Schottky photodiode using submicron thick diamond epilayer for flame sensing
Corresponding Author: M. Y. Liao
Nano-Micro Letters,
Vol. 1 No. 1 (2009), Article Number: 30-33
Abstract
The sensing of a flame can be performed by using wide-bandgap semiconductors, which offer a high signal-to-noise ratio since they only response the ultraviolet emission in the flame. Diamond is a robust semiconductor with a wide-bandgap of 5.5 eV, exhibiting an intrinsic solar-blindness for deep-ultraviolet (DUV) detection. In this work, by using a submicron thick boron-doped diamond epilayer grown on a type-Ib diamond substrate, a Schottky photodiode device structure- based flame sensor is demonstrated. The photodiode exhibits extremely low dark current in both forward and reverse modes due to the holes depletion in the epilayer. The photodiode has a photoconductivity gain larger than 100 and a threshold wavelength of 330 nm in the forward bias mode. CO and OH emission bands with wavelengths shorter than 330 nm in a flame light are detected at a forward voltage of −10 V. An alcohol lamp flame in the distance of 250 mm is directly detected without a focusing lens of flame light.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- D. M. Brown, E. Downey, J. Kretchmer, G. Michon, E. Shu and D. Schneider, Solid-State Electron. 42, 755 (1998). doi:10.1016/S0038-1101(97)00260-8
- A. Hirano, C. Pernot, M. Iwaya, T. Detchprohm, H. Amano and I. Akasaki, Phys. Stat. Sol. 188, 293 (2001). doi:10.1002/1521-396X(200111)188:1<293::AID-PSSA293>3.0.CO;2-D
- M.Y. Liao, Y. Koide, J. Alvarez, M. Imura and J. P. Kleider, Phys. Rev. B 78, 045112 (2008). doi:10.1103/PhysRevB.78.045112
- M. Y. Liao, J. Alvarez and Y. Koide, Appl. Phys. Lett. 90, 123507 (2007). doi:10.1063/1.2715440
- M. Y. Liao, Y. Koide and J. Alvarez, Appl. Phys. Lett. 87, 022105 (2005). doi:10.1063/1.1992660
- Y. Koide, M. Y. Liao and J. Alvarez, Diamond Relat. Mater. 15, 1962 (2006). doi:10.1016/j.diamond.2006.08.009
- M. Y. Liao and Y. Koide, Appl. Phys. Lett. 89, 113509 (2006). doi:10.1063/1.2349829
- A. G. Gaydon, The Spectroscopy of Flames, Chapman and Hall, London, (1957).
- J. Walker, Rep. Pro. Phys. 42, 1605 (1979). doi:10.1088/0034-4885/42/10/001
References
D. M. Brown, E. Downey, J. Kretchmer, G. Michon, E. Shu and D. Schneider, Solid-State Electron. 42, 755 (1998). doi:10.1016/S0038-1101(97)00260-8
A. Hirano, C. Pernot, M. Iwaya, T. Detchprohm, H. Amano and I. Akasaki, Phys. Stat. Sol. 188, 293 (2001). doi:10.1002/1521-396X(200111)188:1<293::AID-PSSA293>3.0.CO;2-D
M.Y. Liao, Y. Koide, J. Alvarez, M. Imura and J. P. Kleider, Phys. Rev. B 78, 045112 (2008). doi:10.1103/PhysRevB.78.045112
M. Y. Liao, J. Alvarez and Y. Koide, Appl. Phys. Lett. 90, 123507 (2007). doi:10.1063/1.2715440
M. Y. Liao, Y. Koide and J. Alvarez, Appl. Phys. Lett. 87, 022105 (2005). doi:10.1063/1.1992660
Y. Koide, M. Y. Liao and J. Alvarez, Diamond Relat. Mater. 15, 1962 (2006). doi:10.1016/j.diamond.2006.08.009
M. Y. Liao and Y. Koide, Appl. Phys. Lett. 89, 113509 (2006). doi:10.1063/1.2349829
A. G. Gaydon, The Spectroscopy of Flames, Chapman and Hall, London, (1957).
J. Walker, Rep. Pro. Phys. 42, 1605 (1979). doi:10.1088/0034-4885/42/10/001