Fabrication of anatase titanium dioxide nanotubes by electroless deposition using polycarbonate for separate casting method
Corresponding Author: M. Boehme
Nano-Micro Letters,
Vol. 2 No. 1 (2010), Article Number: 26-30
Abstract
Titanium dioxide nanotubes (TNTs) were prepared by electroless deposition using ion track etched polycarbonate templates. The ion tracks were prepared to the desired diameter of the TNTs outer diameter. Titanium dioxide nanotubes with a diameter of minimum 80 nm having a wall thickness of minimum 10 nm can be fabricated using this method. To achieve nanotubes with thin walls and small surface roughness the tubes were generated by a several steps procedure under aqueous conditions at nearly room temperature. The presented approach will process open end nanotubes with well defined outer diameter and wall thickness. Using this method TNT arrays up to 109 tubes per cm2 having a tube length up to 30 μm can be produced, single tubes are also possible. The structural properties of the grown TNTs were investigated by using various analytical techniques, i.e. scanning electron microscopy (SEM), energy dispersive X-ray fluoresence spectrometer (EDX), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), Raman spectroscopy and Photoluminescence.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A. Cox, Photochemistry 22, 505 (1992). doi:10.1039/9781847554727-00505
- R. J. Gonzalez and R. Zallen, NATO ASI Proceedings, ed. By M.F. Thorpe (1997).
- D. Li and Y. Xia, Nano Lett. 4, 933 (2004). doi:10.1021/nl049590f
- A. Sadeghzadeh, M. S. Ghamsari and J. Mater. Sci. 43, 5924 (2008). doi:10.1007/s10853-008-2872-y
- T. Maiyalagan, B. Viswanathan and U. V. Varadaraju, Bull. Mater. Sci. 29, 7, 705 (2006).
- J. Wu, G. Bai, J. A. Eastman, G. Zhou, V. K. Vasudevan and Symposium Z from the MRS Spring Meeting. (2005).
- C. R. Martin, Science 23, 266, 5193 (1994).
- J. D. Klein, R. D. Herrick, D. Palmer, M. J. Sailor, C. J. Brumlik and C. R. Martin, Chem. Mater. 5, 902 (1993). doi:10.1021/cm00031a002
- L. A. Jr. Porter, H. C. Choi, A. E. Ribbe and J. M. Buriak, Nano Lett. 2, 10 (2002).
- K. Valenzuela, S. Raghavan, P. A. Deymier and J. J. Hoying, Nano Sci. Nanotech. 8, 7 (2008).
- Z. Shi, et al, Nanotechnology 17 (2006).
- N. Chtanko, T. M. E. Molares, T. Cornelius, D. Dobrev and R. J. Neumann, Phys. Chem. B 108, 28 (2004).
- S. Shukla, S. Seal, J. Akesson, R. Oder, R. Carter and Z. Rahman, Appl. Surf. Sci. 80, 35 (2001). doi:10.1016/S0169-4332(01)00341-5
- Mullin J W 1997 Crystallization (Oxford: Butterworth- Heinemann).
- JCPDS (1998) International Centre for Diffraction Data.
- D. C. Hurum, A. G. Agrios, K. A. Gray, T. Rajh and M. C. Thurnauer, J. Phys. Chem. B 107, 4545 (2003). doi:10.1021/jp0273934
- T. Ohsaka, F. Izumi and Y. Fujiki, J. Raman Spectrosc. 7, 321–323 (1978). doi:10.1002/jrs.1250070606
- D. Fang, K. Huang, S. Liu and J. J. Huang, Braz. Chem. Soc. 19, 6, 1059 (2008).
- M. Murata, K. Wakino and S. J. Ikeda, Electron. Spectrosc. 6, 459 (1975). doi:10.1016/0368-2048(75)80032-6
- D. Gonbeau, C. Guimon, G. Pfister-Guillouzo, A. Levasseur, G. Meunier and R. Dormoy, Surf. Sci. 254, 81 (1991). doi:10.1016/0039-6028(91)90640-E
- G. Silversmit, G. D. Doncker and R. D. Gryse, Surf. Sci. Spectrosc. 9, 21 (2002). doi:10.1116/11.20020701
- G. Y. Hua, G. Yang, C. H. Sun, S. Z. Qiao, J. Zou, G. Liu, S. C. Smith, H. M. Cheng and G. Q. Lu, Nature 453, 638 (2008). doi:10.1038/nature06964
References
A. Cox, Photochemistry 22, 505 (1992). doi:10.1039/9781847554727-00505
R. J. Gonzalez and R. Zallen, NATO ASI Proceedings, ed. By M.F. Thorpe (1997).
D. Li and Y. Xia, Nano Lett. 4, 933 (2004). doi:10.1021/nl049590f
A. Sadeghzadeh, M. S. Ghamsari and J. Mater. Sci. 43, 5924 (2008). doi:10.1007/s10853-008-2872-y
T. Maiyalagan, B. Viswanathan and U. V. Varadaraju, Bull. Mater. Sci. 29, 7, 705 (2006).
J. Wu, G. Bai, J. A. Eastman, G. Zhou, V. K. Vasudevan and Symposium Z from the MRS Spring Meeting. (2005).
C. R. Martin, Science 23, 266, 5193 (1994).
J. D. Klein, R. D. Herrick, D. Palmer, M. J. Sailor, C. J. Brumlik and C. R. Martin, Chem. Mater. 5, 902 (1993). doi:10.1021/cm00031a002
L. A. Jr. Porter, H. C. Choi, A. E. Ribbe and J. M. Buriak, Nano Lett. 2, 10 (2002).
K. Valenzuela, S. Raghavan, P. A. Deymier and J. J. Hoying, Nano Sci. Nanotech. 8, 7 (2008).
Z. Shi, et al, Nanotechnology 17 (2006).
N. Chtanko, T. M. E. Molares, T. Cornelius, D. Dobrev and R. J. Neumann, Phys. Chem. B 108, 28 (2004).
S. Shukla, S. Seal, J. Akesson, R. Oder, R. Carter and Z. Rahman, Appl. Surf. Sci. 80, 35 (2001). doi:10.1016/S0169-4332(01)00341-5
Mullin J W 1997 Crystallization (Oxford: Butterworth- Heinemann).
JCPDS (1998) International Centre for Diffraction Data.
D. C. Hurum, A. G. Agrios, K. A. Gray, T. Rajh and M. C. Thurnauer, J. Phys. Chem. B 107, 4545 (2003). doi:10.1021/jp0273934
T. Ohsaka, F. Izumi and Y. Fujiki, J. Raman Spectrosc. 7, 321–323 (1978). doi:10.1002/jrs.1250070606
D. Fang, K. Huang, S. Liu and J. J. Huang, Braz. Chem. Soc. 19, 6, 1059 (2008).
M. Murata, K. Wakino and S. J. Ikeda, Electron. Spectrosc. 6, 459 (1975). doi:10.1016/0368-2048(75)80032-6
D. Gonbeau, C. Guimon, G. Pfister-Guillouzo, A. Levasseur, G. Meunier and R. Dormoy, Surf. Sci. 254, 81 (1991). doi:10.1016/0039-6028(91)90640-E
G. Silversmit, G. D. Doncker and R. D. Gryse, Surf. Sci. Spectrosc. 9, 21 (2002). doi:10.1116/11.20020701
G. Y. Hua, G. Yang, C. H. Sun, S. Z. Qiao, J. Zou, G. Liu, S. C. Smith, H. M. Cheng and G. Q. Lu, Nature 453, 638 (2008). doi:10.1038/nature06964