Effects of Flexible Conjugation-Break Spacers of Non-Conjugated Polymer Acceptors on Photovoltaic and Mechanical Properties of All-Polymer Solar Cells
Corresponding Author: Ergang Wang
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 164
Abstract
All-polymer solar cells (all-PSCs) possess attractive merits including superior thermal stability and mechanical flexibility for large-area roll-to-roll processing. Introducing flexible conjugation-break spacers (FCBSs) into backbones of polymer donor (PD) or polymer acceptor (PA) has been demonstrated as an efficient approach to enhance both the photovoltaic (PV) and mechanical properties of the all-PSCs. However, length dependency of FCBS on certain all-PSC related properties has not been systematically explored. In this regard, we report a series of new non-conjugated PAs by incorporating FCBS with various lengths (2, 4, and 8 carbon atoms in thioalkyl segments). Unlike common studies on so-called side-chain engineering, where longer side chains would lead to better solubility of those resulting polymers, in this work, we observe that the solubilities and the resulting photovoltaic/mechanical properties are optimized by a proper FCBS length (i.e., C2) in PA named PYTS-C2. Its all-PSC achieves a high efficiency of 11.37%, and excellent mechanical robustness with a crack onset strain of 12.39%, significantly superior to those of the other PAs. These results firstly demonstrate the effects of FCBS lengths on the PV performance and mechanical properties of the all-PSCs, providing an effective strategy to fine-tune the structures of PAs for highly efficient and mechanically robust PSCs.
Highlights:
1 A series of non-conjugated acceptor polymers with flexible conjugation-break spacers (FCBSs) of different lengths were synthesized.
2 The effect of FCBSs length on solubility of the acceptor polymers, and their photovoltaic and mechanical properties in all-polymer solar cells were explored.
3 This work provides useful guidelines for the design of semiconducting polymers by introducing FCBS with proper length, which can giantly improved properties that are not possible to be achieved by the state-of-the-art fully conjugated polymers.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- W. Yang, Z. Luo, R. Sun, J. Guo, T. Wang et al., Simultaneous enhanced efficiency and thermal stability in organic solar cells from a polymer acceptor additive. Nat. Commun. 11, 1218 (2020). https://doi.org/10.1038/s41467-020-14926-5
- Q. Fan, W. Su, S. Chen, W. Kim, X. Chen et al., Mechanically robust all-polymer solar cells from narrow band gap acceptors with hetero-bridging atoms. Joule 4(3), 658–672 (2020). https://doi.org/10.1016/j.joule.2020.01.014
- Z.G. Zhang, Y. Li, Polymerized small-molecule acceptors for high-performance all-polymer solar cells. Angew. Chem. Int. Ed. 60(9), 4422–4433 (2021). https://doi.org/10.1002/anie.202009666
- T. Jia, J. Zhang, K. Zhang, H. Tang, S. Dong et al., All-polymer solar cells with efficiency approaching 16% enabled using a dithieno[3′,2′:3,4;2′′,3′′:5,6]benzo[1,2-c][1,2,5]thiadiazole (fDTBT)-based polymer donor. J. Mater. Chem. A 9(14), 8975–8983 (2021). https://doi.org/10.1039/D1TA00838B
- J. Zhang, C.H. Tan, K. Zhang, T. Jia, Y. Cui et al., π-extended conjugated polymer acceptor containing thienylene–vinylene–thienylene unit for high-performance thick-film all-polymer solar cells with superior long-term stability. Adv. Energy Mater. 11(48), 2102559 (2021). https://doi.org/10.1002/aenm.202102559
- Q. Liu, Y. Jiang, K. Jin, J. Qin, J. Xu et al., 18% efficiency organic solar cells. Sci. Bull. 65(4), 272–275 (2020). https://doi.org/10.1016/j.scib.2020.01.001
- Y. Lin, Y. Firdaus, F.H. Isikgor, M.I. Nugraha, E. Yengel et al., Self-assembled monolayer enables hole transport layer-free organic solar cells with 18% efficiency and improved operational stability. ACS Energy Lett. 5(9), 2935–2944 (2020). https://doi.org/10.1021/acsenergylett.0c01421
- W. Gao, H. Fu, Y. Li, F. Lin, R. Sun et al., Asymmetric acceptors enabling organic solar cells to achieve an over 17% efficiency: conformation effects on regulating molecular properties and suppressing nonradiative energy loss. Adv. Energy Mater. 11(4), 2003177 (2021). https://doi.org/10.1002/aenm.202003177
- S. Li, L. Zhan, Y. Jin, G. Zhou, T.K. Lau et al., Asymmetric electron acceptors for high-efficiency and low-energy-loss organic photovoltaics. Adv. Mater. 32(24), 2001160 (2020). https://doi.org/10.1002/adma.202001160
- S. Li, C.Z. Li, M. Shi, H. Chen, New phase for organic solar cell research: emergence of Y-series electron acceptors and their perspectives. ACS Energy Lett. 5(5), 1554–1567 (2020). https://doi.org/10.1021/acsenergylett.0c00537
- Y. Cui, H. Yao, J. Zhang, K. Xian, T. Zhang et al., Single-junction organic photovoltaic cells with approaching 18% efficiency. Adv. Mater. 32(19), 1908205 (2020). https://doi.org/10.1002/adma.201908205
- F. Qi, K. Jiang, F. Lin, Z. Wu, H. Zhang et al., Over 17% efficiency binary organic solar cells with photoresponses reaching 1000 nm enabled by selenophene-fused nonfullerene acceptors. ACS Energy Lett. 6(1), 9–15 (2021). https://doi.org/10.1021/acsenergylett.0c02230
- D. Li, C. Guo, X. Zhang, B. Du, C. Yu et al., Non-fullerene acceptor pre-aggregates enable high efficiency pseudo-bulk heterojunction organic solar cells. Sci. China Chem. 65(2), 373–381 (2022). https://doi.org/10.1007/s11426-021-1128-1
- L. Nian, Y. Kan, K. Gao, M. Zhang, N. Li et al., Approaching 16% efficiency in all-small-molecule organic solar cells based on ternary strategy with a highly crystalline acceptor. Joule 4(10), 2223–2236 (2020). https://doi.org/10.1016/j.joule.2020.08.011
- Z. Luo, R. Ma, T. Liu, J. Yu, Y. Xiao et al., Fine-tuning energy levels via asymmetric end groups enables polymer solar cells with efficiencies over 17%. Joule 4(6), 1236–1247 (2020). https://doi.org/10.1016/j.joule.2020.03.023
- W. Peng, Y. Lin, S.Y. Jeong, Z. Genene, A. Magomedov et al., Over 18% ternary polymer solar cells enabled by a terpolymer as the third component. Nano Energy 92, 106681 (2022). https://doi.org/10.1016/j.nanoen.2021.106681
- W. Guan, D. Yuan, J. Wu, X. Zhou, H. Zhao et al., Blade-coated organic solar cells from non-halogenated solvent offer 17% efficiency. J. Semicond. 42(3), 030502 (2021). https://doi.org/10.1088/1674-4926/42/3/030502
- C. Xu, Z. Zhao, K. Yang, L. Niu, X. Ma et al., Recent progress on all-small-molecule organic photovoltaics. J. Mater. Chem. A 10, 6291–6329 (2022). https://doi.org/10.1039/D1TA10581G
- C. Xu, X. Ma, Z. Zhao, M. Jiang, Z. Hu et al., Over 17.6% efficiency organic photovoltaic devices with two compatible polymer donors. Solar RRL 5(8), 2100175 (2021). https://doi.org/10.1002/solr.202100175
- Z.G. Zhang, Y. Yang, J. Yao, L. Xue, S. Chen et al., Constructing a strongly absorbing low-bandgap polymer acceptor for high-performance all-polymer solar cells. Angew. Chem. Int. Ed. 56(43), 13503–13507 (2017). https://doi.org/10.1002/anie.201707678
- H. Yu, S. Luo, R. Sun, I. Angunawela, Z. Qi et al., A difluoro-monobromo end group enables high-performance polymer acceptor and efficient all-polymer solar cells processable with green solvent under ambient condition. Adv. Funct. Mater. 31(25), 2100791 (2021). https://doi.org/10.1002/adfm.202100791
- H. Sun, B. Liu, Y. Ma, J.W. Lee, J. Yang et al., Regioregular narrow-bandgap n-type polymers with high electron mobility enabling highly efficient all-polymer solar cells. Adv. Mater. 33(37), 2102635 (2021). https://doi.org/10.1002/adma.202102635
- H. Fu, Y. Li, J. Yu, Z. Wu, Q. Fan et al., High efficiency (15.8%) all-polymer solar cells enabled by a regioregular narrow bandgap polymer acceptor. J. Am. Chem. Soc. 143(7), 2665–2670 (2021). https://doi.org/10.1021/jacs.0c12527
- Q. Fan, H. Fu, Q. Wu, Z. Wu, F. Lin et al., Multi-selenophene-containing narrow bandgap polymer acceptors for all-polymer solar cells with over 15% efficiency and high reproducibility. Angew. Chem. Int. Ed. 60(29), 15935–15943 (2021). https://doi.org/10.1002/anie.202101577
- Z. Luo, T. Liu, R. Ma, Y. Xiao, L. Zhan et al., Precisely controlling the position of bromine on the end group enables well-regular polymer acceptors for all-polymer solar cells with efficiencies over 15%. Adv. Mater. 32(48), 2005942 (2020). https://doi.org/10.1002/adma.202005942
- Y. Zhang, B. Wu, Y. He, W. Deng, J. Li et al., Layer-by-layer processed binary all-polymer solar cells with efficiency over 16% enabled by finely optimized morphology. Nano Energy 93, 106858 (2022). https://doi.org/10.1016/j.nanoen.2021.106858
- J. Jia, Q. Huang, T. Jia, K. Zhang, J. Zhang et al., Fine-tuning batch factors of polymer acceptors enables a binary all-polymer solar cell with high efficiency of 16.11%. Adv. Energy Mater. 12(3), 2103193 (2022). https://doi.org/10.1002/aenm.202103193
- H. Sun, H. Yu, Y. Shi, J. Yu, Z. Peng et al., A narrow-bandgap n-type polymer with an acceptor–acceptor backbone enabling efficient all-polymer solar cells. Adv. Mater. 32(43), 2004183 (2020). https://doi.org/10.1002/adma.202004183
- C. Sun, J.W. Lee, S. Seo, S. Lee, C. Wang et al., Synergistic engineering of side chains and backbone regioregularity of polymer acceptors for high-performance all-polymer solar cells with 15.1% efficiency. Adv. Energy Mater. 12(3), 2103239 (2021). https://doi.org/10.1002/aenm.202103239
- W. Wang, Q. Wu, R. Sun, J. Guo, Y. Wu et al., Controlling molecular mass of low-band-gap polymer acceptors for high-performance all-polymer solar cells. Joule 4(5), 1070–1086 (2020). https://doi.org/10.1016/j.joule.2020.03.019
- F. Peng, K. An, W. Zhong, Z. Li, L. Ying et al., A universal fluorinated polymer acceptor enables all-polymer solar cells with >15% efficiency. ACS Energy Lett. 5(12), 3702–3707 (2020). https://doi.org/10.1021/acsenergylett.0c02053
- C. Lee, S. Lee, G.U. Kim, W. Lee, B.J. Kim, Recent advances, design guidelines, and prospects of all-polymer solar cells. Chem. Rev. 119(13), 8028–8086 (2019). https://doi.org/10.1021/acs.chemrev.9b00044
- J.W. Lee, B.S. Ma, J. Choi, J. Lee, S. Lee et al., Origin of the high donor–acceptor composition tolerance in device performance and mechanical robustness of all-polymer solar cells. Chem. Mater. 32(1), 582–594 (2020). https://doi.org/10.1021/acs.chemmater.9b04464
- Z. Genene, J.W. Lee, S.W. Lee, Q. Chen, Z. Tan et al., Polymer acceptors with flexible spacers afford efficient and mechanically robust all-polymer solar cells. Adv. Mater. 34(6), 2107361 (2020). https://doi.org/10.1002/adma.202107361
- J.W. Lee, D. Jeong, D.J. Kim, T.N.L. Phan, J.S. Park et al., Flexible-spacer incorporated polymer donors enable superior blend miscibility for high-performance and mechanically-robust polymer solar cells. Energy Environ. Sci. 14(7), 4067–4076 (2021). https://doi.org/10.1039/D1EE01062J
- N. Kazerouni, E.L. Melenbrink, P. Das, B.C. Thompson, Ternary blend organic solar cells incorporating ductile conjugated polymers with conjugation break spacers. ACS Appl. Polym. Mater. 3(6), 3028–3037 (2021). https://doi.org/10.1021/acsapm.1c00213
- B.C. Schroeder, Y.C. Chiu, X. Gu, Y. Zhou, J. Xu et al., Non-conjugated flexible linkers in semiconducting polymers: a pathway to improved processability without compromising device performance. Adv. Electron. Mater. 2(7), 1600104 (2016). https://doi.org/10.1002/aelm.201600104
- Q. Fan, R. Ma, T. Liu, J. Yu, Y. Xiao et al., High-performance all-polymer solar cells enabled by a novel low bandgap non-fully conjugated polymer acceptor. Sci. China Chem. 64(8), 1380–1388 (2021). https://doi.org/10.1007/s11426-021-1020-7
- Q. Fan, W. Su, S. Chen, T. Liu, W. Zhuang et al., A non-conjugated polymer acceptor for efficient and thermally stable all-polymer solar cells. Angew. Chem. Int. Ed. 59(45), 19835–19840 (2020). https://doi.org/10.1002/anie.202005662
- W. Su, Q. Fan, I. Jalan, Y. Wang, W. Peng et al., Nonconjugated terpolymer acceptors with two different fused-ring electron-deficient building blocks for efficient all-polymer solar cells. ACS Appl. Mater. Interfaces 13(5), 6442–6449 (2021). https://doi.org/10.1021/acsami.0c17722
- Y. Liu, X.Y. Wang, Z.Y. Wang, Y. Lu, X.F. Cheng et al., Systematically investigating the effect of the aggregation behaviors in solution on the charge transport properties of BDOPV-based polymers with conjugation-break spacers. Polym. Chem. 12(3), 370–378 (2021). https://doi.org/10.1039/D0PY01491E
- W.W. McNutt, A. Gumyusenge, L.A. Galuska, Z. Qian, J. He et al., N-type complementary semiconducting polymer blends. ACS Appl. Polym. Mater. 2(7), 2644–2650 (2020). https://doi.org/10.1021/acsapm.0c00261
- L.A. Galuska, W.W. McNutt, Z. Qian, S. Zhang, D.W. Weller et al., Impact of backbone rigidity on the thermomechanical properties of semiconducting polymers with conjugation break spacers. Macromolecules 53(14), 6032–6042 (2020). https://doi.org/10.1021/acs.macromol.0c00889
- J. Mun, G.J.N. Wang, J.Y. Oh, T. Katsumata, F.L. Lee et al., Effect of nonconjugated spacers on mechanical properties of semiconducting polymers for stretchable transistors. Adv. Func. Mater. 28(43), 1804222 (2018). https://doi.org/10.1002/adfm.201804222
- X. Zhao, Y. Zhao, Q. Ge, K. Butrouna, Y. Diao et al., Complementary semiconducting polymer blends: the influence of conjugation-break spacer length in matrix polymers. Macromolecules 49(7), 2601–2608 (2016). https://doi.org/10.1021/acs.macromol.6b00050
- Z. Du, X. Bao, Y. Li, D. Liu, J. Wang et al., Balancing high open circuit voltage over 1.0V and high short circuit current in benzodithiophene-based polymer solar cells with low energy loss: a synergistic effect of fluorination and alkylthiolation. Adv. Energy Mater. 8(8), 1701471 (2018). https://doi.org/10.1002/aenm.201701471
- F. Yang, C. Li, W. Lai, A. Zhang, H. Huang et al., Halogenated conjugated molecules for ambipolar field-effect transistors and non-fullerene organic solar cells. Mater. Chem. Front. 1(7), 1389–1395 (2017). https://doi.org/10.1039/C7QM00025A
- Z. Zheng, H. Yao, L. Ye, Y. Xu, S. Zhang et al., PBDB-T and its derivatives: a family of polymer donors enables over 17% efficiency in organic photovoltaics. Mater. Today 35, 115–130 (2020). https://doi.org/10.1016/j.mattod.2019.10.023
- Q.Y. Li, Z.F. Yao, J.Y. Wang, J. Pei, Multi-level aggregation of conjugated small molecules and polymers: from morphology control to physical insights. Rep. Prog. Phys. 84(7), 076601 (2021). https://doi.org/10.1088/1361-6633/abfaad
- S. Seo, J. Kim, H. Kang, J.W. Lee, S. Lee et al., Polymer donors with temperature-insensitive, strong aggregation properties enabling additive-free, processing temperature-tolerant high-performance all-polymer solar cells. Macromolecules 54(1), 53–63 (2021). https://doi.org/10.1021/acs.macromol.0c02496
- N. Wang, Y. Yu, R. Zhao, Z. Ding, J. Liu et al., Improving active layer morphology of all-polymer solar cells by solution temperature. Macromolecules 53(9), 3325–3331 (2020). https://doi.org/10.1021/acs.macromol.0c00633
- N. Wang, X. Long, Z. Ding, J. Feng, B. Lin et al., Improving active l ayer morphology of all-polymer solar cells by dissolving the two polymers individually. Macromolecules 52(6), 2402–2410 (2019). https://doi.org/10.1021/acs.macromol.9b00057
- T. Jia, J. Zhang, W. Zhong, Y. Liang, K. Zhang et al., 14.4% efficiency all-polymer solar cell with broad absorption and low energy loss enabled by a novel polymer acceptor. Nano Energy 72, 104718 (2020). https://doi.org/10.1016/j.nanoen.2020.104718
- L. Zhang, T. Jia, L. Pan, B. Wu, Z. Wang et al., 15.4% efficiency all-polymer solar cells. Sci. China Chem. 64(3), 408–412 (2021). https://doi.org/10.1007/s11426-020-9935-2
- S.R. Cowan, A. Roy, A.J. Heeger, Recombination in polymer-fullerene bulk heterojunction solar cells. Phys Rev. B 82(24), 245207 (2010). https://doi.org/10.1103/PhysRevB.82.245207
- L.J.A. Koster, M. Kemerink, M.M. Wienk, K. Maturová, R.A. Janssen, Quantifying bimolecular recombination losses in organic bulk heterojunction solar cells. Adv. Mater. 23(14), 1670–1674 (2011). https://doi.org/10.1002/adma.201004311
- J.H. Kim, A. Nizami, Y. Hwangbo, B. Jang, H.J. Lee et al., Tensile testing of ultra-thin films on water surface. Nat. Commun. 4, 2520 (2013). https://doi.org/10.1038/ncomms3520
- T. Kim, J.H. Kim, T.E. Kang, C. Lee, H. Kang et al., Flexible, highly efficient all-polymer solar cells. Nat. Commun. 6, 8547 (2015). https://doi.org/10.1038/ncomms9547
- S. Mukherjee, C.M. Proctor, G.C. Bazan, T.Q. Nguyen, H. Ade, Significance of average domain purity and mixed domains on the photovoltaic performance of high-efficiency solution-processed small-molecule BHJ solar cells. Adv. Energy Mater. 5(21), 1500877 (2015). https://doi.org/10.1002/aenm.201500877
- L. Ye, X.C. Jiao, M. Zhou, S.Q. Zhang, H.F. Yao et al., Manipulating aggregation and molecular orientation in all-polymer photovoltaic cells. Adv. Mater. 27(39), 6046–6054 (2015). https://doi.org/10.1002/adma.201503218
- J.W. Lee, B.S. Ma, H.J. Kim, T.S. Kim, B.J. Kim, High-molecular-weight electroactive polymer additives for simultaneous enhancement of photovoltaic efficiency and mechanical robustness in high-performance polymer solar cells. JACS Au 1(5), 612–622 (2021). https://doi.org/10.1021/jacsau.1c00064
- L. Ye, H.W. Hu, M. Ghasemi, T. Wang, B.A. Collins et al., Quantitative relations between interaction parameter, miscibility and function in organic solar cells. Nat. Mater. 17(3), 253–260 (2018). https://doi.org/10.1038/s41563-017-0005-1
- K.H. Kim, H. Kang, S.Y. Nam, J. Jung, P.S. Kim et al., Facile synthesis of o-xylenyl fullerene multiadducts for high open circuit voltage and efficient polymer solar cells. Chem. Mater. 23(22), 5090–5095 (2011). https://doi.org/10.1021/cm202885s
References
W. Yang, Z. Luo, R. Sun, J. Guo, T. Wang et al., Simultaneous enhanced efficiency and thermal stability in organic solar cells from a polymer acceptor additive. Nat. Commun. 11, 1218 (2020). https://doi.org/10.1038/s41467-020-14926-5
Q. Fan, W. Su, S. Chen, W. Kim, X. Chen et al., Mechanically robust all-polymer solar cells from narrow band gap acceptors with hetero-bridging atoms. Joule 4(3), 658–672 (2020). https://doi.org/10.1016/j.joule.2020.01.014
Z.G. Zhang, Y. Li, Polymerized small-molecule acceptors for high-performance all-polymer solar cells. Angew. Chem. Int. Ed. 60(9), 4422–4433 (2021). https://doi.org/10.1002/anie.202009666
T. Jia, J. Zhang, K. Zhang, H. Tang, S. Dong et al., All-polymer solar cells with efficiency approaching 16% enabled using a dithieno[3′,2′:3,4;2′′,3′′:5,6]benzo[1,2-c][1,2,5]thiadiazole (fDTBT)-based polymer donor. J. Mater. Chem. A 9(14), 8975–8983 (2021). https://doi.org/10.1039/D1TA00838B
J. Zhang, C.H. Tan, K. Zhang, T. Jia, Y. Cui et al., π-extended conjugated polymer acceptor containing thienylene–vinylene–thienylene unit for high-performance thick-film all-polymer solar cells with superior long-term stability. Adv. Energy Mater. 11(48), 2102559 (2021). https://doi.org/10.1002/aenm.202102559
Q. Liu, Y. Jiang, K. Jin, J. Qin, J. Xu et al., 18% efficiency organic solar cells. Sci. Bull. 65(4), 272–275 (2020). https://doi.org/10.1016/j.scib.2020.01.001
Y. Lin, Y. Firdaus, F.H. Isikgor, M.I. Nugraha, E. Yengel et al., Self-assembled monolayer enables hole transport layer-free organic solar cells with 18% efficiency and improved operational stability. ACS Energy Lett. 5(9), 2935–2944 (2020). https://doi.org/10.1021/acsenergylett.0c01421
W. Gao, H. Fu, Y. Li, F. Lin, R. Sun et al., Asymmetric acceptors enabling organic solar cells to achieve an over 17% efficiency: conformation effects on regulating molecular properties and suppressing nonradiative energy loss. Adv. Energy Mater. 11(4), 2003177 (2021). https://doi.org/10.1002/aenm.202003177
S. Li, L. Zhan, Y. Jin, G. Zhou, T.K. Lau et al., Asymmetric electron acceptors for high-efficiency and low-energy-loss organic photovoltaics. Adv. Mater. 32(24), 2001160 (2020). https://doi.org/10.1002/adma.202001160
S. Li, C.Z. Li, M. Shi, H. Chen, New phase for organic solar cell research: emergence of Y-series electron acceptors and their perspectives. ACS Energy Lett. 5(5), 1554–1567 (2020). https://doi.org/10.1021/acsenergylett.0c00537
Y. Cui, H. Yao, J. Zhang, K. Xian, T. Zhang et al., Single-junction organic photovoltaic cells with approaching 18% efficiency. Adv. Mater. 32(19), 1908205 (2020). https://doi.org/10.1002/adma.201908205
F. Qi, K. Jiang, F. Lin, Z. Wu, H. Zhang et al., Over 17% efficiency binary organic solar cells with photoresponses reaching 1000 nm enabled by selenophene-fused nonfullerene acceptors. ACS Energy Lett. 6(1), 9–15 (2021). https://doi.org/10.1021/acsenergylett.0c02230
D. Li, C. Guo, X. Zhang, B. Du, C. Yu et al., Non-fullerene acceptor pre-aggregates enable high efficiency pseudo-bulk heterojunction organic solar cells. Sci. China Chem. 65(2), 373–381 (2022). https://doi.org/10.1007/s11426-021-1128-1
L. Nian, Y. Kan, K. Gao, M. Zhang, N. Li et al., Approaching 16% efficiency in all-small-molecule organic solar cells based on ternary strategy with a highly crystalline acceptor. Joule 4(10), 2223–2236 (2020). https://doi.org/10.1016/j.joule.2020.08.011
Z. Luo, R. Ma, T. Liu, J. Yu, Y. Xiao et al., Fine-tuning energy levels via asymmetric end groups enables polymer solar cells with efficiencies over 17%. Joule 4(6), 1236–1247 (2020). https://doi.org/10.1016/j.joule.2020.03.023
W. Peng, Y. Lin, S.Y. Jeong, Z. Genene, A. Magomedov et al., Over 18% ternary polymer solar cells enabled by a terpolymer as the third component. Nano Energy 92, 106681 (2022). https://doi.org/10.1016/j.nanoen.2021.106681
W. Guan, D. Yuan, J. Wu, X. Zhou, H. Zhao et al., Blade-coated organic solar cells from non-halogenated solvent offer 17% efficiency. J. Semicond. 42(3), 030502 (2021). https://doi.org/10.1088/1674-4926/42/3/030502
C. Xu, Z. Zhao, K. Yang, L. Niu, X. Ma et al., Recent progress on all-small-molecule organic photovoltaics. J. Mater. Chem. A 10, 6291–6329 (2022). https://doi.org/10.1039/D1TA10581G
C. Xu, X. Ma, Z. Zhao, M. Jiang, Z. Hu et al., Over 17.6% efficiency organic photovoltaic devices with two compatible polymer donors. Solar RRL 5(8), 2100175 (2021). https://doi.org/10.1002/solr.202100175
Z.G. Zhang, Y. Yang, J. Yao, L. Xue, S. Chen et al., Constructing a strongly absorbing low-bandgap polymer acceptor for high-performance all-polymer solar cells. Angew. Chem. Int. Ed. 56(43), 13503–13507 (2017). https://doi.org/10.1002/anie.201707678
H. Yu, S. Luo, R. Sun, I. Angunawela, Z. Qi et al., A difluoro-monobromo end group enables high-performance polymer acceptor and efficient all-polymer solar cells processable with green solvent under ambient condition. Adv. Funct. Mater. 31(25), 2100791 (2021). https://doi.org/10.1002/adfm.202100791
H. Sun, B. Liu, Y. Ma, J.W. Lee, J. Yang et al., Regioregular narrow-bandgap n-type polymers with high electron mobility enabling highly efficient all-polymer solar cells. Adv. Mater. 33(37), 2102635 (2021). https://doi.org/10.1002/adma.202102635
H. Fu, Y. Li, J. Yu, Z. Wu, Q. Fan et al., High efficiency (15.8%) all-polymer solar cells enabled by a regioregular narrow bandgap polymer acceptor. J. Am. Chem. Soc. 143(7), 2665–2670 (2021). https://doi.org/10.1021/jacs.0c12527
Q. Fan, H. Fu, Q. Wu, Z. Wu, F. Lin et al., Multi-selenophene-containing narrow bandgap polymer acceptors for all-polymer solar cells with over 15% efficiency and high reproducibility. Angew. Chem. Int. Ed. 60(29), 15935–15943 (2021). https://doi.org/10.1002/anie.202101577
Z. Luo, T. Liu, R. Ma, Y. Xiao, L. Zhan et al., Precisely controlling the position of bromine on the end group enables well-regular polymer acceptors for all-polymer solar cells with efficiencies over 15%. Adv. Mater. 32(48), 2005942 (2020). https://doi.org/10.1002/adma.202005942
Y. Zhang, B. Wu, Y. He, W. Deng, J. Li et al., Layer-by-layer processed binary all-polymer solar cells with efficiency over 16% enabled by finely optimized morphology. Nano Energy 93, 106858 (2022). https://doi.org/10.1016/j.nanoen.2021.106858
J. Jia, Q. Huang, T. Jia, K. Zhang, J. Zhang et al., Fine-tuning batch factors of polymer acceptors enables a binary all-polymer solar cell with high efficiency of 16.11%. Adv. Energy Mater. 12(3), 2103193 (2022). https://doi.org/10.1002/aenm.202103193
H. Sun, H. Yu, Y. Shi, J. Yu, Z. Peng et al., A narrow-bandgap n-type polymer with an acceptor–acceptor backbone enabling efficient all-polymer solar cells. Adv. Mater. 32(43), 2004183 (2020). https://doi.org/10.1002/adma.202004183
C. Sun, J.W. Lee, S. Seo, S. Lee, C. Wang et al., Synergistic engineering of side chains and backbone regioregularity of polymer acceptors for high-performance all-polymer solar cells with 15.1% efficiency. Adv. Energy Mater. 12(3), 2103239 (2021). https://doi.org/10.1002/aenm.202103239
W. Wang, Q. Wu, R. Sun, J. Guo, Y. Wu et al., Controlling molecular mass of low-band-gap polymer acceptors for high-performance all-polymer solar cells. Joule 4(5), 1070–1086 (2020). https://doi.org/10.1016/j.joule.2020.03.019
F. Peng, K. An, W. Zhong, Z. Li, L. Ying et al., A universal fluorinated polymer acceptor enables all-polymer solar cells with >15% efficiency. ACS Energy Lett. 5(12), 3702–3707 (2020). https://doi.org/10.1021/acsenergylett.0c02053
C. Lee, S. Lee, G.U. Kim, W. Lee, B.J. Kim, Recent advances, design guidelines, and prospects of all-polymer solar cells. Chem. Rev. 119(13), 8028–8086 (2019). https://doi.org/10.1021/acs.chemrev.9b00044
J.W. Lee, B.S. Ma, J. Choi, J. Lee, S. Lee et al., Origin of the high donor–acceptor composition tolerance in device performance and mechanical robustness of all-polymer solar cells. Chem. Mater. 32(1), 582–594 (2020). https://doi.org/10.1021/acs.chemmater.9b04464
Z. Genene, J.W. Lee, S.W. Lee, Q. Chen, Z. Tan et al., Polymer acceptors with flexible spacers afford efficient and mechanically robust all-polymer solar cells. Adv. Mater. 34(6), 2107361 (2020). https://doi.org/10.1002/adma.202107361
J.W. Lee, D. Jeong, D.J. Kim, T.N.L. Phan, J.S. Park et al., Flexible-spacer incorporated polymer donors enable superior blend miscibility for high-performance and mechanically-robust polymer solar cells. Energy Environ. Sci. 14(7), 4067–4076 (2021). https://doi.org/10.1039/D1EE01062J
N. Kazerouni, E.L. Melenbrink, P. Das, B.C. Thompson, Ternary blend organic solar cells incorporating ductile conjugated polymers with conjugation break spacers. ACS Appl. Polym. Mater. 3(6), 3028–3037 (2021). https://doi.org/10.1021/acsapm.1c00213
B.C. Schroeder, Y.C. Chiu, X. Gu, Y. Zhou, J. Xu et al., Non-conjugated flexible linkers in semiconducting polymers: a pathway to improved processability without compromising device performance. Adv. Electron. Mater. 2(7), 1600104 (2016). https://doi.org/10.1002/aelm.201600104
Q. Fan, R. Ma, T. Liu, J. Yu, Y. Xiao et al., High-performance all-polymer solar cells enabled by a novel low bandgap non-fully conjugated polymer acceptor. Sci. China Chem. 64(8), 1380–1388 (2021). https://doi.org/10.1007/s11426-021-1020-7
Q. Fan, W. Su, S. Chen, T. Liu, W. Zhuang et al., A non-conjugated polymer acceptor for efficient and thermally stable all-polymer solar cells. Angew. Chem. Int. Ed. 59(45), 19835–19840 (2020). https://doi.org/10.1002/anie.202005662
W. Su, Q. Fan, I. Jalan, Y. Wang, W. Peng et al., Nonconjugated terpolymer acceptors with two different fused-ring electron-deficient building blocks for efficient all-polymer solar cells. ACS Appl. Mater. Interfaces 13(5), 6442–6449 (2021). https://doi.org/10.1021/acsami.0c17722
Y. Liu, X.Y. Wang, Z.Y. Wang, Y. Lu, X.F. Cheng et al., Systematically investigating the effect of the aggregation behaviors in solution on the charge transport properties of BDOPV-based polymers with conjugation-break spacers. Polym. Chem. 12(3), 370–378 (2021). https://doi.org/10.1039/D0PY01491E
W.W. McNutt, A. Gumyusenge, L.A. Galuska, Z. Qian, J. He et al., N-type complementary semiconducting polymer blends. ACS Appl. Polym. Mater. 2(7), 2644–2650 (2020). https://doi.org/10.1021/acsapm.0c00261
L.A. Galuska, W.W. McNutt, Z. Qian, S. Zhang, D.W. Weller et al., Impact of backbone rigidity on the thermomechanical properties of semiconducting polymers with conjugation break spacers. Macromolecules 53(14), 6032–6042 (2020). https://doi.org/10.1021/acs.macromol.0c00889
J. Mun, G.J.N. Wang, J.Y. Oh, T. Katsumata, F.L. Lee et al., Effect of nonconjugated spacers on mechanical properties of semiconducting polymers for stretchable transistors. Adv. Func. Mater. 28(43), 1804222 (2018). https://doi.org/10.1002/adfm.201804222
X. Zhao, Y. Zhao, Q. Ge, K. Butrouna, Y. Diao et al., Complementary semiconducting polymer blends: the influence of conjugation-break spacer length in matrix polymers. Macromolecules 49(7), 2601–2608 (2016). https://doi.org/10.1021/acs.macromol.6b00050
Z. Du, X. Bao, Y. Li, D. Liu, J. Wang et al., Balancing high open circuit voltage over 1.0V and high short circuit current in benzodithiophene-based polymer solar cells with low energy loss: a synergistic effect of fluorination and alkylthiolation. Adv. Energy Mater. 8(8), 1701471 (2018). https://doi.org/10.1002/aenm.201701471
F. Yang, C. Li, W. Lai, A. Zhang, H. Huang et al., Halogenated conjugated molecules for ambipolar field-effect transistors and non-fullerene organic solar cells. Mater. Chem. Front. 1(7), 1389–1395 (2017). https://doi.org/10.1039/C7QM00025A
Z. Zheng, H. Yao, L. Ye, Y. Xu, S. Zhang et al., PBDB-T and its derivatives: a family of polymer donors enables over 17% efficiency in organic photovoltaics. Mater. Today 35, 115–130 (2020). https://doi.org/10.1016/j.mattod.2019.10.023
Q.Y. Li, Z.F. Yao, J.Y. Wang, J. Pei, Multi-level aggregation of conjugated small molecules and polymers: from morphology control to physical insights. Rep. Prog. Phys. 84(7), 076601 (2021). https://doi.org/10.1088/1361-6633/abfaad
S. Seo, J. Kim, H. Kang, J.W. Lee, S. Lee et al., Polymer donors with temperature-insensitive, strong aggregation properties enabling additive-free, processing temperature-tolerant high-performance all-polymer solar cells. Macromolecules 54(1), 53–63 (2021). https://doi.org/10.1021/acs.macromol.0c02496
N. Wang, Y. Yu, R. Zhao, Z. Ding, J. Liu et al., Improving active layer morphology of all-polymer solar cells by solution temperature. Macromolecules 53(9), 3325–3331 (2020). https://doi.org/10.1021/acs.macromol.0c00633
N. Wang, X. Long, Z. Ding, J. Feng, B. Lin et al., Improving active l ayer morphology of all-polymer solar cells by dissolving the two polymers individually. Macromolecules 52(6), 2402–2410 (2019). https://doi.org/10.1021/acs.macromol.9b00057
T. Jia, J. Zhang, W. Zhong, Y. Liang, K. Zhang et al., 14.4% efficiency all-polymer solar cell with broad absorption and low energy loss enabled by a novel polymer acceptor. Nano Energy 72, 104718 (2020). https://doi.org/10.1016/j.nanoen.2020.104718
L. Zhang, T. Jia, L. Pan, B. Wu, Z. Wang et al., 15.4% efficiency all-polymer solar cells. Sci. China Chem. 64(3), 408–412 (2021). https://doi.org/10.1007/s11426-020-9935-2
S.R. Cowan, A. Roy, A.J. Heeger, Recombination in polymer-fullerene bulk heterojunction solar cells. Phys Rev. B 82(24), 245207 (2010). https://doi.org/10.1103/PhysRevB.82.245207
L.J.A. Koster, M. Kemerink, M.M. Wienk, K. Maturová, R.A. Janssen, Quantifying bimolecular recombination losses in organic bulk heterojunction solar cells. Adv. Mater. 23(14), 1670–1674 (2011). https://doi.org/10.1002/adma.201004311
J.H. Kim, A. Nizami, Y. Hwangbo, B. Jang, H.J. Lee et al., Tensile testing of ultra-thin films on water surface. Nat. Commun. 4, 2520 (2013). https://doi.org/10.1038/ncomms3520
T. Kim, J.H. Kim, T.E. Kang, C. Lee, H. Kang et al., Flexible, highly efficient all-polymer solar cells. Nat. Commun. 6, 8547 (2015). https://doi.org/10.1038/ncomms9547
S. Mukherjee, C.M. Proctor, G.C. Bazan, T.Q. Nguyen, H. Ade, Significance of average domain purity and mixed domains on the photovoltaic performance of high-efficiency solution-processed small-molecule BHJ solar cells. Adv. Energy Mater. 5(21), 1500877 (2015). https://doi.org/10.1002/aenm.201500877
L. Ye, X.C. Jiao, M. Zhou, S.Q. Zhang, H.F. Yao et al., Manipulating aggregation and molecular orientation in all-polymer photovoltaic cells. Adv. Mater. 27(39), 6046–6054 (2015). https://doi.org/10.1002/adma.201503218
J.W. Lee, B.S. Ma, H.J. Kim, T.S. Kim, B.J. Kim, High-molecular-weight electroactive polymer additives for simultaneous enhancement of photovoltaic efficiency and mechanical robustness in high-performance polymer solar cells. JACS Au 1(5), 612–622 (2021). https://doi.org/10.1021/jacsau.1c00064
L. Ye, H.W. Hu, M. Ghasemi, T. Wang, B.A. Collins et al., Quantitative relations between interaction parameter, miscibility and function in organic solar cells. Nat. Mater. 17(3), 253–260 (2018). https://doi.org/10.1038/s41563-017-0005-1
K.H. Kim, H. Kang, S.Y. Nam, J. Jung, P.S. Kim et al., Facile synthesis of o-xylenyl fullerene multiadducts for high open circuit voltage and efficient polymer solar cells. Chem. Mater. 23(22), 5090–5095 (2011). https://doi.org/10.1021/cm202885s