Synthesis and Electrical Properties of TiO2 Nanoparticles Embedded in Polyamide-6 Nanofibers Via Electrospinning
Corresponding Author: Hak Yong Kim
Nano-Micro Letters,
Vol. 3 No. 1 (2011), Article Number: 56-61
Abstract
We report on the synthesis and characterizations of TiO2 nanoparticles embedded in polyamide-6 composite nanofibers by using electrospinning technique. The influence of substrate on the electrical characteristics of polyamide-6/TiO2 composite nanofibers was investigated. The resultant nanofibers exhibit good incorporation of TiO2 nanoparticles. The doping of TiO2 nanoparticles into the polyamide-6 nanofibers were confirmed by high resolution transmission electron microscopy and energy dispersive X-ray spectroscopy. Photoluminescence (PL) and cathodoluminescence (CL) spectroscopy were also used to characterize the samples. The PL and CL spectra reveal that the as-spun polyamide-6/TiO2 composite nanofibers consisted of overlapping of two broad emission bands due to the contribution of polyamide-6 (centered at about 475 nm), which might originate from organic functional groups of polyamide-6 and TiO2 nanoparticles (centered around 550 nm). The electrical conductivity of the polyamide-6/TiO2 composite nanofibers on different substrates was carried out. It was found that the electrical conductivity of the polyamide-6/TiO2 composite nanofibers on silicon substrate was in the range of 1∼3 μA, and about 1 to 20 pA for the paper and glass substrates.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo and P. D. Yang, Science 292, 1897 (2001). http://dx.doi.org/10.1126/science.1060367
- W. U. Huynh, J. J. Dittmer and A. P. Alivisatos, Science 295, 2425 (2002). http://dx.doi.org/10.1126/science.1069156
- R. Ramaseshan, S. Sundararajan and R. Jose, J. Appl. Phys. 102, 111101 (2007). http://dx.doi.org/10.1063/1.2815499
- Z. W. Pan, Z. R. Dai and Z. L. Wang, Science 291, 1947 (2001). http://dx.doi.org/10.1126/science.1058120
- K. Tsukagoshi, B. W. Alphenaar and H. Ago, Nature 401, 572 (1999). http://dx.doi.org/10.1038/44108
- D. F. Zhang, L. D. Sun, C. J. Jia, Z. G. Yan, L. P. You and C. H. Yan, J. Am. Chem. Soc. 127, 13492 (2005). http://dx.doi.org/10.1021/ja054771k
- H. Zhang, H. W. Song and H. Q. Yu, J. Phys. Chem. C 111, 6524 (2007). http://dx.doi.org/10.1021/jp0684123
- H. Zhang, H. W. Song and H. Q. Yu, Appl. Phys. Lett. 90, 103103 (2007). http://dx.doi.org/10.1063/1.2711380
- Y. C. Choi, W. S. Kim, Y. S. Park, S. M. Lee, D. J. Bae, Y. H. Lee, G. S. Park, W. B. Choi and N. S. Lee, J. M. Kim, Adv. Mater. 12, 746 (2000). http://dx.doi.org/10.1002/(SICI)1521-4095(200005)12:10$<$746::AID-ADMA746$>$3.0.CO;2-N
- X. F. Duan and C. M. Lieber, Adv. Mater. 12, 298 (2000). http://dx.doi.org/10.1002/(SICI)1521-4095(200002)12:4$<$298::AID-ADMA298$>$3.0.CO;2-Y
- Y. Wu and P. Yang, Chem. Mater. 12, 605 (2000). http://dx.doi.org/10.1021/cm9907514
- Y. Li, G. W. Meng, L. D. Zhang and F. Phillip, Appl. Phys. Lett. 76, 2011 (2000). http://dx.doi.org/10.1063/1.126238
- R. Kessick and G. Tepper, Appl. Phys. Lett. 83, 557 (2003). http://dx.doi.org/10.1063/1.1594283
- J. Venugopal and S. Ramakrishna, Appl. Biochem. Biotech. 125, 147 (2005). http://dx.doi.org/10.1385/ABAB:125:3:147
- R. Nirmala, R. Navamathavan, M. H. E. Newehy and H. Y. Kim, Mater. Lett. 65, 493 (2011). http://dx.doi.org/10.1016/j.matlet.2010.10.066
- B. Ding, M. Wang, J. Yu and G. Sun, Sensors 9, 1609 (2003). http://dx.doi.org/10.3390/s90301609
- Q. D. Ling, D. J. Liaw, C. Zhu, D. S. H. Chan, E. T. Kang and K. G. Neoh, Prog. Polym. Sci. 33, 917 (2008). http://dx.doi.org/10.1016/j.progpolymsci.2008.08.001
- J. Ananpattarachai, P. Kajitvichyanukul and S. Seraphin, Hazard. Mater. 168, 253 (2009). http://dx.doi.org/10.1016/j.jhazmat.2009.02.036
- W. F. Zhang, M. S. Zhang, Z. Yin and Q. Chen, Appl. Phys. B: Lasers Opt. 70, 261 (2000). http://dx.doi.org/10.1007/s003400050043
- J. Liqiang, S. Xiaojun, C. Weimin, X. Zili, D. Yaoguo and F. Honggang, J. Phys. Chem. Solid 64, 615 (2003). http://dx.doi.org/10.1016/S0022-3697(02)00362-1
- S. M. Kim, J. W. Son, K. R. Lee, H. Kim, H. R. Kim, H. W. Lee and J. H. Lee, J. Electroceram. 24, 153 (2010). http://dx.doi.org/10.1016/S0022-3697(02)00362-1
- A. Cattaneo, L. Pirozzi, B. Morten and M. Prudenziati, Electrocomponent Sci. Technol. 6, 247 (1980).
References
M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo and P. D. Yang, Science 292, 1897 (2001). http://dx.doi.org/10.1126/science.1060367
W. U. Huynh, J. J. Dittmer and A. P. Alivisatos, Science 295, 2425 (2002). http://dx.doi.org/10.1126/science.1069156
R. Ramaseshan, S. Sundararajan and R. Jose, J. Appl. Phys. 102, 111101 (2007). http://dx.doi.org/10.1063/1.2815499
Z. W. Pan, Z. R. Dai and Z. L. Wang, Science 291, 1947 (2001). http://dx.doi.org/10.1126/science.1058120
K. Tsukagoshi, B. W. Alphenaar and H. Ago, Nature 401, 572 (1999). http://dx.doi.org/10.1038/44108
D. F. Zhang, L. D. Sun, C. J. Jia, Z. G. Yan, L. P. You and C. H. Yan, J. Am. Chem. Soc. 127, 13492 (2005). http://dx.doi.org/10.1021/ja054771k
H. Zhang, H. W. Song and H. Q. Yu, J. Phys. Chem. C 111, 6524 (2007). http://dx.doi.org/10.1021/jp0684123
H. Zhang, H. W. Song and H. Q. Yu, Appl. Phys. Lett. 90, 103103 (2007). http://dx.doi.org/10.1063/1.2711380
Y. C. Choi, W. S. Kim, Y. S. Park, S. M. Lee, D. J. Bae, Y. H. Lee, G. S. Park, W. B. Choi and N. S. Lee, J. M. Kim, Adv. Mater. 12, 746 (2000). http://dx.doi.org/10.1002/(SICI)1521-4095(200005)12:10$<$746::AID-ADMA746$>$3.0.CO;2-N
X. F. Duan and C. M. Lieber, Adv. Mater. 12, 298 (2000). http://dx.doi.org/10.1002/(SICI)1521-4095(200002)12:4$<$298::AID-ADMA298$>$3.0.CO;2-Y
Y. Wu and P. Yang, Chem. Mater. 12, 605 (2000). http://dx.doi.org/10.1021/cm9907514
Y. Li, G. W. Meng, L. D. Zhang and F. Phillip, Appl. Phys. Lett. 76, 2011 (2000). http://dx.doi.org/10.1063/1.126238
R. Kessick and G. Tepper, Appl. Phys. Lett. 83, 557 (2003). http://dx.doi.org/10.1063/1.1594283
J. Venugopal and S. Ramakrishna, Appl. Biochem. Biotech. 125, 147 (2005). http://dx.doi.org/10.1385/ABAB:125:3:147
R. Nirmala, R. Navamathavan, M. H. E. Newehy and H. Y. Kim, Mater. Lett. 65, 493 (2011). http://dx.doi.org/10.1016/j.matlet.2010.10.066
B. Ding, M. Wang, J. Yu and G. Sun, Sensors 9, 1609 (2003). http://dx.doi.org/10.3390/s90301609
Q. D. Ling, D. J. Liaw, C. Zhu, D. S. H. Chan, E. T. Kang and K. G. Neoh, Prog. Polym. Sci. 33, 917 (2008). http://dx.doi.org/10.1016/j.progpolymsci.2008.08.001
J. Ananpattarachai, P. Kajitvichyanukul and S. Seraphin, Hazard. Mater. 168, 253 (2009). http://dx.doi.org/10.1016/j.jhazmat.2009.02.036
W. F. Zhang, M. S. Zhang, Z. Yin and Q. Chen, Appl. Phys. B: Lasers Opt. 70, 261 (2000). http://dx.doi.org/10.1007/s003400050043
J. Liqiang, S. Xiaojun, C. Weimin, X. Zili, D. Yaoguo and F. Honggang, J. Phys. Chem. Solid 64, 615 (2003). http://dx.doi.org/10.1016/S0022-3697(02)00362-1
S. M. Kim, J. W. Son, K. R. Lee, H. Kim, H. R. Kim, H. W. Lee and J. H. Lee, J. Electroceram. 24, 153 (2010). http://dx.doi.org/10.1016/S0022-3697(02)00362-1
A. Cattaneo, L. Pirozzi, B. Morten and M. Prudenziati, Electrocomponent Sci. Technol. 6, 247 (1980).