Multifunctional Flexible Humidity Sensor Systems Towards Noncontact Wearable Electronics
Corresponding Author: Geng Yang
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 150
Abstract
In the past decade, the global industry and research attentions on intelligent skin-like electronics have boosted their applications in diverse fields including human healthcare, Internet of Things, human–machine interfaces, artificial intelligence and soft robotics. Among them, flexible humidity sensors play a vital role in noncontact measurements relying on the unique property of rapid response to humidity change. This work presents an overview of recent advances in flexible humidity sensors using various active functional materials for contactless monitoring. Four categories of humidity sensors are highlighted based on resistive, capacitive, impedance-type and voltage-type working mechanisms. Furthermore, typical strategies including chemical doping, structural design and Joule heating are introduced to enhance the performance of humidity sensors. Drawing on the noncontact perception capability, human/plant healthcare management, human–machine interactions as well as integrated humidity sensor-based feedback systems are presented. The burgeoning innovations in this research field will benefit human society, especially during the COVID-19 epidemic, where cross-infection should be averted and contactless sensation is highly desired.
Highlights:
1 This report summarizes recent advances of flexible humidity sensors and their integrated systems.
2 Typical examples of noncontact detections based on flexible and wearable humidity sensors are highlighted.
3 Research opportunities and challenges of pushing flexible humidity sensors towards practical contactless measurements are discussed.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- L. Xiang, X. Zeng, F. Xia, W. Jin, Y. Liu et al., Recent advances in flexible and stretchable sensing systems: from the perspective of system integration. ACS Nano 14(6), 6449–6469 (2020). https://doi.org/10.1021/acsnano.0c01164
- P. Li, H.P.A. Ali, W. Cheng, J. Yang, B.C.K. Tee, Bioinspired prosthetic interfaces. Adv. Mater. Technol. 5(3), 1900856 (2020). https://doi.org/10.1002/admt.201900856
- J.C. Yang, J. Mun, S.Y. Kwon, S. Park, Z. Bao et al., Electronic skin: recent progress and future prospects for skin-attachable devices for health monitoring, robotics, and prosthetics. Adv. Mater. 31(48), 1904765 (2019). https://doi.org/10.1002/adma.201904765
- J. Deng, H. Yuk, J. Wu, C.E. Varela, X. Chen et al., Electrical bioadhesive interface for bioelectronics. Nat. Mater. 20(2), 229–236 (2020). https://doi.org/10.1038/s41563-020-00814-2
- L. Zhang, J. Pan, Z. Zhang, H. Wu, N. Yao et al., Ultrasensitive skin-like wearable optical sensors based on glass micro/nanofibers. Opto-Electron. Adv. 3(3), 190022 (2020). https://doi.org/10.29026/oea.2020.190022
- F. Zhong, W. Hu, P. Zhu, H. Wang, C. Ma et al., Piezoresistive design for electronic skin: from fundamental to emerging applications. Opto-Electron. Adv. 5, 210029 (2022). https://doi.org/10.29026/oea.2022.210029
- Z. Ye, G. Pang, K. Xu, Z. Hou, H. Lv et al., Soft robot skin with conformal adaptability for on-body tactile perception of collaborative robots. IEEE Robot Autom. Lett. 7(2), 5127–5134 (2022). https://doi.org/10.1109/lra.2022.3155225
- C. Feng, C.P.H. Rajapaksha, A. Jákli, Ionic elastomers for electric actuators and sensors. Engineering 7(5), 581–602 (2021). https://doi.org/10.1016/j.eng.2021.02.014
- W. Zhang, L. Zhang, Y. Liao, H. Cheng, Conformal manufacturing of soft deformable sensors on the curved surface. Int. J. Extreme Manuf. 3(4), 042001 (2021). https://doi.org/10.1088/2631-7990/ac1158
- J.Y. Oh, Z. Bao, Second skin enabled by advanced electronics. Adv. Sci. 6(11), 1900186 (2019). https://doi.org/10.1002/advs.201900186
- K. Xu, Y. Lu, T. Yamaguchi, T. Arie, S. Akita et al., Highly precise multifunctional thermal management-based flexible sensing sheets. ACS Nano 13(12), 14348–14356 (2019). https://doi.org/10.1021/acsnano.9b07805
- W. Heng, G. Yang, W.S. Kim, K. Xu, Emerging wearable flexible sensors for sweat analysis. Bio-Des Manuf. 5, 64–84 (2021). https://doi.org/10.1007/s42242-021-00171-2
- K. Xu, R. Zhou, K. Takei, M. Hong, Toward flexible surface-enhanced Raman scattering (SERS) sensors for point-of-care diagnostics. Adv. Sci. 6(16), 1900925 (2019). https://doi.org/10.1002/advs.201900925
- J. Park, Y. Lee, H. Lee, H. Ko, Transfer printing of electronic functions on arbitrary complex surfaces. ACS Nano 14(1), 12–20 (2020). https://doi.org/10.1021/acsnano.9b09846
- D. Jung, C. Lim, H.J. Shim, Y. Kim, C. Park et al., Highly conductive and elastic nanomembrane for skin electronics. Science 373(6558), 1022–1026 (2021). https://doi.org/10.1126/science.abh4357
- Q. Liu, Y. Liu, J. Shi, Z. Liu, Q. Wang et al., High-porosity foam-based iontronic pressure sensor with superhigh sensitivity of 9280 kpa. Nano-Micro Lett. 14, 21 (2021). https://doi.org/10.1007/s40820-021-00770-9
- C. Zhang, W. Zhou, D. Geng, C. Bai, W. Li et al., Laser direct writing and characterizations of flexible piezoresistive sensors with microstructures. Opto-Electron Adv. 4(4), 200061 (2021). https://doi.org/10.29026/oea.2021.200061
- M.S.S. Bharati, V.R. Soma, Flexible SERS substrates for hazardous materials detection: recent advances. Opto-Electron Adv. 4(11), 210048 (2021). https://doi.org/10.29026/oea.2021.210048
- M.J. Han, D.K. Yoon, Advances in soft materials for sustainable electronics. Engineering 7(5), 564–580 (2021). https://doi.org/10.1016/j.eng.2021.02.010
- C. Zhang, Q. Yang, J. Yong, C. Shan, J. Zhang et al., Guiding magnetic liquid metal for flexible circuit. Int. J. Extreme Manuf. 3(2), 025102 (2021). https://doi.org/10.1088/2631-7990/abeda3
- X. Huang, J. Li, Y. Liu, T. Wong, J. Su et al., Epidermal self-powered sweat sensors for glucose and lactate monitoring. Bio-Des. Manuf. 5(1), 201–209 (2022). https://doi.org/10.1007/s42242-021-00156-1
- Y. Jing, A. Wang, J. Li, Q. Li, Q. Han et al., Preparation of conductive and transparent dipeptide hydrogels for wearable biosensor. Bio-Des. Manuf. 5(1), 153–162 (2022). https://doi.org/10.1007/s42242-021-00143-6
- E. D’Anna, G. Valle, A. Mazzoni, I. Strauss, F. Iberite et al., A closed-loop hand prosthesis with simultaneous intraneural tactile and position feedback. Sci. Robot. 4(27), eaau8892 (2019). https://doi.org/10.1126/scirobotics.aau8892
- A. Leal-Junior, L. Avellar, V. Biazi, M.S. Soares, A. Frizera et al., Multifunctional flexible optical waveguide sensor: on the bioinspiration for ultrasensitive sensors development. Opto-Electron Adv 5, 210098 (2022). https://doi.org/10.29026/oea.2022.210098
- Z. Liu, T. Zhu, J. Wang, Z. Zheng, Y. Li et al., Functionalized fiber-based strain sensors: pathway to next-generation wearable electronics. Nano-Micro Lett. 14, 61 (2022). https://doi.org/10.1007/s40820-022-00806-8
- K. Xu, Y. Lu, S. Honda, T. Arie, S. Akita et al., Highly stable kirigami-structured stretchable strain sensors for perdurable wearable electronics. J. Mater. Chem. C 7(31), 9609–9617 (2019). https://doi.org/10.1039/C9TC01874C
- H. Luo, G. Pang, K. Xu, Z. Ye, H. Yang et al., A fully printed flexible sensor sheet for simultaneous proximity–pressure–temperature detection. Adv. Mater. Technol. 6(11), 2100616 (2021). https://doi.org/10.1002/admt.202100616
- D. Kong, G. Yang, G. Pang, Z. Ye, H. Lv et al., Bioinspired co-design of tactile sensor and deep learning algorithm for human-robot interaction. Adv Intell. Syst. (2022). https://doi.org/10.1002/aisy.202200050
- V.V. Tran, N.H.T. Tran, H.S. Hwang, M. Chang, Development strategies of conducting polymer-based electrochemical biosensors for virus biomarkers: potential for rapid COVID-19 detection. Biosens. Bioelectron. 182, 113192 (2021). https://doi.org/10.1016/j.bios.2021.113192
- G. Quer, J.M. Radin, M. Gadaleta, K. Baca-Motes, L. Ariniello et al., Wearable sensor data and self-reported symptoms for COVID-19 detection. Nat. Med. 27(1), 73–77 (2021). https://doi.org/10.1038/s41591-020-1123-x
- L.M.T. Phan, T.A.T. Vo, T.X. Hoang, S.P. Selvam, H.L. Pham et al., Trending technology of glucose monitoring during COVID-19 pandemic: challenges in personalized healthcare. Adv. Mater. Technol. 6(9), 2100020 (2021). https://doi.org/10.1002/admt.202100020
- H. Jeong, J.Y. Lee, K. Lee, Y.J. Kang, J.T. Kim et al., Differential cardiopulmonary monitoring system for artifact-canceled physiological tracking of athletes, workers, and COVID-19 patients. Sci. Adv. 7(20), eabg3092 (2021). https://doi.org/10.1126/sciadv.abg3092
- H. Alenezi, M.E. Cam, M. Edirisinghe, A novel reusable anti-COVID-19 transparent face respirator with optimized airflow. Bio-Des. Manuf. 4(1), 1–9 (2020). https://doi.org/10.1007/s42242-020-00097-1
- X. Wang, F. Wu, X. Zhao, X. Zhang, J. Wang et al., Enlightenment from the COVID-19 pandemic: the roles of environmental factors in future public health emergency response. Engineering 8, 108–115 (2021). https://doi.org/10.1016/j.eng.2020.12.019
- S.M.S. Rana, M.A. Zahed, M.T. Rahman, M. Salauddin, S.H. Lee et al., Cobalt-nanoporous carbon functionalized nanocomposite-based triboelectric nanogenerator for contactless and sustainable self-powered sensor systems. Adv. Funct. Mater. 31(52), 2105110 (2021). https://doi.org/10.1002/adfm.202105110
- D. Lei, Q. Zhang, N. Liu, T. Su, L. Wang et al., Self-powered graphene oxide humidity sensor based on potentiometric humidity transduction mechanism. Adv. Funct. Mater. 32(10), 2107330 (2021). https://doi.org/10.1002/adfm.202107330
- L. Lu, C. Jiang, G. Hu, J. Liu, B. Yang, Flexible noncontact sensing for human–machine interaction. Adv. Mater. 33(16), 2100218 (2021). https://doi.org/10.1002/adma.202100218
- D. Wang, D. Zhang, P. Li, Z. Yang, Q. Mi et al., Electrospinning of flexible poly(vinyl alcohol)/MXene nanofiber-based humidity sensor self-powered by monolayer molybdenum diselenide piezoelectric nanogenerator. Nano-Micro Lett. 13, 57 (2021). https://doi.org/10.1007/s40820-020-00580-5
- S. Gopalakrishnan, S. Sedaghat, A. Krishnakumar, Z. He, H. Wang et al., Wireless humidity sensor for smart packaging via one-step laser-induced patterning and nanop formation on metallized paper. Adv. Electron. Mater. (2022). https://doi.org/10.1002/aelm.202101149
- X. Liu, T. Fu, J. Ward, H. Gao, B. Yin et al., Multifunctional protein nanowire humidity sensors for green wearable electronics. Adv. Electron. Mater. 6(9), 2000721 (2020). https://doi.org/10.1002/aelm.202000721
- Z. Weng, J. Qin, A.A. Umar, J. Wang, X. Zhang et al., Lead-free Cs2 BiAgBr6 double perovskite-based humidity sensor with superfast recovery time. Adv. Funct. Mater. 29(24), 1902234 (2019). https://doi.org/10.1002/adfm.201902234
- Z. Wang, X. Fan, C. Li, G. Men, D. Han et al., Humidity-sensing performance of 3DOM WO3 with controllable structural modification. ACS Appl. Mater. Interfaces 10(4), 3776–3783 (2018). https://doi.org/10.1021/acsami.7b17048
- J. Wu, Z. Wu, H. Ding, Y. Wei, X. Yang et al., Multifunctional and high-sensitive sensor capable of detecting humidity, temperature, and flow stimuli using an integrated microheater. ACS Appl. Mater. Interfaces 11(46), 43383 (2019). https://doi.org/10.1021/acsami.9b16336
- Y. Lu, K. Xu, L. Zhang, M. Deguchi, H. Shishido et al., Multimodal plant healthcare flexible sensor system. ACS Nano 14(9), 10966–10975 (2020). https://doi.org/10.1021/acsnano.0c03757
- R. Shevate, M.A. Haque, F.H. Akhtar, L.F. Villalobos, T. Wu et al., Embedding 1D conducting channels into 3D isoporous polymer films for high-performance humidity sensing. Angew. Chem. Int. Ed. 57(35), 11218–11222 (2018). https://doi.org/10.1002/anie.201804656
- Y. Lu, K. Xu, M.Q. Yang, S.Y. Tang, T.Y. Yang et al., Highly stable Pd/HNb3O8-based flexible humidity sensor for perdurable wireless wearable applications. Nanoscale Horiz. 6(3), 260–270 (2021). https://doi.org/10.1039/d0nh00594k
- S.J. Choi, H. Yu, J.S. Jang, M.H. Kim, S.J. Kim et al., Nitrogen-doped single graphene fiber with platinum water dissociation catalyst for wearable humidity sensor. Small 14(13), 1703934 (2018). https://doi.org/10.1002/smll.201703934
- Z. Li, A.A. Haidry, B. Dong, L. Sun, Q. Fatima et al., Facile synthesis of nitrogen doped ordered mesoporous TiO2 with improved humidity sensing properties. J. Alloys Compd. 742, 814–821 (2018). https://doi.org/10.1016/j.jallcom.2018.01.361
- J. Ma, J. Zhu, P. Ma, Y. Jie, Z.L. Wang et al., Fish bladder film-based triboelectric nanogenerator for noncontact position monitoring. ACS Energy Lett. 5(9), 3005–3011 (2020). https://doi.org/10.1021/acsenergylett.0c01062
- J. Yang, R. Shi, Z. Lou, R. Chai, K. Jiang et al., Flexible smart noncontact control systems with ultrasensitive humidity sensors. Small 15(38), 1902801 (2019). https://doi.org/10.1002/smll.201902801
- Y. Wang, L. Zhang, J. Zhou, A. Lu, Flexible and transparent cellulose-based ionic film as a humidity sensor. ACS Appl. Mater. Interfaces 12(6), 7631–7638 (2020). https://doi.org/10.1021/acsami.9b22754
- Y. Lu, Y. Fujita, S. Honda, S.H. Yang, Y. Xuan et al., Wireless and flexible skin moisture and temperature sensor sheets toward the study of thermoregulator center. Adv. Healthc. Mater. 10(17), 2100103 (2021). https://doi.org/10.1002/adhm.202100103
- J. He, P. Xiao, J. Shi, Y. Liang, W. Lu et al., High performance humidity fluctuation sensor for wearable devices via a bioinspired atomic-precise tunable graphene-polymer heterogeneous sensing junction. Chem. Mater. 30(13), 4343–4354 (2018). https://doi.org/10.1021/acs.chemmater.8b01587
- L. Wang, Z. Lou, K. Wang, S. Zhao, P. Yu et al., Biocompatible and biodegradable functional p3olysaccharides for flexible humidity sensors. Research 202, 1–2 (2020). https://doi.org/10.34133/2020/8716847
- H. Yin, Y. Cao, B. Marelli, X. Zeng, A.J. Mason et al., Soil sensors and plant wearables for smart and precision agriculture. Adv. Mater. 33(20), 2007764 (2021). https://doi.org/10.1002/adma.202007764
- T.T.S. Lew, V.B. Koman, P. Gordiichuk, M. Park, M.S. Strano, The emergence of plant nanobionics and living plants as technology. Adv. Mater. Technol. 5(3), 1900657 (2019). https://doi.org/10.1002/admt.201900657
- G. Lee, Q. Wei, Y. Zhu, Emerging wearable sensors for plant health monitoring. Adv. Funct. Mater. 31(52), 2106475 (2021). https://doi.org/10.1002/adfm.202106475
- K. Xu, Y. Fujita, Y. Lu, S. Honda, M. Shiomi et al., A wearable body condition sensor system with wireless feedback alarm functions. Adv. Mater. 33(18), 2008701 (2021). https://doi.org/10.1002/adma.202008701
- Y. Khan, A. Thielens, S. Muin, J. Ting, C. Baumbauer et al., A new frontier of printed electronics: flexible hybrid electronics. Adv. Mater. 32(15), 1905279 (2020). https://doi.org/10.1002/adma.201905279
- D. Zhang, Z. Xu, Z. Yang, X. Song, High-performance flexible self-powered tin disulfide nanoflowers/reduced graphene oxide nanohybrid-based humidity sensor driven by triboelectric nanogenerator. Nano Energy 67, 104251 (2020). https://doi.org/10.1016/j.nanoen.2019.104251
- D. Burman, R. Ghosh, S. Santra, P.K. Guha, Highly proton conducting MoS2/graphene oxide nanocomposite based chemoresistive humidity sensor. RSC Adv. 6(62), 57424–57433 (2016). https://doi.org/10.1039/c6ra11961a
- D. Burman, S. Santra, P. Pramanik, P.K. Guha, Pt decorated MoS2 nanoflakes for ultrasensitive resistive humidity sensor. Nanotechnology 29(11), 115504 (2018). https://doi.org/10.1088/1361-6528/aaa79d
- P. He, J.R. Brent, H. Ding, J. Yang, D.J. Lewis et al., Fully printed high performance humidity sensors based on two-dimensional materials. Nanoscale 10(12), 5599–5606 (2018). https://doi.org/10.1039/C7NR08115D
- Z. Duan, Q. Zhao, S. Wang, Z. Yuan, Y. Zhang et al., Novel application of attapulgite on high performance and low-cost humidity sensors. Sens. Actuat. B Chem. 305, 127534 (2020). https://doi.org/10.1016/j.snb.2019.127534
- J. Dai, H. Zhao, X. Lin, S. Liu, T. Fei et al., Humidity sensors based on 3D porous polyelectrolytes via breath figure method. Adv. Electron. Mater. 6(1), 1900846 (2020). https://doi.org/10.1002/aelm.201900846
- X. Liu, D. Zhang, D. Wang, T. Li, X. Song et al., A humidity sensing and respiratory monitoring system constructed from quartz crystal microbalance sensors based on a chitosan/polypyrrole composite film. J. Mater. Chem A 9(25), 14524–14533 (2021). https://doi.org/10.1039/d1ta02828f
- S. Alam, U. Mittal, T. Islam, The oxide film-coated surface acoustic wave resonators for the measurement of relative humidity. IEEE Trans. Instrum. Meas. 70, 1–9 (2021). https://doi.org/10.1109/tim.2021.3072108
- W. Xuan, X. He, J. Chen, W. Wang, X. Wang et al., High sensitivity flexible lamb-wave humidity sensors with a graphene oxide sensing layer. Nanoscale 7(16), 7430–7436 (2015). https://doi.org/10.1039/c5nr00040h
- M.A. Haque, A. Syed, F.H. Akhtar, R. Shevate, S. Singh et al., Giant humidity effect on hybrid halide perovskite microstripes: reversibility and sensing mechanism. ACS Appl. Mater. Interfaces 11(33), 29821–29829 (2019). https://doi.org/10.1021/acsami.9b07751
- C. Pi, X. Yu, W. Chen, L. Yang, C. Wang et al., A reversible and fast-responsive humidity sensor based on a lead-free Cs2 TeCl6 double perovskite. Mater. Adv. 2(3), 1043–1049 (2021). https://doi.org/10.1039/d0ma00835d
- J. Wu, Z. Wu, H. Xu, Q. Wu, C. Liu et al., An intrinsically stretchable humidity sensor based on anti-drying, self-healing and transparent organohydrogels. Mater. Horiz. 6(3), 595–603 (2019). https://doi.org/10.1039/c8mh01160e
- H. Yu, J.G. Liang, C. Wang, C.C. Liu, B. Bai et al., Target properties optimization on capacitive-type humidity sensor: ingredients hybrid and integrated passive devices fabrication. Sens. Actuat. B Chem. 340, 129883 (2021). https://doi.org/10.1016/j.snb.2021.129883
- M.Q. Liu, C. Wang, N.Y. Kim, High-sensitivity and low-hysteresis porous mimtype capacitive humidity sensor using functional polymer mixed with TiO2 microps. Sensors 17(2), 284 (2017). https://doi.org/10.3390/s17020284
- H. Niu, W. Yue, Y. Li, F. Yin, S. Gao et al., Ultrafast-response/recovery capacitive humidity sensor based on arc-shaped hollow structure with nanocone arrays for human physiological signals monitoring. Sens. Actuat. B Chem. 334, 129637 (2021). https://doi.org/10.1016/j.snb.2021.129637
- N. Li, Y. Jiang, C. Zhou, Y. Xiao, B. Meng et al., High-performance humidity sensor based on urchin-like composite of Ti3C2 MXene-derived TiO2 nanowires. ACS Appl. Mater. Interfaces 11(41), 38116–38125 (2019). https://doi.org/10.1021/acsami.9b12168
- Y. Zhang, Z. Duan, H. Zou, M. Ma, Drawn a facile sensor: a fast response humidity sensor based on pencil-trace. Sens. Actuat. B Chem. 261, 345–353 (2018). https://doi.org/10.1016/j.snb.2018.01.176
- D. Zhang, X. Zong, Z. Wu, Y. Zhang, Ultrahigh-performance impedance humidity sensor based on layer-by-layer self-assembled tin disulfide/titanium dioxide nanohybrid film. Sens. Actuat. B Chem. 266, 52–62 (2018). https://doi.org/10.1016/j.snb.2018.03.007
- D. Zhang, Y. Sun, P. Li, Y. Zhang, Facile fabrication of MoS2-modified SnO2 hybrid nanocomposite for ultrasensitive humidity sensing. ACS Appl. Mater. Interfaces 8(22), 14142–14149 (2016). https://doi.org/10.1021/acsami.6b02206
- V.K. Tomer, S. Duhan, A facile nanocasting synthesis of mesoporous Ag-doped SnO2 nanostructures with enhanced humidity sensing performance. Sens. Actuat. B Chem. 223, 750–760 (2016). https://doi.org/10.1016/j.snb.2015.09.139
- Z. Wu, X. Sun, X. Guo, Y. Ding, Y. Ou et al., Development of a rGO-BiVO4 heterojunction humidity sensor with boosted performance. ACS Appl. Mater. Interfaces 13(23), 27188–27199 (2021). https://doi.org/10.1021/acsami.1c05753
- Y. Lin, J. Chen, M.M. Tavakoli, Y. Gao, Y. Zhu et al., Printable fabrication of a fully integrated and self-powered sensor system on plastic substrates. Adv. Mater. 31(5), 1804285 (2019). https://doi.org/10.1002/adma.201804285
- J. Wang, W. Ding, L. Pan, C. Wu, H. Yu et al., Self-powered wind sensor system for detecting wind speed and direction based on a triboelectric nanogenerator. ACS Nano 12(4), 3954–3963 (2018). https://doi.org/10.1021/acsnano.8b01532
- Y. Zhou, M. Shen, X. Cui, Y. Shao, L. Li et al., Triboelectric nanogenerator based self-powered sensor for artificial intelligence. Nano Energy 84, 105887 (2021). https://doi.org/10.1016/j.nanoen.2021.105887
- H. Ouyang, J. Tian, G. Sun, Y. Zou, Z. Liu et al., Self-powered pulse sensor for antidiastole of cardiovascular disease. Adv. Mater. 29(40), 1703456 (2017). https://doi.org/10.1002/adma.201703456
- D. Shen, W.W. Duley, P. Peng, M. Xiao, J. Feng et al., Moisture-enabled electricity generation: from physics and materials to self-powered applications. Adv. Mater. 32(52), 2003722 (2020). https://doi.org/10.1002/adma.202003722
- T. Fu, X. Liu, S. Fu, T. Woodard, H. Gao et al., Self-sustained green neuromorphic interfaces. Nat. Commun. 12, 3351 (2021). https://doi.org/10.1038/s41467-021-23744-2
- D. Shen, M. Xiao, Y. Xiao, G. Zou, L. Hu et al., Self-powered, rapid-response, and highly flexible humidity sensors based on moisture-dependent voltage generation. ACS Appl. Mater. Interfaces 11(15), 14249–14255 (2019). https://doi.org/10.1021/acsami.9b01523
- H. Ding, Y. Wei, Z. Wu, K. Tao, M. Ding et al., Recent advances in gas and humidity sensors based on 3D structured and porous graphene and its derivatives. ACS Mater. Lett. 2(11), 1381–1411 (2020). https://doi.org/10.1021/acsmaterialslett.0c00355
- Z. Chen, C. Lu, Humidity sensors: a review of materials and mechanisms. Sens. Lett. 3(4), 274–295 (2005). https://doi.org/10.1166/sl.2005.045
- Y. Pang, J. Jian, T. Tu, Z. Yang, J. Ling et al., Wearable humidity sensor based on porous graphene network for respiration monitoring. Biosens. Bioelectron. 116, 123–129 (2018). https://doi.org/10.1016/j.bios.2018.05.038
- M.R. Adib, Y. Lee, V.V. Kondalkar, S. Kim, K. Lee, A highly sensitive and stable rGO: MoS2-based chemiresistive humidity sensor directly insertable to transformer insulating oil analyzed by customized electronic sensor interface. ACS Sens. 6(3), 1012–1021 (2021). https://doi.org/10.1021/acssensors.0c02219
- S. Borini, R. White, D. Wei, M. Astley, S. Haque et al., Ultrafast graphene oxide humidity sensors. ACS Nano 7(12), 11166–11173 (2013). https://doi.org/10.1021/nn404889b
- X. Wang, Z. Xiong, Z. Liu, T. Zhang, Exfoliation at the liquid/air interface to assemble reduced graphene oxide ultrathin films for a flexible noncontact sensing device. Adv. Mater. 27(8), 1370 (2015). https://doi.org/10.1002/adma.201404069
- L. Cai, A.Y. Song, W. Li, P.C. Hsu, D. Lin et al., Spectrally selective nanocomposite textile for outdoor personal cooling. Adv. Mater. 30(35), e1802152 (2018). https://doi.org/10.1002/adma.201802152
- B. Li, G. Xiao, F. Liu, Y. Qiao, C.M. Li et al., A flexible humidity sensor based on silk fabrics for human respiration monitoring. J. Mater. Chem C 6(16), 4549–4554 (2018). https://doi.org/10.1039/c8tc00238j
- E.T. Alonso, D.W. Shin, G. Rajan, A.I.S. Neves, S. Russo et al., Water-based solution processing and wafer-scale integration of all-graphene humidity sensors. Adv. Sci. 6(15), 1802318 (2019). https://doi.org/10.1002/advs.201802318
- J. Cai, C. Lv, E. Aoyagi, S. Ogawa, A. Watanabe, Laser direct writing of a high-performance all-graphene humidity sensor working in a novel sensing mode for portable electronics. ACS Appl. Mater. Interfaces 10(28), 23987–23996 (2018). https://doi.org/10.1021/acsami.8b07373
- L. Lan, X. Le, H. Dong, J. Xie, Y. Ying et al., One-step and large-scale fabrication of flexible and wearable humidity sensor based on laser-induced graphene for real-time tracking of plant transpiration at bio-interface. Biosens. Bioelectron. 165, 112360 (2020). https://doi.org/10.1016/j.bios.2020.112360
- M. Bhattacharjee, D. Bandyopadhyay, Mechanisms of humidity sensing on a CdS nanop coated paper sensor. Sens. Actuat. A Phys. 285, 241–247 (2019). https://doi.org/10.1016/j.sna.2018.11.034
- J. Feng, L. Peng, C. Wu, X. Sun, S. Hu et al., Giant moisture responsiveness of VS2 ultrathin nanosheets for novel touchless positioning interface. Adv. Mater. 24(15), 1969–1974 (2012). https://doi.org/10.1002/adma.201104681
- A.S. Pawbake, R.G. Waykar, D.J. Late, S.R. Jadkar, Highly transparent wafer-scale synthesis of crystalline WS2 nanop thin film for photodetector and humidity-sensing applications. ACS Appl. Mater. Interfaces 8(5), 3359–3365 (2016). https://doi.org/10.1021/acsami.5b11325
- B. Du, D. Yang, X. She, Y. Yuan, D. Mao et al., MoS2-based all-fiber humidity sensor for monitoring human breath with fast response and recovery. Sens. Actuat. B Chem. 251, 180–184 (2017). https://doi.org/10.1016/j.snb.2017.04.193
- H. Guo, C. Lan, Z. Zhou, P. Sun, D. Wei et al., Transparent, flexible, and stretchable WS2 based humidity sensors for electronic skin. Nanoscale 9(19), 6246–6253 (2017). https://doi.org/10.1039/c7nr01016h
- J. Zhao, N. Li, H. Yu, Z. Wei, M. Liao et al., Highly sensitive MoS2 humidity sensors array for noncontact sensation. Adv. Mater. 29(34), 1702076 (2017). https://doi.org/10.1002/adma.201702076
- K. Shaheen, Z. Shah, B. Khan, M.O. Adnan et al., Electrical, photocatalytic, and humidity sensing applications of mixed metal oxide nanocomposites. ACS Omega 5(13), 7271–7279 (2020). https://doi.org/10.1021/acsomega.9b04074
- L. Guo, H.B. Jiang, R.Q. Shao, Y.L. Zhang, S.Y. Xie et al., Two-beam-laser interference mediated reduction, patterning and nanostructuring of graphene oxide for the production of a flexible humidity sensing device. Carbon 50(4), 1667–1673 (2012). https://doi.org/10.1016/j.carbon.2011.12.011
- Y. Zhao, B. Yang, J. Liu, Effect of interdigital electrode gap on the performance of SnO2-modified MoS2 capacitive humidity sensor. Sens. Actuat. B Chem. 271, 256–263 (2018). https://doi.org/10.1016/j.snb.2018.05.084
- R. Nitta, H.E. Lin, Y. Kubota, T. Kishi, T. Yano et al., CuO nanostructure-based flexible humidity sensors fabricated on PET substrates by spin-spray method. Appl. Surf. Sci. 572, 151352 (2022). https://doi.org/10.1016/j.apsusc.2021.151352
- S. Yu, C. Chen, H. Zhang, J. Zhang, J. Liu, Design of high sensitivity graphite carbon nitride/zinc oxide humidity sensor for breath detection. Sens. Actuat. B Chem. 332, 129536 (2021). https://doi.org/10.1016/j.snb.2021.129536
- A.K. Jena, A. Kulkarni, T. Miyasaka, Halide perovskite photovoltaics: background, status, and future prospects. Chem. Rev. 119(5), 3036–3103 (2019). https://doi.org/10.1021/acs.chemrev.8b00539
- M. Jung, S.G. Ji, G. Kim, S.I. Seok, Perovskite precursor solution chemistry: from fundamentals to photovoltaic applications. Chem. Soc. Rev. 48(7), 2011–2038 (2019). https://doi.org/10.1039/C8CS00656C
- F. Paulus, C. Tyznik, O.D. Jurchescu, Y. Vaynzof, Switched-on: progress, challenges, and opportunities in metal halide perovskite transistors. Adv. Funct. Mater. 31(29), 2101029 (2021). https://doi.org/10.1002/adfm.202101029
- H. Li, H. Lin, D. Ouyang, C. Yao, C. Li et al., Efficient and stable red perovskite light-emitting diodes with operational stability >300 h. Adv. Mater. 33(15), 2008820 (2021). https://doi.org/10.1002/adma.202008820
- X. Yu, H.N. Tsao, Z. Zhang, P. Gao, Miscellaneous and perspicacious: hybrid halide perovskite materials based photodetectors and sensors. Adv. Opt. Mater. 8(21), 2001095 (2020). https://doi.org/10.1002/adom.202001095
- Y. Zhang, X. Pan, Z. Wang, Y. Hu, X. Zhou et al., Fast and highly sensitive humidity sensors based on NaBbO3 nanofibers. RSC Adv. 5(26), 20453–20458 (2015). https://doi.org/10.1039/c5ra00205b
- Y. He, T. Zhang, W. Zheng, R. Wang, X. Liu et al., Humidity sensing properties of BaTiO3 nanofiber prepared via electrospinning. Sens. Actuat. B Chem. 146(1), 98–102 (2010). https://doi.org/10.1016/j.snb.2010.02.030
- Y. Zhang, J. He, M. Yuan, B. Jiang, P. Li et al., Effect of annealing temperature on Bi3.25 La0.75 Ti3O12 powders for humidity sensing properties. J. Electron. Mater. 46(1), 377–385 (2016). https://doi.org/10.1007/s11664-016-4862-1
- X. Guan, Z. Hou, K. Wu, H. Zhao, S. Liu et al., Flexible humidity sensor based on modified cellulose paper. Sens. Actuat. B Chem. 339, 129879 (2021). https://doi.org/10.1016/j.snb.2021.129879
- S. Han, N.U.H. Alvi, L. Granlof, H. Granberg, M. Berggren et al., A multiparameter pressure-temperature-humidity sensor based on mixed ionic-electronic cellulose aerogels. Adv. Sci. 6(8), 1802128 (2019). https://doi.org/10.1002/advs.201802128
- H. Tai, Z. Duan, Y. Wang, S. Wang, Y. Jiang, Paper-based sensors for gas, humidity, and strain detections: a review. ACS Appl. Mater. Interfaces 12(28), 31037–31053 (2020). https://doi.org/10.1021/acsami.0c06435
- M.U. Khan, Q.M. Saqib, G. Hassan, J. Bae, All printed organic humidity sensor based on egg albumin. Sens. Bio-Sens. Res. 28, 100337 (2020). https://doi.org/10.1016/j.sbsr.2020.100337
- R.A. Yogi, S.A. Gangal, R.C. Aiyer, R.N. Karekar, Microwave ring resonator as a novel bio-material moisture sensor. Sens. Actuat. B Chem. 50(1), 38–44 (1998). https://doi.org/10.1016/S0925-4005(98)00154-3
- Y. Wang, A. Liu, Y. Han, T. Li, Sensors based on conductive polymers and their composites: a review. Polym. Int. 69(1), 7–17 (2020). https://doi.org/10.1002/pi.5907
- L. Zhu, X. Li, T. Kasuga, K. Uetani, M. Nogi et al., All-cellulose-derived humidity sensor prepared via direct laser writing of conductive and moisture-stable electrodes on tempo-oxidized cellulose paper. J. Mater. Chem. C 10(10), 3712–3719 (2022). https://doi.org/10.1039/d1tc05339f
- J. Yu, Y. Feng, D. Sun, W. Ren, C. Shao et al., Highly conductive and mechanically robust cellulose nanocomposite hydrogels with antifreezing and antidehydration performances for flexible humidity sensors. ACS Appl. Mater. Interfaces 14(8), 10886–10897 (2022). https://doi.org/10.1021/acsami.2c00513
- Y. Zheng, L. Wang, L. Zhao, D. Wang, H. Xu et al., A flexible humidity sensor based on natural biocompatible silk fibroin films. Adv. Mater. Technol. 6(1), 2001053 (2021). https://doi.org/10.1002/admt.202001053
- F. Zhang, M.W. King, Biodegradable polymers as the pivotal player in the design of tissue engineering scaffolds. Adv. Healthc. Mater. 9(13), 1901358 (2020). https://doi.org/10.1002/adhm.201901358
- I. Armentano, D. Puglia, F. Luzi, C.R. Arciola, F. Morena et al., Nanocomposites based on biodegradable polymers. Materials 11(5), 795 (2018). https://doi.org/10.3390/ma11050795
- A. Chaos, A. Sangroniz, A. Gonzalez, M. Iriarte, J.R. Sarasua et al., Tributyl citrate as an effective plasticizer for biodegradable polymers: effect of plasticizer on free volume and transport and mechanical properties. Polym. Int. 68(1), 125–133 (2019). https://doi.org/10.1002/pi.5705
- A. Rivadeneyra, A. Marín-Sánchez, B. Wicklein, J.F. Salmerón, E. Castillo et al., Cellulose nanofibers as substrate for flexible and biodegradable moisture sensors. Compos. Sci. Technol. 208, 108738 (2021). https://doi.org/10.1016/j.compscitech.2021.108738
- P. Zhu, Y. Kuang, Y. Wei, F. Li, H. Ou et al., Electrostatic self-assembly enabled flexible paper-based humidity sensor with high sensitivity and superior durability. Chem. Eng. J. 404, 127105 (2021). https://doi.org/10.1016/j.cej.2020.127105
- Z. Li, J. Wang, Y. Xu, M. Shen, C. Duan et al., Green and sustainable cellulose-derived humidity sensors: a review. Carbohydr. Polym. 270, 118385 (2021). https://doi.org/10.1016/j.carbpol.2021.118385
- P. Wang, M. Hu, H. Wang, Z. Chen, Y. Feng et al., The evolution of flexible electronics: from nature, beyond nature, and to nature. Adv. Sci. 7(20), 2001116 (2020). https://doi.org/10.1002/advs.202001116
- S. Kotresh, Y.T. Ravikiran, S.C.V. Kumari, H.G.R. Prakash, S. Thomas, Polyaniline niobium pentoxide composite as humidity sensor at room temperature. Adv. Mater. Lett. 6(7), 641–645 (2015). https://doi.org/10.5185/amlett.2015.5795
- T.G. Kang, J.K. Park, G.H. Yun, H.H. Choi, H.J. Lee et al., A real-time humidity sensor based on a microwave oscillator with conducting polymer PEDOT:PSS film. Sens. Actuat. B Chem. 282, 145–151 (2019). https://doi.org/10.1016/j.snb.2018.09.080
- F.W. Zeng, X.X. Liu, D. Diamond, K.T. Lau, Humidity sensors based on polyaniline nanofibres. Sens. Actuat. B Chem. 143(2), 530–534 (2010). https://doi.org/10.1016/j.snb.2009.09.050
- S.S. Sandhu, S. Kumar, S. Augustine, U. Saha, K. Arora et al., Nanoengineered conductive polyaniline enabled sensor for sensitive humidity detection. IEEE Sens. J. 20(21), 12574–12581 (2020). https://doi.org/10.1109/jsen.2020.3001599
- X. Li, Z. Zhuang, D. Qi, C. Zhao, High sensitive and fast response humidity sensor based on polymer composite nanofibers for breath monitoring and non-contact sensing. Sens. Actuat. B Chem. 330, 129239 (2021). https://doi.org/10.1016/j.snb.2020.129239
- D. Yamamoto, M. Shiomi, T. Arie, S. Akita, K. Takei, All solution-based heterogeneous material formation for p-n junction diodes. ACS Appl. Mater. Interfaces 11(1), 1021–1025 (2018). https://doi.org/10.1021/acsami.8b15900
- S. Kundu, R. Majumder, R. Ghosh, M. Pradhan, S. Roy et al., Relative humidity sensing properties of doped polyaniline-encased multiwall carbon nanotubes: wearable and flexible human respiration monitoring application. J. Mater. Sci. 55(9), 3884–3901 (2019). https://doi.org/10.1007/s10853-019-04276-z
- Y.L. Tai, Z.G. Yang, Flexible, transparent, thickness-controllable SWCNT/PEDOT:PSS hybrid films based on coffee-ring lithography for functional noncontact sensing device. Langmuir 31(48), 13257–13264 (2015). https://doi.org/10.1021/acs.langmuir.5b03449
- A. Ray, B. Saruhan, Application of ionic liquids for batteries and supercapacitors. Materials 14(11), 2942 (2021). https://doi.org/10.3390/ma14112942
- L.C. Fernandes, D.M. Correia, N. Pereira, C.R. Tubio, S. Lanceros-Méndez, Highly sensitive humidity sensor based on ionic liquid–polymer composites. ACS Appl. Polym. Mater. 1(10), 2723–2730 (2019). https://doi.org/10.1021/acsapm.9b00675
- Y. Kan, S. Wang, J. Meng, Y. Guo, X. Li et al., Flexible wearable and self-powered humidity sensor based on moisture-dependent voltage generation. Microchem. J. 168, 106373 (2021). https://doi.org/10.1016/j.microc.2021.106373
- X. Zhao, K. Zhou, Y. Zhong, P. Liu, Z. Li et al., Hydrophobic ionic liquid-in-polymer composites for ultrafast, linear response and highly sensitive humidity sensing. Nano Res. 14(4), 1202–1209 (2020). https://doi.org/10.1007/s12274-020-3172-3
- Y. Wang, G. Tang, C. Zhao, K. Wang, J. Wang et al., Experimental investigation on the physical parameters of ionic polymer metal composites sensors for humidity perception. Sens. Actuat. B Chem. 345, 130421 (2021). https://doi.org/10.1016/j.snb.2021.130421
- S.J. Park, J.Y. Jeon, T.J. Ha, Wearable humidity sensors based on bar-printed poly(ionic liquid) for real-time humidity monitoring systems. Sens. Actuators B Chem. 354, 131248 (2022). https://doi.org/10.1016/j.snb.2021.131248
- D. Toloman, A. Popa, M. Stan, C. Socaci, A.R. Biris et al., Reduced graphene oxide decorated with Fe doped SnO2 nanops for humidity sensor. Appl. Surf. Sci. 402, 410–417 (2017). https://doi.org/10.1016/j.apsusc.2017.01.064
- U. Kalsoom, S. Waheed, B. Paull, Fabrication of humidity sensor using 3D printable polymer composite containing boron-doped diamonds and LiCl. ACS Appl. Mater. Interfaces 12(4), 4962–4969 (2020). https://doi.org/10.1021/acsami.9b22519
- C.H. Kwak, T.H. Kim, S.Y. Jeong, J.W. Yoon, J.S. Kim et al., Humidity-independent oxide semiconductor chemiresistors using terbium-doped SnO2 yolk–shell spheres for real-time breath analysis. ACS Appl. Mater. Interfaces 10(22), 18886–18894 (2018). https://doi.org/10.1021/acsami.8b04245
- B.B. Cunha, M.W.C.C. Greenshields, M.A. Mamo, N.J. Coville, I.A. Hümmelgen, A surfactant dispersed n-doped carbon sphere-poly(vinyl alcohol) composite as relative humidity sensor. J. Mater. Sci. Mater. Electron. 26(6), 4198–4201 (2015). https://doi.org/10.1007/s10854-015-2966-7
- Q. Wang, Y.Z. Pan, S.S. Huang, S.T. Ren, P. Li et al., Resistive and capacitive response of nitrogen-doped TiO2 nanotubes film humidity sensor. Nanotechnology 22(2), 025501 (2010). https://doi.org/10.1088/0957-4484/22/2/025501
- J. Wu, Y.M. Sun, Z. Wu, X. Li, N. Wang et al., Carbon nanocoil-based fast-response and flexible humidity sensor for multifunctional applications. ACS Appl. Mater. Interfaces 11(4), 4242–4251 (2019). https://doi.org/10.1021/acsami.8b18599
- J. Wu, Z. Wu, K. Tao, C. Liu, B. Yang et al., Rapid-response, reversible and flexible humidity sensing platform using a hydrophobic and porous substrate. J. Mater. Chem. B 7(12), 2063–2073 (2019). https://doi.org/10.1039/c8tb02963f
- Z. Wang, Y. Bi, Boosting the dynamic range for electrochemical sensing of hydrogen peroxide by enhanced integration of Pd nanops in 3D porous Si framework. Electroanalysis 33(3), 733–743 (2021). https://doi.org/10.1002/elan.202060233
- G. Du, Y. Xi, X. Tian, Y. Zhu, Y. Zhou et al., One-step hydrothermal synthesis of 3D porous microspherical LiFePO4/graphene aerogel composite for lithium-ion batteries. Ceram. Int. 45(15), 18247–18254 (2019). https://doi.org/10.1016/j.ceramint.2019.06.035
- M. Bhattacharjee, H.B. Nemade, D. Bandyopadhyay, Nano-enabled paper humidity sensor for mobile based point-of-care lung function monitoring. Biosens. Bioelectron. 94, 544–551 (2017). https://doi.org/10.1016/j.bios.2017.03.049
- H. Wang, M. Zhao, W. Zhu, Z. Liu, G. Wang et al., High-performance humidity sensor constructed with vertically aligned graphene arrays on silicon schottky junctions. Mater. Lett. 277, 128343 (2020). https://doi.org/10.1016/j.matlet.2020.128343
- Y. Shi, Y. Luo, W. Zhao, C. Shang, Y. Wang et al., A radiosonde using a humidity sensor array with a platinum resistance heater and multi-sensor data fusion. Sensors 13(7), 8977–8996 (2013). https://doi.org/10.3390/s130708977
- H. Lukas, C. Xu, Y. Yu, W. Gao, Emerging telemedicine tools for remote COVID-19 diagnosis, monitoring, and management. ACS Nano 14(12), 16180–16193 (2020). https://doi.org/10.1021/acsnano.0c08494
- S. Yin, H. Ibrahim, P.S. Schnable, M.J. Castellano, L. Dong, A field-deployable, wearable leaf sensor for continuous monitoring of vapor-pressure deficit. Adv. Mater. Technol. 6(6), 2001246 (2021). https://doi.org/10.1002/admt.202001246
- S. Shrivastava, T.Q. Trung, N.E. Lee, Recent progress, challenges, and prospects of fully integrated mobile and wearable point-of-care testing systems for self-testing. Chem. Soc. Rev. 49(6), 1812–1866 (2020). https://doi.org/10.1039/C9CS00319C
- Y. Wang, J. Ren, C. Ye, Y. Pei, S. Ling, Thermochromic silks for temperature management and dynamic textile displays. Nano-Micro Lett. 13, 72 (2021). https://doi.org/10.1007/s40820-021-00591-w
- T. Ye, F. Xiu, S. Cheng, C. Ban, Z. Tian et al., Recyclable and flexible dual-mode electronics with light and heat management. ACS Nano 14(6), 6707 (2020). https://doi.org/10.1021/acsnano.9b09932
- L. Ma, R. Wu, A. Patil, S. Zhu, Z. Meng et al., Full-textile wireless flexible humidity sensor for human physiological monitoring. Adv. Funct. Mater. 29(43), 1904549 (2019). https://doi.org/10.1002/adfm.201904549
- Z. Duan, Y. Jiang, H. Tai, Recent advances in humidity sensors for human body related humidity detection. J. Mater. Chem. C 9(42), 14963–14980 (2021). https://doi.org/10.1039/d1tc04180k
- X. Wang, Y. Deng, X. Chen, P. Jiang, Y.K. Cheung et al., An ultrafast-response and flexible humidity sensor for human respiration monitoring and noncontact safety warning. Microsyst. Nanoeng. 7(1), 99 (2021). https://doi.org/10.1038/s41378-021-00324-4
- T. Li, L. Li, H. Sun, Y. Xu, X. Wang et al., Porous ionic membrane based flexible humidity sensor and its multifunctional applications. Adv. Sci. 4(5), 1600404 (2017). https://doi.org/10.1002/advs.201600404
- H. Cheng, Y. Huang, L. Qu, Q. Cheng, G. Shi et al., Flexible in-plane graphene oxide moisture-electric converter for touchless interactive panel. Nano Energy 45, 37–43 (2018). https://doi.org/10.1016/j.nanoen.2017.12.033
- W. He, W. Liu, J. Chen, Z. Wang, Y. Liu et al., Boosting output performance of sliding mode triboelectric nanogenerator by charge space-accumulation effect. Nat. Commun. 11, 4277 (2020). https://doi.org/10.1038/s41467-020-18086-4
- H. Wang, L. Xu, Y. Bai, Z.L. Wang, Pumping up the charge density of a triboelectric nanogenerator by charge-shuttling. Nat. Commun. 11, 4203 (2020). https://doi.org/10.1038/s41467-020-17891-1
- C. Chen, H. Guo, L. Chen, Y.C. Wang, X. Pu et al., Direct current fabric triboelectric nanogenerator for biomotion energy harvesting. ACS Nano 14(4), 4585–4594 (2020). https://doi.org/10.1021/acsnano.0c00138
- X. Liang, T. Jiang, Y. Feng, P. Lu, J. An et al., Triboelectric nanogenerator network integrated with charge excitation circuit for effective water wave energy harvesting. Adv. Energy Mater. 10(40), 2002123 (2020). https://doi.org/10.1002/aenm.202002123
- Y. Su, G. Chen, C. Chen, Q. Gong, G. Xie et al., Self-powered respiration monitoring enabled by a triboelectric nanogenerator. Adv. Mater. 33(35), 2101262 (2021). https://doi.org/10.1002/adma.202101262
- J.P. Giraldo, H. Wu, G.M. Newkirk, S. Kruss, Nanobiotechnology approaches for engineering smart plant sensors. Nat. Nanotechnol. 14(6), 541–553 (2019). https://doi.org/10.1038/s41565-019-0470-6
- M. Mwimba, S. Karapetyan, L. Liu, J. Marques, E.M. McGinnis et al., Daily humidity oscillation regulates the circadian clock to influence plant physiology. Nat. Commun. 9, 4290 (2018). https://doi.org/10.1038/s41467-018-06692-2
- S. Chakraborty, A.R. Belekar, A. Datye, N. Sinha, Isotopic study of intraseasonal variations of plant transpiration: an alternative means to characterise the dry phases of monsoon. Sci. Rep. 8(1), 8647 (2018). https://doi.org/10.1038/s41598-018-26965-6
- M. Bariya, H.Y.Y. Nyein, A. Javey, Wearable sweat sensors. Nat. Electron. 1(3), 160–171 (2018). https://doi.org/10.1038/s41928-018-0043-y
- H. Wang, S. Lin, D. Zu, J. Song, Z. Liu et al., Direct blow spinning of flexible and transparent Ag nanofiber heater. Adv. Mater. Technol. 4(7), 1900045 (2019). https://doi.org/10.1002/admt.201900045
- C.C. Qu, X.Y. Sun, W.X. Sun, L.X. Cao, X.Q. Wang et al., Flexible wearables for plants. Small 17(50), 2104482 (2021). https://doi.org/10.1002/smll.202104482
- C. Henry, G.P. John, R. Pan, M.K. Bartlett, L.R. Fletcher et al., A stomatal safety-efficiency trade-off constrains responses to leaf dehydration. Nat. Commun. 10, 3398 (2019). https://doi.org/10.1038/s41467-019-11006-1
- K. Aasamaa, A. Sõber, Stomatal sensitivities to changes in leaf water potential, air humidity, CO2 concentration and light intensity, and the effect of abscisic acid on the sensitivities in six temperate deciduous tree species. Environ. Exp. Bot. 71(1), 72–78 (2011). https://doi.org/10.1016/j.envexpbot.2010.10.013
- C. Chen, Humidity in plant tissue culture vessels. Biosyst. Eng. 88(2), 231–241 (2004). https://doi.org/10.1016/j.biosystemseng.2004.02.007
- J.M. Nassar, S.M. Khan, D.R. Villalva, M.M. Nour, A.S. Almuslem et al., Compliant plant wearables for localized microclimate and plant growth monitoring. npj Flex. Electron. 2(1), 24 (2018). https://doi.org/10.1038/s41528-018-0039-8
- K. Xu, Y. Lu, K. Takei, Flexible hybrid sensor systems with feedback functions. Adv. Funct. Mater. 31(39), 2007436 (2021). https://doi.org/10.1002/adfm.202007436
- K. Xu, Y. Lu, K. Takei, Multifunctional skin-inspired flexible sensor systems for wearable electronics. Adv. Mater. Technol. 4(3), 1800628 (2019). https://doi.org/10.1002/admt.201800628
- X. Yu, Z. Xie, Y. Yu, J. Lee, A. Vazquez-Guardado et al., Skin-integrated wireless haptic interfaces for virtual and augmented reality. Nature 575(7783), 473 (2019). https://doi.org/10.1038/s41586-019-1687-0
- Y. Ma, Y. Zhang, S. Cai, Z. Han, X. Liu et al., Flexible hybrid electronics for digital healthcare. Adv. Mater. 32(15), 1902062 (2020). https://doi.org/10.1002/adma.201902062
References
L. Xiang, X. Zeng, F. Xia, W. Jin, Y. Liu et al., Recent advances in flexible and stretchable sensing systems: from the perspective of system integration. ACS Nano 14(6), 6449–6469 (2020). https://doi.org/10.1021/acsnano.0c01164
P. Li, H.P.A. Ali, W. Cheng, J. Yang, B.C.K. Tee, Bioinspired prosthetic interfaces. Adv. Mater. Technol. 5(3), 1900856 (2020). https://doi.org/10.1002/admt.201900856
J.C. Yang, J. Mun, S.Y. Kwon, S. Park, Z. Bao et al., Electronic skin: recent progress and future prospects for skin-attachable devices for health monitoring, robotics, and prosthetics. Adv. Mater. 31(48), 1904765 (2019). https://doi.org/10.1002/adma.201904765
J. Deng, H. Yuk, J. Wu, C.E. Varela, X. Chen et al., Electrical bioadhesive interface for bioelectronics. Nat. Mater. 20(2), 229–236 (2020). https://doi.org/10.1038/s41563-020-00814-2
L. Zhang, J. Pan, Z. Zhang, H. Wu, N. Yao et al., Ultrasensitive skin-like wearable optical sensors based on glass micro/nanofibers. Opto-Electron. Adv. 3(3), 190022 (2020). https://doi.org/10.29026/oea.2020.190022
F. Zhong, W. Hu, P. Zhu, H. Wang, C. Ma et al., Piezoresistive design for electronic skin: from fundamental to emerging applications. Opto-Electron. Adv. 5, 210029 (2022). https://doi.org/10.29026/oea.2022.210029
Z. Ye, G. Pang, K. Xu, Z. Hou, H. Lv et al., Soft robot skin with conformal adaptability for on-body tactile perception of collaborative robots. IEEE Robot Autom. Lett. 7(2), 5127–5134 (2022). https://doi.org/10.1109/lra.2022.3155225
C. Feng, C.P.H. Rajapaksha, A. Jákli, Ionic elastomers for electric actuators and sensors. Engineering 7(5), 581–602 (2021). https://doi.org/10.1016/j.eng.2021.02.014
W. Zhang, L. Zhang, Y. Liao, H. Cheng, Conformal manufacturing of soft deformable sensors on the curved surface. Int. J. Extreme Manuf. 3(4), 042001 (2021). https://doi.org/10.1088/2631-7990/ac1158
J.Y. Oh, Z. Bao, Second skin enabled by advanced electronics. Adv. Sci. 6(11), 1900186 (2019). https://doi.org/10.1002/advs.201900186
K. Xu, Y. Lu, T. Yamaguchi, T. Arie, S. Akita et al., Highly precise multifunctional thermal management-based flexible sensing sheets. ACS Nano 13(12), 14348–14356 (2019). https://doi.org/10.1021/acsnano.9b07805
W. Heng, G. Yang, W.S. Kim, K. Xu, Emerging wearable flexible sensors for sweat analysis. Bio-Des Manuf. 5, 64–84 (2021). https://doi.org/10.1007/s42242-021-00171-2
K. Xu, R. Zhou, K. Takei, M. Hong, Toward flexible surface-enhanced Raman scattering (SERS) sensors for point-of-care diagnostics. Adv. Sci. 6(16), 1900925 (2019). https://doi.org/10.1002/advs.201900925
J. Park, Y. Lee, H. Lee, H. Ko, Transfer printing of electronic functions on arbitrary complex surfaces. ACS Nano 14(1), 12–20 (2020). https://doi.org/10.1021/acsnano.9b09846
D. Jung, C. Lim, H.J. Shim, Y. Kim, C. Park et al., Highly conductive and elastic nanomembrane for skin electronics. Science 373(6558), 1022–1026 (2021). https://doi.org/10.1126/science.abh4357
Q. Liu, Y. Liu, J. Shi, Z. Liu, Q. Wang et al., High-porosity foam-based iontronic pressure sensor with superhigh sensitivity of 9280 kpa. Nano-Micro Lett. 14, 21 (2021). https://doi.org/10.1007/s40820-021-00770-9
C. Zhang, W. Zhou, D. Geng, C. Bai, W. Li et al., Laser direct writing and characterizations of flexible piezoresistive sensors with microstructures. Opto-Electron Adv. 4(4), 200061 (2021). https://doi.org/10.29026/oea.2021.200061
M.S.S. Bharati, V.R. Soma, Flexible SERS substrates for hazardous materials detection: recent advances. Opto-Electron Adv. 4(11), 210048 (2021). https://doi.org/10.29026/oea.2021.210048
M.J. Han, D.K. Yoon, Advances in soft materials for sustainable electronics. Engineering 7(5), 564–580 (2021). https://doi.org/10.1016/j.eng.2021.02.010
C. Zhang, Q. Yang, J. Yong, C. Shan, J. Zhang et al., Guiding magnetic liquid metal for flexible circuit. Int. J. Extreme Manuf. 3(2), 025102 (2021). https://doi.org/10.1088/2631-7990/abeda3
X. Huang, J. Li, Y. Liu, T. Wong, J. Su et al., Epidermal self-powered sweat sensors for glucose and lactate monitoring. Bio-Des. Manuf. 5(1), 201–209 (2022). https://doi.org/10.1007/s42242-021-00156-1
Y. Jing, A. Wang, J. Li, Q. Li, Q. Han et al., Preparation of conductive and transparent dipeptide hydrogels for wearable biosensor. Bio-Des. Manuf. 5(1), 153–162 (2022). https://doi.org/10.1007/s42242-021-00143-6
E. D’Anna, G. Valle, A. Mazzoni, I. Strauss, F. Iberite et al., A closed-loop hand prosthesis with simultaneous intraneural tactile and position feedback. Sci. Robot. 4(27), eaau8892 (2019). https://doi.org/10.1126/scirobotics.aau8892
A. Leal-Junior, L. Avellar, V. Biazi, M.S. Soares, A. Frizera et al., Multifunctional flexible optical waveguide sensor: on the bioinspiration for ultrasensitive sensors development. Opto-Electron Adv 5, 210098 (2022). https://doi.org/10.29026/oea.2022.210098
Z. Liu, T. Zhu, J. Wang, Z. Zheng, Y. Li et al., Functionalized fiber-based strain sensors: pathway to next-generation wearable electronics. Nano-Micro Lett. 14, 61 (2022). https://doi.org/10.1007/s40820-022-00806-8
K. Xu, Y. Lu, S. Honda, T. Arie, S. Akita et al., Highly stable kirigami-structured stretchable strain sensors for perdurable wearable electronics. J. Mater. Chem. C 7(31), 9609–9617 (2019). https://doi.org/10.1039/C9TC01874C
H. Luo, G. Pang, K. Xu, Z. Ye, H. Yang et al., A fully printed flexible sensor sheet for simultaneous proximity–pressure–temperature detection. Adv. Mater. Technol. 6(11), 2100616 (2021). https://doi.org/10.1002/admt.202100616
D. Kong, G. Yang, G. Pang, Z. Ye, H. Lv et al., Bioinspired co-design of tactile sensor and deep learning algorithm for human-robot interaction. Adv Intell. Syst. (2022). https://doi.org/10.1002/aisy.202200050
V.V. Tran, N.H.T. Tran, H.S. Hwang, M. Chang, Development strategies of conducting polymer-based electrochemical biosensors for virus biomarkers: potential for rapid COVID-19 detection. Biosens. Bioelectron. 182, 113192 (2021). https://doi.org/10.1016/j.bios.2021.113192
G. Quer, J.M. Radin, M. Gadaleta, K. Baca-Motes, L. Ariniello et al., Wearable sensor data and self-reported symptoms for COVID-19 detection. Nat. Med. 27(1), 73–77 (2021). https://doi.org/10.1038/s41591-020-1123-x
L.M.T. Phan, T.A.T. Vo, T.X. Hoang, S.P. Selvam, H.L. Pham et al., Trending technology of glucose monitoring during COVID-19 pandemic: challenges in personalized healthcare. Adv. Mater. Technol. 6(9), 2100020 (2021). https://doi.org/10.1002/admt.202100020
H. Jeong, J.Y. Lee, K. Lee, Y.J. Kang, J.T. Kim et al., Differential cardiopulmonary monitoring system for artifact-canceled physiological tracking of athletes, workers, and COVID-19 patients. Sci. Adv. 7(20), eabg3092 (2021). https://doi.org/10.1126/sciadv.abg3092
H. Alenezi, M.E. Cam, M. Edirisinghe, A novel reusable anti-COVID-19 transparent face respirator with optimized airflow. Bio-Des. Manuf. 4(1), 1–9 (2020). https://doi.org/10.1007/s42242-020-00097-1
X. Wang, F. Wu, X. Zhao, X. Zhang, J. Wang et al., Enlightenment from the COVID-19 pandemic: the roles of environmental factors in future public health emergency response. Engineering 8, 108–115 (2021). https://doi.org/10.1016/j.eng.2020.12.019
S.M.S. Rana, M.A. Zahed, M.T. Rahman, M. Salauddin, S.H. Lee et al., Cobalt-nanoporous carbon functionalized nanocomposite-based triboelectric nanogenerator for contactless and sustainable self-powered sensor systems. Adv. Funct. Mater. 31(52), 2105110 (2021). https://doi.org/10.1002/adfm.202105110
D. Lei, Q. Zhang, N. Liu, T. Su, L. Wang et al., Self-powered graphene oxide humidity sensor based on potentiometric humidity transduction mechanism. Adv. Funct. Mater. 32(10), 2107330 (2021). https://doi.org/10.1002/adfm.202107330
L. Lu, C. Jiang, G. Hu, J. Liu, B. Yang, Flexible noncontact sensing for human–machine interaction. Adv. Mater. 33(16), 2100218 (2021). https://doi.org/10.1002/adma.202100218
D. Wang, D. Zhang, P. Li, Z. Yang, Q. Mi et al., Electrospinning of flexible poly(vinyl alcohol)/MXene nanofiber-based humidity sensor self-powered by monolayer molybdenum diselenide piezoelectric nanogenerator. Nano-Micro Lett. 13, 57 (2021). https://doi.org/10.1007/s40820-020-00580-5
S. Gopalakrishnan, S. Sedaghat, A. Krishnakumar, Z. He, H. Wang et al., Wireless humidity sensor for smart packaging via one-step laser-induced patterning and nanop formation on metallized paper. Adv. Electron. Mater. (2022). https://doi.org/10.1002/aelm.202101149
X. Liu, T. Fu, J. Ward, H. Gao, B. Yin et al., Multifunctional protein nanowire humidity sensors for green wearable electronics. Adv. Electron. Mater. 6(9), 2000721 (2020). https://doi.org/10.1002/aelm.202000721
Z. Weng, J. Qin, A.A. Umar, J. Wang, X. Zhang et al., Lead-free Cs2 BiAgBr6 double perovskite-based humidity sensor with superfast recovery time. Adv. Funct. Mater. 29(24), 1902234 (2019). https://doi.org/10.1002/adfm.201902234
Z. Wang, X. Fan, C. Li, G. Men, D. Han et al., Humidity-sensing performance of 3DOM WO3 with controllable structural modification. ACS Appl. Mater. Interfaces 10(4), 3776–3783 (2018). https://doi.org/10.1021/acsami.7b17048
J. Wu, Z. Wu, H. Ding, Y. Wei, X. Yang et al., Multifunctional and high-sensitive sensor capable of detecting humidity, temperature, and flow stimuli using an integrated microheater. ACS Appl. Mater. Interfaces 11(46), 43383 (2019). https://doi.org/10.1021/acsami.9b16336
Y. Lu, K. Xu, L. Zhang, M. Deguchi, H. Shishido et al., Multimodal plant healthcare flexible sensor system. ACS Nano 14(9), 10966–10975 (2020). https://doi.org/10.1021/acsnano.0c03757
R. Shevate, M.A. Haque, F.H. Akhtar, L.F. Villalobos, T. Wu et al., Embedding 1D conducting channels into 3D isoporous polymer films for high-performance humidity sensing. Angew. Chem. Int. Ed. 57(35), 11218–11222 (2018). https://doi.org/10.1002/anie.201804656
Y. Lu, K. Xu, M.Q. Yang, S.Y. Tang, T.Y. Yang et al., Highly stable Pd/HNb3O8-based flexible humidity sensor for perdurable wireless wearable applications. Nanoscale Horiz. 6(3), 260–270 (2021). https://doi.org/10.1039/d0nh00594k
S.J. Choi, H. Yu, J.S. Jang, M.H. Kim, S.J. Kim et al., Nitrogen-doped single graphene fiber with platinum water dissociation catalyst for wearable humidity sensor. Small 14(13), 1703934 (2018). https://doi.org/10.1002/smll.201703934
Z. Li, A.A. Haidry, B. Dong, L. Sun, Q. Fatima et al., Facile synthesis of nitrogen doped ordered mesoporous TiO2 with improved humidity sensing properties. J. Alloys Compd. 742, 814–821 (2018). https://doi.org/10.1016/j.jallcom.2018.01.361
J. Ma, J. Zhu, P. Ma, Y. Jie, Z.L. Wang et al., Fish bladder film-based triboelectric nanogenerator for noncontact position monitoring. ACS Energy Lett. 5(9), 3005–3011 (2020). https://doi.org/10.1021/acsenergylett.0c01062
J. Yang, R. Shi, Z. Lou, R. Chai, K. Jiang et al., Flexible smart noncontact control systems with ultrasensitive humidity sensors. Small 15(38), 1902801 (2019). https://doi.org/10.1002/smll.201902801
Y. Wang, L. Zhang, J. Zhou, A. Lu, Flexible and transparent cellulose-based ionic film as a humidity sensor. ACS Appl. Mater. Interfaces 12(6), 7631–7638 (2020). https://doi.org/10.1021/acsami.9b22754
Y. Lu, Y. Fujita, S. Honda, S.H. Yang, Y. Xuan et al., Wireless and flexible skin moisture and temperature sensor sheets toward the study of thermoregulator center. Adv. Healthc. Mater. 10(17), 2100103 (2021). https://doi.org/10.1002/adhm.202100103
J. He, P. Xiao, J. Shi, Y. Liang, W. Lu et al., High performance humidity fluctuation sensor for wearable devices via a bioinspired atomic-precise tunable graphene-polymer heterogeneous sensing junction. Chem. Mater. 30(13), 4343–4354 (2018). https://doi.org/10.1021/acs.chemmater.8b01587
L. Wang, Z. Lou, K. Wang, S. Zhao, P. Yu et al., Biocompatible and biodegradable functional p3olysaccharides for flexible humidity sensors. Research 202, 1–2 (2020). https://doi.org/10.34133/2020/8716847
H. Yin, Y. Cao, B. Marelli, X. Zeng, A.J. Mason et al., Soil sensors and plant wearables for smart and precision agriculture. Adv. Mater. 33(20), 2007764 (2021). https://doi.org/10.1002/adma.202007764
T.T.S. Lew, V.B. Koman, P. Gordiichuk, M. Park, M.S. Strano, The emergence of plant nanobionics and living plants as technology. Adv. Mater. Technol. 5(3), 1900657 (2019). https://doi.org/10.1002/admt.201900657
G. Lee, Q. Wei, Y. Zhu, Emerging wearable sensors for plant health monitoring. Adv. Funct. Mater. 31(52), 2106475 (2021). https://doi.org/10.1002/adfm.202106475
K. Xu, Y. Fujita, Y. Lu, S. Honda, M. Shiomi et al., A wearable body condition sensor system with wireless feedback alarm functions. Adv. Mater. 33(18), 2008701 (2021). https://doi.org/10.1002/adma.202008701
Y. Khan, A. Thielens, S. Muin, J. Ting, C. Baumbauer et al., A new frontier of printed electronics: flexible hybrid electronics. Adv. Mater. 32(15), 1905279 (2020). https://doi.org/10.1002/adma.201905279
D. Zhang, Z. Xu, Z. Yang, X. Song, High-performance flexible self-powered tin disulfide nanoflowers/reduced graphene oxide nanohybrid-based humidity sensor driven by triboelectric nanogenerator. Nano Energy 67, 104251 (2020). https://doi.org/10.1016/j.nanoen.2019.104251
D. Burman, R. Ghosh, S. Santra, P.K. Guha, Highly proton conducting MoS2/graphene oxide nanocomposite based chemoresistive humidity sensor. RSC Adv. 6(62), 57424–57433 (2016). https://doi.org/10.1039/c6ra11961a
D. Burman, S. Santra, P. Pramanik, P.K. Guha, Pt decorated MoS2 nanoflakes for ultrasensitive resistive humidity sensor. Nanotechnology 29(11), 115504 (2018). https://doi.org/10.1088/1361-6528/aaa79d
P. He, J.R. Brent, H. Ding, J. Yang, D.J. Lewis et al., Fully printed high performance humidity sensors based on two-dimensional materials. Nanoscale 10(12), 5599–5606 (2018). https://doi.org/10.1039/C7NR08115D
Z. Duan, Q. Zhao, S. Wang, Z. Yuan, Y. Zhang et al., Novel application of attapulgite on high performance and low-cost humidity sensors. Sens. Actuat. B Chem. 305, 127534 (2020). https://doi.org/10.1016/j.snb.2019.127534
J. Dai, H. Zhao, X. Lin, S. Liu, T. Fei et al., Humidity sensors based on 3D porous polyelectrolytes via breath figure method. Adv. Electron. Mater. 6(1), 1900846 (2020). https://doi.org/10.1002/aelm.201900846
X. Liu, D. Zhang, D. Wang, T. Li, X. Song et al., A humidity sensing and respiratory monitoring system constructed from quartz crystal microbalance sensors based on a chitosan/polypyrrole composite film. J. Mater. Chem A 9(25), 14524–14533 (2021). https://doi.org/10.1039/d1ta02828f
S. Alam, U. Mittal, T. Islam, The oxide film-coated surface acoustic wave resonators for the measurement of relative humidity. IEEE Trans. Instrum. Meas. 70, 1–9 (2021). https://doi.org/10.1109/tim.2021.3072108
W. Xuan, X. He, J. Chen, W. Wang, X. Wang et al., High sensitivity flexible lamb-wave humidity sensors with a graphene oxide sensing layer. Nanoscale 7(16), 7430–7436 (2015). https://doi.org/10.1039/c5nr00040h
M.A. Haque, A. Syed, F.H. Akhtar, R. Shevate, S. Singh et al., Giant humidity effect on hybrid halide perovskite microstripes: reversibility and sensing mechanism. ACS Appl. Mater. Interfaces 11(33), 29821–29829 (2019). https://doi.org/10.1021/acsami.9b07751
C. Pi, X. Yu, W. Chen, L. Yang, C. Wang et al., A reversible and fast-responsive humidity sensor based on a lead-free Cs2 TeCl6 double perovskite. Mater. Adv. 2(3), 1043–1049 (2021). https://doi.org/10.1039/d0ma00835d
J. Wu, Z. Wu, H. Xu, Q. Wu, C. Liu et al., An intrinsically stretchable humidity sensor based on anti-drying, self-healing and transparent organohydrogels. Mater. Horiz. 6(3), 595–603 (2019). https://doi.org/10.1039/c8mh01160e
H. Yu, J.G. Liang, C. Wang, C.C. Liu, B. Bai et al., Target properties optimization on capacitive-type humidity sensor: ingredients hybrid and integrated passive devices fabrication. Sens. Actuat. B Chem. 340, 129883 (2021). https://doi.org/10.1016/j.snb.2021.129883
M.Q. Liu, C. Wang, N.Y. Kim, High-sensitivity and low-hysteresis porous mimtype capacitive humidity sensor using functional polymer mixed with TiO2 microps. Sensors 17(2), 284 (2017). https://doi.org/10.3390/s17020284
H. Niu, W. Yue, Y. Li, F. Yin, S. Gao et al., Ultrafast-response/recovery capacitive humidity sensor based on arc-shaped hollow structure with nanocone arrays for human physiological signals monitoring. Sens. Actuat. B Chem. 334, 129637 (2021). https://doi.org/10.1016/j.snb.2021.129637
N. Li, Y. Jiang, C. Zhou, Y. Xiao, B. Meng et al., High-performance humidity sensor based on urchin-like composite of Ti3C2 MXene-derived TiO2 nanowires. ACS Appl. Mater. Interfaces 11(41), 38116–38125 (2019). https://doi.org/10.1021/acsami.9b12168
Y. Zhang, Z. Duan, H. Zou, M. Ma, Drawn a facile sensor: a fast response humidity sensor based on pencil-trace. Sens. Actuat. B Chem. 261, 345–353 (2018). https://doi.org/10.1016/j.snb.2018.01.176
D. Zhang, X. Zong, Z. Wu, Y. Zhang, Ultrahigh-performance impedance humidity sensor based on layer-by-layer self-assembled tin disulfide/titanium dioxide nanohybrid film. Sens. Actuat. B Chem. 266, 52–62 (2018). https://doi.org/10.1016/j.snb.2018.03.007
D. Zhang, Y. Sun, P. Li, Y. Zhang, Facile fabrication of MoS2-modified SnO2 hybrid nanocomposite for ultrasensitive humidity sensing. ACS Appl. Mater. Interfaces 8(22), 14142–14149 (2016). https://doi.org/10.1021/acsami.6b02206
V.K. Tomer, S. Duhan, A facile nanocasting synthesis of mesoporous Ag-doped SnO2 nanostructures with enhanced humidity sensing performance. Sens. Actuat. B Chem. 223, 750–760 (2016). https://doi.org/10.1016/j.snb.2015.09.139
Z. Wu, X. Sun, X. Guo, Y. Ding, Y. Ou et al., Development of a rGO-BiVO4 heterojunction humidity sensor with boosted performance. ACS Appl. Mater. Interfaces 13(23), 27188–27199 (2021). https://doi.org/10.1021/acsami.1c05753
Y. Lin, J. Chen, M.M. Tavakoli, Y. Gao, Y. Zhu et al., Printable fabrication of a fully integrated and self-powered sensor system on plastic substrates. Adv. Mater. 31(5), 1804285 (2019). https://doi.org/10.1002/adma.201804285
J. Wang, W. Ding, L. Pan, C. Wu, H. Yu et al., Self-powered wind sensor system for detecting wind speed and direction based on a triboelectric nanogenerator. ACS Nano 12(4), 3954–3963 (2018). https://doi.org/10.1021/acsnano.8b01532
Y. Zhou, M. Shen, X. Cui, Y. Shao, L. Li et al., Triboelectric nanogenerator based self-powered sensor for artificial intelligence. Nano Energy 84, 105887 (2021). https://doi.org/10.1016/j.nanoen.2021.105887
H. Ouyang, J. Tian, G. Sun, Y. Zou, Z. Liu et al., Self-powered pulse sensor for antidiastole of cardiovascular disease. Adv. Mater. 29(40), 1703456 (2017). https://doi.org/10.1002/adma.201703456
D. Shen, W.W. Duley, P. Peng, M. Xiao, J. Feng et al., Moisture-enabled electricity generation: from physics and materials to self-powered applications. Adv. Mater. 32(52), 2003722 (2020). https://doi.org/10.1002/adma.202003722
T. Fu, X. Liu, S. Fu, T. Woodard, H. Gao et al., Self-sustained green neuromorphic interfaces. Nat. Commun. 12, 3351 (2021). https://doi.org/10.1038/s41467-021-23744-2
D. Shen, M. Xiao, Y. Xiao, G. Zou, L. Hu et al., Self-powered, rapid-response, and highly flexible humidity sensors based on moisture-dependent voltage generation. ACS Appl. Mater. Interfaces 11(15), 14249–14255 (2019). https://doi.org/10.1021/acsami.9b01523
H. Ding, Y. Wei, Z. Wu, K. Tao, M. Ding et al., Recent advances in gas and humidity sensors based on 3D structured and porous graphene and its derivatives. ACS Mater. Lett. 2(11), 1381–1411 (2020). https://doi.org/10.1021/acsmaterialslett.0c00355
Z. Chen, C. Lu, Humidity sensors: a review of materials and mechanisms. Sens. Lett. 3(4), 274–295 (2005). https://doi.org/10.1166/sl.2005.045
Y. Pang, J. Jian, T. Tu, Z. Yang, J. Ling et al., Wearable humidity sensor based on porous graphene network for respiration monitoring. Biosens. Bioelectron. 116, 123–129 (2018). https://doi.org/10.1016/j.bios.2018.05.038
M.R. Adib, Y. Lee, V.V. Kondalkar, S. Kim, K. Lee, A highly sensitive and stable rGO: MoS2-based chemiresistive humidity sensor directly insertable to transformer insulating oil analyzed by customized electronic sensor interface. ACS Sens. 6(3), 1012–1021 (2021). https://doi.org/10.1021/acssensors.0c02219
S. Borini, R. White, D. Wei, M. Astley, S. Haque et al., Ultrafast graphene oxide humidity sensors. ACS Nano 7(12), 11166–11173 (2013). https://doi.org/10.1021/nn404889b
X. Wang, Z. Xiong, Z. Liu, T. Zhang, Exfoliation at the liquid/air interface to assemble reduced graphene oxide ultrathin films for a flexible noncontact sensing device. Adv. Mater. 27(8), 1370 (2015). https://doi.org/10.1002/adma.201404069
L. Cai, A.Y. Song, W. Li, P.C. Hsu, D. Lin et al., Spectrally selective nanocomposite textile for outdoor personal cooling. Adv. Mater. 30(35), e1802152 (2018). https://doi.org/10.1002/adma.201802152
B. Li, G. Xiao, F. Liu, Y. Qiao, C.M. Li et al., A flexible humidity sensor based on silk fabrics for human respiration monitoring. J. Mater. Chem C 6(16), 4549–4554 (2018). https://doi.org/10.1039/c8tc00238j
E.T. Alonso, D.W. Shin, G. Rajan, A.I.S. Neves, S. Russo et al., Water-based solution processing and wafer-scale integration of all-graphene humidity sensors. Adv. Sci. 6(15), 1802318 (2019). https://doi.org/10.1002/advs.201802318
J. Cai, C. Lv, E. Aoyagi, S. Ogawa, A. Watanabe, Laser direct writing of a high-performance all-graphene humidity sensor working in a novel sensing mode for portable electronics. ACS Appl. Mater. Interfaces 10(28), 23987–23996 (2018). https://doi.org/10.1021/acsami.8b07373
L. Lan, X. Le, H. Dong, J. Xie, Y. Ying et al., One-step and large-scale fabrication of flexible and wearable humidity sensor based on laser-induced graphene for real-time tracking of plant transpiration at bio-interface. Biosens. Bioelectron. 165, 112360 (2020). https://doi.org/10.1016/j.bios.2020.112360
M. Bhattacharjee, D. Bandyopadhyay, Mechanisms of humidity sensing on a CdS nanop coated paper sensor. Sens. Actuat. A Phys. 285, 241–247 (2019). https://doi.org/10.1016/j.sna.2018.11.034
J. Feng, L. Peng, C. Wu, X. Sun, S. Hu et al., Giant moisture responsiveness of VS2 ultrathin nanosheets for novel touchless positioning interface. Adv. Mater. 24(15), 1969–1974 (2012). https://doi.org/10.1002/adma.201104681
A.S. Pawbake, R.G. Waykar, D.J. Late, S.R. Jadkar, Highly transparent wafer-scale synthesis of crystalline WS2 nanop thin film for photodetector and humidity-sensing applications. ACS Appl. Mater. Interfaces 8(5), 3359–3365 (2016). https://doi.org/10.1021/acsami.5b11325
B. Du, D. Yang, X. She, Y. Yuan, D. Mao et al., MoS2-based all-fiber humidity sensor for monitoring human breath with fast response and recovery. Sens. Actuat. B Chem. 251, 180–184 (2017). https://doi.org/10.1016/j.snb.2017.04.193
H. Guo, C. Lan, Z. Zhou, P. Sun, D. Wei et al., Transparent, flexible, and stretchable WS2 based humidity sensors for electronic skin. Nanoscale 9(19), 6246–6253 (2017). https://doi.org/10.1039/c7nr01016h
J. Zhao, N. Li, H. Yu, Z. Wei, M. Liao et al., Highly sensitive MoS2 humidity sensors array for noncontact sensation. Adv. Mater. 29(34), 1702076 (2017). https://doi.org/10.1002/adma.201702076
K. Shaheen, Z. Shah, B. Khan, M.O. Adnan et al., Electrical, photocatalytic, and humidity sensing applications of mixed metal oxide nanocomposites. ACS Omega 5(13), 7271–7279 (2020). https://doi.org/10.1021/acsomega.9b04074
L. Guo, H.B. Jiang, R.Q. Shao, Y.L. Zhang, S.Y. Xie et al., Two-beam-laser interference mediated reduction, patterning and nanostructuring of graphene oxide for the production of a flexible humidity sensing device. Carbon 50(4), 1667–1673 (2012). https://doi.org/10.1016/j.carbon.2011.12.011
Y. Zhao, B. Yang, J. Liu, Effect of interdigital electrode gap on the performance of SnO2-modified MoS2 capacitive humidity sensor. Sens. Actuat. B Chem. 271, 256–263 (2018). https://doi.org/10.1016/j.snb.2018.05.084
R. Nitta, H.E. Lin, Y. Kubota, T. Kishi, T. Yano et al., CuO nanostructure-based flexible humidity sensors fabricated on PET substrates by spin-spray method. Appl. Surf. Sci. 572, 151352 (2022). https://doi.org/10.1016/j.apsusc.2021.151352
S. Yu, C. Chen, H. Zhang, J. Zhang, J. Liu, Design of high sensitivity graphite carbon nitride/zinc oxide humidity sensor for breath detection. Sens. Actuat. B Chem. 332, 129536 (2021). https://doi.org/10.1016/j.snb.2021.129536
A.K. Jena, A. Kulkarni, T. Miyasaka, Halide perovskite photovoltaics: background, status, and future prospects. Chem. Rev. 119(5), 3036–3103 (2019). https://doi.org/10.1021/acs.chemrev.8b00539
M. Jung, S.G. Ji, G. Kim, S.I. Seok, Perovskite precursor solution chemistry: from fundamentals to photovoltaic applications. Chem. Soc. Rev. 48(7), 2011–2038 (2019). https://doi.org/10.1039/C8CS00656C
F. Paulus, C. Tyznik, O.D. Jurchescu, Y. Vaynzof, Switched-on: progress, challenges, and opportunities in metal halide perovskite transistors. Adv. Funct. Mater. 31(29), 2101029 (2021). https://doi.org/10.1002/adfm.202101029
H. Li, H. Lin, D. Ouyang, C. Yao, C. Li et al., Efficient and stable red perovskite light-emitting diodes with operational stability >300 h. Adv. Mater. 33(15), 2008820 (2021). https://doi.org/10.1002/adma.202008820
X. Yu, H.N. Tsao, Z. Zhang, P. Gao, Miscellaneous and perspicacious: hybrid halide perovskite materials based photodetectors and sensors. Adv. Opt. Mater. 8(21), 2001095 (2020). https://doi.org/10.1002/adom.202001095
Y. Zhang, X. Pan, Z. Wang, Y. Hu, X. Zhou et al., Fast and highly sensitive humidity sensors based on NaBbO3 nanofibers. RSC Adv. 5(26), 20453–20458 (2015). https://doi.org/10.1039/c5ra00205b
Y. He, T. Zhang, W. Zheng, R. Wang, X. Liu et al., Humidity sensing properties of BaTiO3 nanofiber prepared via electrospinning. Sens. Actuat. B Chem. 146(1), 98–102 (2010). https://doi.org/10.1016/j.snb.2010.02.030
Y. Zhang, J. He, M. Yuan, B. Jiang, P. Li et al., Effect of annealing temperature on Bi3.25 La0.75 Ti3O12 powders for humidity sensing properties. J. Electron. Mater. 46(1), 377–385 (2016). https://doi.org/10.1007/s11664-016-4862-1
X. Guan, Z. Hou, K. Wu, H. Zhao, S. Liu et al., Flexible humidity sensor based on modified cellulose paper. Sens. Actuat. B Chem. 339, 129879 (2021). https://doi.org/10.1016/j.snb.2021.129879
S. Han, N.U.H. Alvi, L. Granlof, H. Granberg, M. Berggren et al., A multiparameter pressure-temperature-humidity sensor based on mixed ionic-electronic cellulose aerogels. Adv. Sci. 6(8), 1802128 (2019). https://doi.org/10.1002/advs.201802128
H. Tai, Z. Duan, Y. Wang, S. Wang, Y. Jiang, Paper-based sensors for gas, humidity, and strain detections: a review. ACS Appl. Mater. Interfaces 12(28), 31037–31053 (2020). https://doi.org/10.1021/acsami.0c06435
M.U. Khan, Q.M. Saqib, G. Hassan, J. Bae, All printed organic humidity sensor based on egg albumin. Sens. Bio-Sens. Res. 28, 100337 (2020). https://doi.org/10.1016/j.sbsr.2020.100337
R.A. Yogi, S.A. Gangal, R.C. Aiyer, R.N. Karekar, Microwave ring resonator as a novel bio-material moisture sensor. Sens. Actuat. B Chem. 50(1), 38–44 (1998). https://doi.org/10.1016/S0925-4005(98)00154-3
Y. Wang, A. Liu, Y. Han, T. Li, Sensors based on conductive polymers and their composites: a review. Polym. Int. 69(1), 7–17 (2020). https://doi.org/10.1002/pi.5907
L. Zhu, X. Li, T. Kasuga, K. Uetani, M. Nogi et al., All-cellulose-derived humidity sensor prepared via direct laser writing of conductive and moisture-stable electrodes on tempo-oxidized cellulose paper. J. Mater. Chem. C 10(10), 3712–3719 (2022). https://doi.org/10.1039/d1tc05339f
J. Yu, Y. Feng, D. Sun, W. Ren, C. Shao et al., Highly conductive and mechanically robust cellulose nanocomposite hydrogels with antifreezing and antidehydration performances for flexible humidity sensors. ACS Appl. Mater. Interfaces 14(8), 10886–10897 (2022). https://doi.org/10.1021/acsami.2c00513
Y. Zheng, L. Wang, L. Zhao, D. Wang, H. Xu et al., A flexible humidity sensor based on natural biocompatible silk fibroin films. Adv. Mater. Technol. 6(1), 2001053 (2021). https://doi.org/10.1002/admt.202001053
F. Zhang, M.W. King, Biodegradable polymers as the pivotal player in the design of tissue engineering scaffolds. Adv. Healthc. Mater. 9(13), 1901358 (2020). https://doi.org/10.1002/adhm.201901358
I. Armentano, D. Puglia, F. Luzi, C.R. Arciola, F. Morena et al., Nanocomposites based on biodegradable polymers. Materials 11(5), 795 (2018). https://doi.org/10.3390/ma11050795
A. Chaos, A. Sangroniz, A. Gonzalez, M. Iriarte, J.R. Sarasua et al., Tributyl citrate as an effective plasticizer for biodegradable polymers: effect of plasticizer on free volume and transport and mechanical properties. Polym. Int. 68(1), 125–133 (2019). https://doi.org/10.1002/pi.5705
A. Rivadeneyra, A. Marín-Sánchez, B. Wicklein, J.F. Salmerón, E. Castillo et al., Cellulose nanofibers as substrate for flexible and biodegradable moisture sensors. Compos. Sci. Technol. 208, 108738 (2021). https://doi.org/10.1016/j.compscitech.2021.108738
P. Zhu, Y. Kuang, Y. Wei, F. Li, H. Ou et al., Electrostatic self-assembly enabled flexible paper-based humidity sensor with high sensitivity and superior durability. Chem. Eng. J. 404, 127105 (2021). https://doi.org/10.1016/j.cej.2020.127105
Z. Li, J. Wang, Y. Xu, M. Shen, C. Duan et al., Green and sustainable cellulose-derived humidity sensors: a review. Carbohydr. Polym. 270, 118385 (2021). https://doi.org/10.1016/j.carbpol.2021.118385
P. Wang, M. Hu, H. Wang, Z. Chen, Y. Feng et al., The evolution of flexible electronics: from nature, beyond nature, and to nature. Adv. Sci. 7(20), 2001116 (2020). https://doi.org/10.1002/advs.202001116
S. Kotresh, Y.T. Ravikiran, S.C.V. Kumari, H.G.R. Prakash, S. Thomas, Polyaniline niobium pentoxide composite as humidity sensor at room temperature. Adv. Mater. Lett. 6(7), 641–645 (2015). https://doi.org/10.5185/amlett.2015.5795
T.G. Kang, J.K. Park, G.H. Yun, H.H. Choi, H.J. Lee et al., A real-time humidity sensor based on a microwave oscillator with conducting polymer PEDOT:PSS film. Sens. Actuat. B Chem. 282, 145–151 (2019). https://doi.org/10.1016/j.snb.2018.09.080
F.W. Zeng, X.X. Liu, D. Diamond, K.T. Lau, Humidity sensors based on polyaniline nanofibres. Sens. Actuat. B Chem. 143(2), 530–534 (2010). https://doi.org/10.1016/j.snb.2009.09.050
S.S. Sandhu, S. Kumar, S. Augustine, U. Saha, K. Arora et al., Nanoengineered conductive polyaniline enabled sensor for sensitive humidity detection. IEEE Sens. J. 20(21), 12574–12581 (2020). https://doi.org/10.1109/jsen.2020.3001599
X. Li, Z. Zhuang, D. Qi, C. Zhao, High sensitive and fast response humidity sensor based on polymer composite nanofibers for breath monitoring and non-contact sensing. Sens. Actuat. B Chem. 330, 129239 (2021). https://doi.org/10.1016/j.snb.2020.129239
D. Yamamoto, M. Shiomi, T. Arie, S. Akita, K. Takei, All solution-based heterogeneous material formation for p-n junction diodes. ACS Appl. Mater. Interfaces 11(1), 1021–1025 (2018). https://doi.org/10.1021/acsami.8b15900
S. Kundu, R. Majumder, R. Ghosh, M. Pradhan, S. Roy et al., Relative humidity sensing properties of doped polyaniline-encased multiwall carbon nanotubes: wearable and flexible human respiration monitoring application. J. Mater. Sci. 55(9), 3884–3901 (2019). https://doi.org/10.1007/s10853-019-04276-z
Y.L. Tai, Z.G. Yang, Flexible, transparent, thickness-controllable SWCNT/PEDOT:PSS hybrid films based on coffee-ring lithography for functional noncontact sensing device. Langmuir 31(48), 13257–13264 (2015). https://doi.org/10.1021/acs.langmuir.5b03449
A. Ray, B. Saruhan, Application of ionic liquids for batteries and supercapacitors. Materials 14(11), 2942 (2021). https://doi.org/10.3390/ma14112942
L.C. Fernandes, D.M. Correia, N. Pereira, C.R. Tubio, S. Lanceros-Méndez, Highly sensitive humidity sensor based on ionic liquid–polymer composites. ACS Appl. Polym. Mater. 1(10), 2723–2730 (2019). https://doi.org/10.1021/acsapm.9b00675
Y. Kan, S. Wang, J. Meng, Y. Guo, X. Li et al., Flexible wearable and self-powered humidity sensor based on moisture-dependent voltage generation. Microchem. J. 168, 106373 (2021). https://doi.org/10.1016/j.microc.2021.106373
X. Zhao, K. Zhou, Y. Zhong, P. Liu, Z. Li et al., Hydrophobic ionic liquid-in-polymer composites for ultrafast, linear response and highly sensitive humidity sensing. Nano Res. 14(4), 1202–1209 (2020). https://doi.org/10.1007/s12274-020-3172-3
Y. Wang, G. Tang, C. Zhao, K. Wang, J. Wang et al., Experimental investigation on the physical parameters of ionic polymer metal composites sensors for humidity perception. Sens. Actuat. B Chem. 345, 130421 (2021). https://doi.org/10.1016/j.snb.2021.130421
S.J. Park, J.Y. Jeon, T.J. Ha, Wearable humidity sensors based on bar-printed poly(ionic liquid) for real-time humidity monitoring systems. Sens. Actuators B Chem. 354, 131248 (2022). https://doi.org/10.1016/j.snb.2021.131248
D. Toloman, A. Popa, M. Stan, C. Socaci, A.R. Biris et al., Reduced graphene oxide decorated with Fe doped SnO2 nanops for humidity sensor. Appl. Surf. Sci. 402, 410–417 (2017). https://doi.org/10.1016/j.apsusc.2017.01.064
U. Kalsoom, S. Waheed, B. Paull, Fabrication of humidity sensor using 3D printable polymer composite containing boron-doped diamonds and LiCl. ACS Appl. Mater. Interfaces 12(4), 4962–4969 (2020). https://doi.org/10.1021/acsami.9b22519
C.H. Kwak, T.H. Kim, S.Y. Jeong, J.W. Yoon, J.S. Kim et al., Humidity-independent oxide semiconductor chemiresistors using terbium-doped SnO2 yolk–shell spheres for real-time breath analysis. ACS Appl. Mater. Interfaces 10(22), 18886–18894 (2018). https://doi.org/10.1021/acsami.8b04245
B.B. Cunha, M.W.C.C. Greenshields, M.A. Mamo, N.J. Coville, I.A. Hümmelgen, A surfactant dispersed n-doped carbon sphere-poly(vinyl alcohol) composite as relative humidity sensor. J. Mater. Sci. Mater. Electron. 26(6), 4198–4201 (2015). https://doi.org/10.1007/s10854-015-2966-7
Q. Wang, Y.Z. Pan, S.S. Huang, S.T. Ren, P. Li et al., Resistive and capacitive response of nitrogen-doped TiO2 nanotubes film humidity sensor. Nanotechnology 22(2), 025501 (2010). https://doi.org/10.1088/0957-4484/22/2/025501
J. Wu, Y.M. Sun, Z. Wu, X. Li, N. Wang et al., Carbon nanocoil-based fast-response and flexible humidity sensor for multifunctional applications. ACS Appl. Mater. Interfaces 11(4), 4242–4251 (2019). https://doi.org/10.1021/acsami.8b18599
J. Wu, Z. Wu, K. Tao, C. Liu, B. Yang et al., Rapid-response, reversible and flexible humidity sensing platform using a hydrophobic and porous substrate. J. Mater. Chem. B 7(12), 2063–2073 (2019). https://doi.org/10.1039/c8tb02963f
Z. Wang, Y. Bi, Boosting the dynamic range for electrochemical sensing of hydrogen peroxide by enhanced integration of Pd nanops in 3D porous Si framework. Electroanalysis 33(3), 733–743 (2021). https://doi.org/10.1002/elan.202060233
G. Du, Y. Xi, X. Tian, Y. Zhu, Y. Zhou et al., One-step hydrothermal synthesis of 3D porous microspherical LiFePO4/graphene aerogel composite for lithium-ion batteries. Ceram. Int. 45(15), 18247–18254 (2019). https://doi.org/10.1016/j.ceramint.2019.06.035
M. Bhattacharjee, H.B. Nemade, D. Bandyopadhyay, Nano-enabled paper humidity sensor for mobile based point-of-care lung function monitoring. Biosens. Bioelectron. 94, 544–551 (2017). https://doi.org/10.1016/j.bios.2017.03.049
H. Wang, M. Zhao, W. Zhu, Z. Liu, G. Wang et al., High-performance humidity sensor constructed with vertically aligned graphene arrays on silicon schottky junctions. Mater. Lett. 277, 128343 (2020). https://doi.org/10.1016/j.matlet.2020.128343
Y. Shi, Y. Luo, W. Zhao, C. Shang, Y. Wang et al., A radiosonde using a humidity sensor array with a platinum resistance heater and multi-sensor data fusion. Sensors 13(7), 8977–8996 (2013). https://doi.org/10.3390/s130708977
H. Lukas, C. Xu, Y. Yu, W. Gao, Emerging telemedicine tools for remote COVID-19 diagnosis, monitoring, and management. ACS Nano 14(12), 16180–16193 (2020). https://doi.org/10.1021/acsnano.0c08494
S. Yin, H. Ibrahim, P.S. Schnable, M.J. Castellano, L. Dong, A field-deployable, wearable leaf sensor for continuous monitoring of vapor-pressure deficit. Adv. Mater. Technol. 6(6), 2001246 (2021). https://doi.org/10.1002/admt.202001246
S. Shrivastava, T.Q. Trung, N.E. Lee, Recent progress, challenges, and prospects of fully integrated mobile and wearable point-of-care testing systems for self-testing. Chem. Soc. Rev. 49(6), 1812–1866 (2020). https://doi.org/10.1039/C9CS00319C
Y. Wang, J. Ren, C. Ye, Y. Pei, S. Ling, Thermochromic silks for temperature management and dynamic textile displays. Nano-Micro Lett. 13, 72 (2021). https://doi.org/10.1007/s40820-021-00591-w
T. Ye, F. Xiu, S. Cheng, C. Ban, Z. Tian et al., Recyclable and flexible dual-mode electronics with light and heat management. ACS Nano 14(6), 6707 (2020). https://doi.org/10.1021/acsnano.9b09932
L. Ma, R. Wu, A. Patil, S. Zhu, Z. Meng et al., Full-textile wireless flexible humidity sensor for human physiological monitoring. Adv. Funct. Mater. 29(43), 1904549 (2019). https://doi.org/10.1002/adfm.201904549
Z. Duan, Y. Jiang, H. Tai, Recent advances in humidity sensors for human body related humidity detection. J. Mater. Chem. C 9(42), 14963–14980 (2021). https://doi.org/10.1039/d1tc04180k
X. Wang, Y. Deng, X. Chen, P. Jiang, Y.K. Cheung et al., An ultrafast-response and flexible humidity sensor for human respiration monitoring and noncontact safety warning. Microsyst. Nanoeng. 7(1), 99 (2021). https://doi.org/10.1038/s41378-021-00324-4
T. Li, L. Li, H. Sun, Y. Xu, X. Wang et al., Porous ionic membrane based flexible humidity sensor and its multifunctional applications. Adv. Sci. 4(5), 1600404 (2017). https://doi.org/10.1002/advs.201600404
H. Cheng, Y. Huang, L. Qu, Q. Cheng, G. Shi et al., Flexible in-plane graphene oxide moisture-electric converter for touchless interactive panel. Nano Energy 45, 37–43 (2018). https://doi.org/10.1016/j.nanoen.2017.12.033
W. He, W. Liu, J. Chen, Z. Wang, Y. Liu et al., Boosting output performance of sliding mode triboelectric nanogenerator by charge space-accumulation effect. Nat. Commun. 11, 4277 (2020). https://doi.org/10.1038/s41467-020-18086-4
H. Wang, L. Xu, Y. Bai, Z.L. Wang, Pumping up the charge density of a triboelectric nanogenerator by charge-shuttling. Nat. Commun. 11, 4203 (2020). https://doi.org/10.1038/s41467-020-17891-1
C. Chen, H. Guo, L. Chen, Y.C. Wang, X. Pu et al., Direct current fabric triboelectric nanogenerator for biomotion energy harvesting. ACS Nano 14(4), 4585–4594 (2020). https://doi.org/10.1021/acsnano.0c00138
X. Liang, T. Jiang, Y. Feng, P. Lu, J. An et al., Triboelectric nanogenerator network integrated with charge excitation circuit for effective water wave energy harvesting. Adv. Energy Mater. 10(40), 2002123 (2020). https://doi.org/10.1002/aenm.202002123
Y. Su, G. Chen, C. Chen, Q. Gong, G. Xie et al., Self-powered respiration monitoring enabled by a triboelectric nanogenerator. Adv. Mater. 33(35), 2101262 (2021). https://doi.org/10.1002/adma.202101262
J.P. Giraldo, H. Wu, G.M. Newkirk, S. Kruss, Nanobiotechnology approaches for engineering smart plant sensors. Nat. Nanotechnol. 14(6), 541–553 (2019). https://doi.org/10.1038/s41565-019-0470-6
M. Mwimba, S. Karapetyan, L. Liu, J. Marques, E.M. McGinnis et al., Daily humidity oscillation regulates the circadian clock to influence plant physiology. Nat. Commun. 9, 4290 (2018). https://doi.org/10.1038/s41467-018-06692-2
S. Chakraborty, A.R. Belekar, A. Datye, N. Sinha, Isotopic study of intraseasonal variations of plant transpiration: an alternative means to characterise the dry phases of monsoon. Sci. Rep. 8(1), 8647 (2018). https://doi.org/10.1038/s41598-018-26965-6
M. Bariya, H.Y.Y. Nyein, A. Javey, Wearable sweat sensors. Nat. Electron. 1(3), 160–171 (2018). https://doi.org/10.1038/s41928-018-0043-y
H. Wang, S. Lin, D. Zu, J. Song, Z. Liu et al., Direct blow spinning of flexible and transparent Ag nanofiber heater. Adv. Mater. Technol. 4(7), 1900045 (2019). https://doi.org/10.1002/admt.201900045
C.C. Qu, X.Y. Sun, W.X. Sun, L.X. Cao, X.Q. Wang et al., Flexible wearables for plants. Small 17(50), 2104482 (2021). https://doi.org/10.1002/smll.202104482
C. Henry, G.P. John, R. Pan, M.K. Bartlett, L.R. Fletcher et al., A stomatal safety-efficiency trade-off constrains responses to leaf dehydration. Nat. Commun. 10, 3398 (2019). https://doi.org/10.1038/s41467-019-11006-1
K. Aasamaa, A. Sõber, Stomatal sensitivities to changes in leaf water potential, air humidity, CO2 concentration and light intensity, and the effect of abscisic acid on the sensitivities in six temperate deciduous tree species. Environ. Exp. Bot. 71(1), 72–78 (2011). https://doi.org/10.1016/j.envexpbot.2010.10.013
C. Chen, Humidity in plant tissue culture vessels. Biosyst. Eng. 88(2), 231–241 (2004). https://doi.org/10.1016/j.biosystemseng.2004.02.007
J.M. Nassar, S.M. Khan, D.R. Villalva, M.M. Nour, A.S. Almuslem et al., Compliant plant wearables for localized microclimate and plant growth monitoring. npj Flex. Electron. 2(1), 24 (2018). https://doi.org/10.1038/s41528-018-0039-8
K. Xu, Y. Lu, K. Takei, Flexible hybrid sensor systems with feedback functions. Adv. Funct. Mater. 31(39), 2007436 (2021). https://doi.org/10.1002/adfm.202007436
K. Xu, Y. Lu, K. Takei, Multifunctional skin-inspired flexible sensor systems for wearable electronics. Adv. Mater. Technol. 4(3), 1800628 (2019). https://doi.org/10.1002/admt.201800628
X. Yu, Z. Xie, Y. Yu, J. Lee, A. Vazquez-Guardado et al., Skin-integrated wireless haptic interfaces for virtual and augmented reality. Nature 575(7783), 473 (2019). https://doi.org/10.1038/s41586-019-1687-0
Y. Ma, Y. Zhang, S. Cai, Z. Han, X. Liu et al., Flexible hybrid electronics for digital healthcare. Adv. Mater. 32(15), 1902062 (2020). https://doi.org/10.1002/adma.201902062