, 5930 (2004). http://dx.doi.org/10.1002/anie.200461129
- L. Vayssieres and M. Graetzel, Angew. Chem. Int. Ed. 43, 3666 (2004). http://dx.doi.org/10.1002/anie.200454000
- B. Cheng, J. M. Russell, W. S. Shi, L. Zhang and E. T. Samulski, J. Am. Chem. Soc. 126, 5972 (2004). http://dx.doi.org/10.1021/ja0493244
- M. S. Park, G. X. Wang, Y. M. Kang, D. Wexler, S. X. Dou and H. K. Liu, Angew. Chem. Int. Ed. 46, 750 (2006). http://dx.doi.org/10.1002/anie.200603309
- S. Mathur, S. Barth, H. Shen, J. C. Pyun and U. Werner, Small 1, 713 (2005). http://dx.doi.org/10.1002/smll.200400168
- M. Law, H. Kind, B. Messer, F. Kim and P. D. Yang, Angew. Chem. Int. Ed. 41, 2405 (2002). http://dx.doi.org/10.1002/1521-3773(20020703)41:13<2405::AID-ANIE2405>3.0.CO;2-3
- X. W. Lou, Y. Wang, C. L. Yuan, J. Y. Lee and L. A. Archer, Adv. Mater. 18, 2325 (2006). http://dx.doi.org/10.1002/adma.200600733
- Q. R. Zhao, Y. Gao, X. Bai, C. Z. Wu and Y. Xie, Eur. J. Inorg. Chem. 1643 (2006). http://dx.doi.org/10.1002/ejic.200500975
- Y. Wang, H. C. Zeng and J. Y. Lee, Adv. Mater. 18, 645 (2006). http://dx.doi.org/10.1002/adma.200501883
- Z. H. Wen, Q. Wang, Q. Zhang and J. H. Li, Adv. Funct. Mater. 17, 2772 (2007). http://dx.doi.org/10.1002/adfm.200600739
- G. J. D. Soler-illia, C. Sanchez, B. Lebeau and J. Patarin, Chem. Rev. 102, 4093 (2002). http://dx.doi.org/10.1021/cr0200062
- T. Waltz, B. Becker, T. Wagner, T. Sauerwald, C. D. Kohl and M. Tiemann, Sens. Actuators B 150, 788 (2010). http://dx.doi.org/10.1016/j.snb.2010.08.001
- J. F. Ye, H. J. Zhang, R. Yang, X. G. Li and L. M. Qi, Small 6, 296 (2010). http://dx.doi.org/10.1002/smll.200901815
- J. H. Ba, J. Polleux, M. Antonietti and M. Niederberger, Adv. Mater. 17, 2509 (2005). http://dx.doi.org/10.1002/adma.200501018
- L. Jin, L. P. Xu, C. Morein, C. H. Chen, M. Lai, S. Dharmarathna, A. Dobley and S. L. Suib, Adv. Funct. Mater. 22, 3373 (2010). http://dx.doi.org/10.1002/adfm.201001080
- Y. L. Wang, X. C. Jiang and Y. N. Xia, J. Am. Chem. Soc. 125, 16176 (2003). http://dx.doi.org/10.1021/ja037743f
- J. R. Huang, K. Yu, C. P. Gu, M. H. Zhai, Y. J. Wu, M. Yang and J. H. Liu, Sens. Actuators B 147, 467 (2010). http://dx.doi.org/10.1016/j.snb.2010.03.085
- C. Yu, L. Zhang, J. Shi, J. Zhao, J. Gao and D. Yan, Adv. Funct. Mater. 18, 1544 (2008). http://dx.doi.org/10.1002/adfm.200701052
- H. Sun, S. Z. Kang and J. Mu, Mater. Lett. 61, 4121 (2007). http://dx.doi.org/10.1016/j.matlet.2007.01.034
- C. K. Xu, G. D. Xu, Y. K. Liu, X. L. Zhao and G. H. Wang, Scripta Mater. 46, 789 (2002). http://dx.doi.org/10.1016/S1359-6462(02)00077-5
- H. Sun, S. Z. Kang and J. Mu, J. Dispersion Sci. Technol. 30, 466 (2009). http://dx.doi.org/10.1080/01932690802548916
- L. Y. Jiang, X. L. Wu, Y. G. Guo and L. J. Wan, J. Phys. Chem. C 113, 14213 (2009). http://dx.doi.org/10.1021/jp904209k
- Y. P. Fang, A. W. Xu, L. P. You, R. Q. Song, J. C. Yu, H. X. Zhang, Q. Li and H. Q. Liu, Adv. Funct. Mater. 13, 955 (2003). http://dx.doi.org/10.1002/adfm.200304470
- J. Tang and A. P. Alivisatos, Nano Lett. 6, 2701 (2006). http://dx.doi.org/10.1021/nl0615930
- D. W. Wang, Q. H. Wang, T. M. Wang, Nanotechnology 22, 135604 (2011). http://dx.doi.org/10.1088/0957-4484/22/13/135604
- D. B. Zhang, L. M. Qi, J. M. Ma and H. M. Cheng, Cryst. Eng. Comm. 4, 536 (2002). doi:10.1039/b207956a
- M. S. Wu, H. H. Hsieh, Electrochim. Acta. 53, 3427 (2008).
- Z. R. Dai, Z. W. Pan, Z. L. Wang, Adv. Funct. Mater. 13, 9 (2003). http://dx.doi.org/10.1002/adfm.200390013
References
E. N. Dattoli, Q. Wan, W. Guo, Y. B. Chen, X. Q. Pan and W. Lu, Nano Lett. 7, 2463 (2007). http://dx.doi.org/10.1021/nl0712217
Y. Idota, T. Kubota, A. Matsufuji, Y. Maekawa and T. Miyasaka, Science 276, 1395 (1997). http://dx.doi.org/10.1126/science.276.5317.1395
S. Gubbala, V. Chakrapani, V. Kumar and M. K. Sunkara, Adv. Funct. Mater. 18, 2411 (2008). http://dx.doi.org/10.1002/adfm.200800099
A. Heilig, N. Barsan, U. Weimar, M. Schweizer-Berberich, J. W. Gardner and W. Gopel, Sens. Actuators B 43, 45 (1997). http://dx.doi.org/10.1016/S0925-4005(97)00096-8
X. G. Han, M. S. Jin, S. F. Xie, Q. Kuang, Z. Y. Jiang, Y. Q. Jiang, Z. X. Xie and L. S. Zheng, Angew. Chem. Int. Ed. 48, 9180 (2009). http://dx.doi.org/10.1002/anie.200903926
H. G. Yang and H. C. Zeng, Angew. Chem. Int. Ed. 43, 5930 (2004). http://dx.doi.org/10.1002/anie.200461129
L. Vayssieres and M. Graetzel, Angew. Chem. Int. Ed. 43, 3666 (2004). http://dx.doi.org/10.1002/anie.200454000
B. Cheng, J. M. Russell, W. S. Shi, L. Zhang and E. T. Samulski, J. Am. Chem. Soc. 126, 5972 (2004). http://dx.doi.org/10.1021/ja0493244
M. S. Park, G. X. Wang, Y. M. Kang, D. Wexler, S. X. Dou and H. K. Liu, Angew. Chem. Int. Ed. 46, 750 (2006). http://dx.doi.org/10.1002/anie.200603309
S. Mathur, S. Barth, H. Shen, J. C. Pyun and U. Werner, Small 1, 713 (2005). http://dx.doi.org/10.1002/smll.200400168
M. Law, H. Kind, B. Messer, F. Kim and P. D. Yang, Angew. Chem. Int. Ed. 41, 2405 (2002). http://dx.doi.org/10.1002/1521-3773(20020703)41:13<2405::AID-ANIE2405>3.0.CO;2-3
X. W. Lou, Y. Wang, C. L. Yuan, J. Y. Lee and L. A. Archer, Adv. Mater. 18, 2325 (2006). http://dx.doi.org/10.1002/adma.200600733
Q. R. Zhao, Y. Gao, X. Bai, C. Z. Wu and Y. Xie, Eur. J. Inorg. Chem. 1643 (2006). http://dx.doi.org/10.1002/ejic.200500975
Y. Wang, H. C. Zeng and J. Y. Lee, Adv. Mater. 18, 645 (2006). http://dx.doi.org/10.1002/adma.200501883
Z. H. Wen, Q. Wang, Q. Zhang and J. H. Li, Adv. Funct. Mater. 17, 2772 (2007). http://dx.doi.org/10.1002/adfm.200600739
G. J. D. Soler-illia, C. Sanchez, B. Lebeau and J. Patarin, Chem. Rev. 102, 4093 (2002). http://dx.doi.org/10.1021/cr0200062
T. Waltz, B. Becker, T. Wagner, T. Sauerwald, C. D. Kohl and M. Tiemann, Sens. Actuators B 150, 788 (2010). http://dx.doi.org/10.1016/j.snb.2010.08.001
J. F. Ye, H. J. Zhang, R. Yang, X. G. Li and L. M. Qi, Small 6, 296 (2010). http://dx.doi.org/10.1002/smll.200901815
J. H. Ba, J. Polleux, M. Antonietti and M. Niederberger, Adv. Mater. 17, 2509 (2005). http://dx.doi.org/10.1002/adma.200501018
L. Jin, L. P. Xu, C. Morein, C. H. Chen, M. Lai, S. Dharmarathna, A. Dobley and S. L. Suib, Adv. Funct. Mater. 22, 3373 (2010). http://dx.doi.org/10.1002/adfm.201001080
Y. L. Wang, X. C. Jiang and Y. N. Xia, J. Am. Chem. Soc. 125, 16176 (2003). http://dx.doi.org/10.1021/ja037743f
J. R. Huang, K. Yu, C. P. Gu, M. H. Zhai, Y. J. Wu, M. Yang and J. H. Liu, Sens. Actuators B 147, 467 (2010). http://dx.doi.org/10.1016/j.snb.2010.03.085
C. Yu, L. Zhang, J. Shi, J. Zhao, J. Gao and D. Yan, Adv. Funct. Mater. 18, 1544 (2008). http://dx.doi.org/10.1002/adfm.200701052
H. Sun, S. Z. Kang and J. Mu, Mater. Lett. 61, 4121 (2007). http://dx.doi.org/10.1016/j.matlet.2007.01.034
C. K. Xu, G. D. Xu, Y. K. Liu, X. L. Zhao and G. H. Wang, Scripta Mater. 46, 789 (2002). http://dx.doi.org/10.1016/S1359-6462(02)00077-5
H. Sun, S. Z. Kang and J. Mu, J. Dispersion Sci. Technol. 30, 466 (2009). http://dx.doi.org/10.1080/01932690802548916
L. Y. Jiang, X. L. Wu, Y. G. Guo and L. J. Wan, J. Phys. Chem. C 113, 14213 (2009). http://dx.doi.org/10.1021/jp904209k
Y. P. Fang, A. W. Xu, L. P. You, R. Q. Song, J. C. Yu, H. X. Zhang, Q. Li and H. Q. Liu, Adv. Funct. Mater. 13, 955 (2003). http://dx.doi.org/10.1002/adfm.200304470
J. Tang and A. P. Alivisatos, Nano Lett. 6, 2701 (2006). http://dx.doi.org/10.1021/nl0615930
D. W. Wang, Q. H. Wang, T. M. Wang, Nanotechnology 22, 135604 (2011). http://dx.doi.org/10.1088/0957-4484/22/13/135604
D. B. Zhang, L. M. Qi, J. M. Ma and H. M. Cheng, Cryst. Eng. Comm. 4, 536 (2002). doi:10.1039/b207956a
M. S. Wu, H. H. Hsieh, Electrochim. Acta. 53, 3427 (2008).
Z. R. Dai, Z. W. Pan, Z. L. Wang, Adv. Funct. Mater. 13, 9 (2003). http://dx.doi.org/10.1002/adfm.200390013