Novel Hybrid Ligands for Passivating PbS Colloidal Quantum Dots to Enhance the Performance of Solar Cells
Corresponding Author: Donghuan Qin
Nano-Micro Letters,
Vol. 7 No. 4 (2015), Article Number: 325-331
Abstract
We developed novel hybrid ligands to passivate PbS colloidal quantum dots (CQDs), and two kinds of solar cells based on as-synthesized CQDs were fabricated to verify the passivation effects of the ligands. It was found that the ligands strongly affected the optical and electrical properties of CQDs, and the performances of solar cells were enhanced strongly. The optimized hybrid ligands, oleic amine/octyl-phosphine acid/CdCl2 improved power conversion efficiency (PCE) to much higher of 3.72 % for Schottky diode cell and 5.04 % for p–n junction cell. These results may be beneficial to design passivation strategy for low-cost and high-performance CQDs solar cells.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- I.J. Kramer, L. Levina, R. Debnath, D. Zhitomirsky, E.H. Sargent, Solar cells using quantum funnels. Nano Lett. 11(9), 3701–3706 (2011). doi:10.1021/nl201682h
- O.E. Semonin, J.M. Luther, S. Choi, H.Y. Chen, J. Gao, A.J. Nozik, M.C. Beard, Peak external photocurrent quantum efficiency exceeding 100 % via meg in a quantum dot solar cell. Science 334(6062), 1530 (2011). doi:10.1126/science.1209845
- I. Gur, N.A. Fromer, M.L. Geier, A.P. Alivisatos, Air-stable all-inorganic nanocrystal solar cells processed from solution. Science 310(5747), 462 (2005). doi:10.1126/science.1117908
- J. Tang, E.H. Sargent, Infrared colloidal quantum dots for photovoltaics: fundamentals and recent progress. Adv. Mater. 23(1), 12–29 (2011). doi:10.1002/adma.201001491
- M.G. Panthani, J.M. Kurley, R.W. Crisp, T.C. Dietz, T. Ezzyat, J.M. Luther, D.V. Talapin, High efficiency solution processed sintered CdTe nanocrystal solar cells: the role of interfaces. Nano Lett. 14(2), 670–675 (2014). doi:10.1021/nl403912w
- J. Zhu, Y. Yang, Y. Gao, D. Qin, H. Wu, L. Hou, W. Huang, Enhancement of open-circuit voltage and the fill factor in CdTe nanocrystal solar cells by using interface materials. Nanotechnology 25(36), 365203 (2014). doi:10.1088/0957-4484/25/36/365203
- Y. Tian, Y. Zhang, Y. Lin, K. Gao, Y. Zhang et al., Solution-processed efficient CdTe nanocrystal/CBD-CdS heterojunction solar cells with ZnO interlayer. J. Nanoparticle Res. 15, 2053 (2013). doi:10.1007/s11051-013-2053-z
- Z. Chen, H. Zhang, X. Du, X. Cheng, X. Chen, Y. Jiang, B. Yang, From planar-heterojunction to n-i structure: an efficient strategy to improve short-circuit current and power conversion efficiency of aqueous-solution-processed hybrid solar cells. Energy Environ. Sci. 6, 1597–1603 (2013). doi:10.1039/c3ee40481a
- Z. Chen, H. Zhang, Q. Zeng, Y. Wang, D. Xu, L. Wang, H. Wang, B. Yang, In situ construction of nanoscale CdTe-CdS bulk heterojunctions for inorganic nanocrystal solar cells. Adv. Energy Mater. 4(10), 1400235 (2014). doi:10.1002/aenm.201400235
- Y.-G. Nir, S.-H. Michal, Z. Marina, K. Shifi, S. Asher, T. Nir, Molecular control of quantum-dot internal electric field and its application to CdSe-based solar cells. Nat. Mater. 10, 974–979 (2011). doi:10.1038/nmat3133
- E.J.D. Klem, C.W. Gregory, G.B. Cunningham, S. Hall, D.S. Temple, J.S. Lewis, Planar PbS quantum dot/C60 heterojunction photovoltaic devices with 5.2 % power conversion efficiency. Appl. Phys. Lett. 100(17), 173109 (2012). doi:10.1063/1.4707377
- D.C.J. Neo, C. Cheng, S.D. Stranks, S.M. Fairclough, J.S. Kim et al., Influence of shell thickness and surface passivation on PbS/CdS core/shell colloidal quantum dot solar cells. Chem. Mater. 26(13), 4004–4013 (2014). doi:10.1021/cm501595u
- G.H. Kim, B. Walker, H.B. Kim, J.Y. Kim, E.H. Sargent, J. Park, J.Y. Kim, Inverted colloidal quantum dot solar cells. Adv. Mater. 26(20), 3321–3327 (2014). doi:10.1002/adma.201305583
- B.A. Gonfa, H. Zhao, J. Li, J. Qiu, M. Saidani et al., Air-processed depleted bulk heterojunction solar cells based on PbS/CdS core-shell quantum dots and TiO2 nanorod arrays. Sol. Energy Mater. Sol. Cells 124, 67–74 (2014). doi:10.1016/j.solmat.2014.01.037
- W. Ma, S.L. Swisher, T. Ewers, J. Engel, V.E. Ferry, H.A. Atwater, A.P. Alivisatos, Photovoltaic performance of ultrasmall PbSe quantum dots. ACS Nano 5(10), 8140–8147 (2011). doi:10.1021/nn202786g
- M. Tabachnyk, B. Ehrler, S. Gelinas, M.L. Bohm, B.J. Walker et al., Resonant energy transfer of triplet excitons from pentacene to PbSe nanocrystals. Nat. Mater. 13, 1033–1038 (2014). doi:10.1038/nmat4093
- J. Gao, J.M. Luther, O.E. Semonin, R.J. Ellingson, A.J. Nozik, M.C. Beard, Quantum dot size dependent J-V characteristics in heterojunction ZnO/PbS quantum dot solar cells. Nano Lett. 11(3), 1002–1008 (2011). doi:10.1021/nl103814g
- B.D. Weil, S.T. Connor, Y. Cui, CuInS2 solar cells by air-stable ink rolling. JACS 132(13), 6642–6643 (2010). doi:10.1021/ja1020475
- M.A. Hines, G.D. Scholes, Colloidal PbS nanocrystals with size-tunable near-infrared emission: observation of post-synthesis self-narrowing of the particle size distribution. Adv. Mater. 15(21), 1844–1849 (2003). doi:10.1002/adma.200305395
- S.A. McDonald, G. Konstantatos, S. Zhang, P.W. Cyr, E.J.D. Klem, L. Levina, E.H. Sargent, Solution-processed PbS quantum dot infrared photodetectors and photovoltaics. Nat. Mater. 4, 138–142 (2005). doi:10.1038/nmat1299
- J. Tang, X. Wang, L. Brzozowski, D.A.R. Barkhouse, R. Debnath, L. Levina, E.H. Sargent, Schottky quantum dot solar cells stable in air under solar illumination. Adv. Mater. 22(12), 1398–1402 (2010). doi:10.1002/adma.200903240
- J.M. Luther, M. Law, M.C. Beard, Q. Song, M.O. Reese, R.J. Ellingson, A.J. Nozik, Schottky solar cells based on colloidal nanocrystal films. Nano Lett. 8(10), 3488–3492 (2008). doi:10.1021/nl802476m
- D. Zhitomirsky, M. Furukawa, J. Tang, P. Stadler, S. Hoogland, O. Voznyy, H. Liu, E.H. Sargent, N-type colloidal-quantum-dot solids for photovoltaics. Adv. Mater. 24(46), 6181–6185 (2012). doi:10.1002/adma.201202825
- H. Liu, J. Tang, I.J. Kramer, R. Debnath, G.I. Koleilat et al., Electron acceptor materials engineering in colloidal quantum dot solar cells. Adv. Mater. 23(33), 3832–3837 (2011). doi:10.1002/adma.201101783
- A.H. Ip, S.M. Thon, S. Hoogland, O. Voznyy, D. Zhitomirsky, R. Debnath, L. Levina, A. Amassian, E.H. Sargent, Hybrid passivated colloidal quantum dot solids. Nat. Nanotechnol. 7(9), 577–582 (2012). doi:10.1038/nnano.2012.127
- C.M. Chuang, P.R. Brown, V. Bulovic, M.G. Bawendi, Improved performance and stability in quantum dot solar cells through band alignment engineering. Nat. Mater. 13, 796–801 (2014). doi:10.1038/nmat3984
- Z. Ning, O. Voznyy, J. Pan, S. Hoogland, V. Adinolfi et al., Air-stable n-type colloidal quantum dot solids. Nat. Mater. 13, 822–828 (2014). doi:10.1038/nmat4007
- L.J. Kramer, E.H. Sargent, The architecture of colloidal quantum dot solar cells: materials to devices. Chem. Rev. 114(1), 863–882 (2014). doi:10.1021/cr400299t
- W. Yoon, J.E. Boercker, M.P. Lumb, D. Placencia, E.E. Foos, J.G. Tischler, Enhanced open-circuit voltage of PbS nanocrystal quantum dot solar cells. Sci. Rep.-UK 3, 2225 (2013). doi:10.1038/srep02225
- V. Malgras, A. Nattestad, Y. Yamauchi, S.X. Dou, J.H. Kim, The effect of surface passivation on the structure of sulphur-rich PbS colloidal quantum dots for photovoltaic application. Nanoscale 7(13), 5706–5711 (2015). doi:10.1039/C4NR07006B
- R. Ciach, Y.P. Dotsenko, V.V. Naumov, A.N. Shmyryeva, Injection technique for the study of solar cell test structures. Sol. Energy Mater. Sol. Cells 76(4), 613–624 (2003). doi:10.1016/S0927-0248(02)00271-4
References
I.J. Kramer, L. Levina, R. Debnath, D. Zhitomirsky, E.H. Sargent, Solar cells using quantum funnels. Nano Lett. 11(9), 3701–3706 (2011). doi:10.1021/nl201682h
O.E. Semonin, J.M. Luther, S. Choi, H.Y. Chen, J. Gao, A.J. Nozik, M.C. Beard, Peak external photocurrent quantum efficiency exceeding 100 % via meg in a quantum dot solar cell. Science 334(6062), 1530 (2011). doi:10.1126/science.1209845
I. Gur, N.A. Fromer, M.L. Geier, A.P. Alivisatos, Air-stable all-inorganic nanocrystal solar cells processed from solution. Science 310(5747), 462 (2005). doi:10.1126/science.1117908
J. Tang, E.H. Sargent, Infrared colloidal quantum dots for photovoltaics: fundamentals and recent progress. Adv. Mater. 23(1), 12–29 (2011). doi:10.1002/adma.201001491
M.G. Panthani, J.M. Kurley, R.W. Crisp, T.C. Dietz, T. Ezzyat, J.M. Luther, D.V. Talapin, High efficiency solution processed sintered CdTe nanocrystal solar cells: the role of interfaces. Nano Lett. 14(2), 670–675 (2014). doi:10.1021/nl403912w
J. Zhu, Y. Yang, Y. Gao, D. Qin, H. Wu, L. Hou, W. Huang, Enhancement of open-circuit voltage and the fill factor in CdTe nanocrystal solar cells by using interface materials. Nanotechnology 25(36), 365203 (2014). doi:10.1088/0957-4484/25/36/365203
Y. Tian, Y. Zhang, Y. Lin, K. Gao, Y. Zhang et al., Solution-processed efficient CdTe nanocrystal/CBD-CdS heterojunction solar cells with ZnO interlayer. J. Nanoparticle Res. 15, 2053 (2013). doi:10.1007/s11051-013-2053-z
Z. Chen, H. Zhang, X. Du, X. Cheng, X. Chen, Y. Jiang, B. Yang, From planar-heterojunction to n-i structure: an efficient strategy to improve short-circuit current and power conversion efficiency of aqueous-solution-processed hybrid solar cells. Energy Environ. Sci. 6, 1597–1603 (2013). doi:10.1039/c3ee40481a
Z. Chen, H. Zhang, Q. Zeng, Y. Wang, D. Xu, L. Wang, H. Wang, B. Yang, In situ construction of nanoscale CdTe-CdS bulk heterojunctions for inorganic nanocrystal solar cells. Adv. Energy Mater. 4(10), 1400235 (2014). doi:10.1002/aenm.201400235
Y.-G. Nir, S.-H. Michal, Z. Marina, K. Shifi, S. Asher, T. Nir, Molecular control of quantum-dot internal electric field and its application to CdSe-based solar cells. Nat. Mater. 10, 974–979 (2011). doi:10.1038/nmat3133
E.J.D. Klem, C.W. Gregory, G.B. Cunningham, S. Hall, D.S. Temple, J.S. Lewis, Planar PbS quantum dot/C60 heterojunction photovoltaic devices with 5.2 % power conversion efficiency. Appl. Phys. Lett. 100(17), 173109 (2012). doi:10.1063/1.4707377
D.C.J. Neo, C. Cheng, S.D. Stranks, S.M. Fairclough, J.S. Kim et al., Influence of shell thickness and surface passivation on PbS/CdS core/shell colloidal quantum dot solar cells. Chem. Mater. 26(13), 4004–4013 (2014). doi:10.1021/cm501595u
G.H. Kim, B. Walker, H.B. Kim, J.Y. Kim, E.H. Sargent, J. Park, J.Y. Kim, Inverted colloidal quantum dot solar cells. Adv. Mater. 26(20), 3321–3327 (2014). doi:10.1002/adma.201305583
B.A. Gonfa, H. Zhao, J. Li, J. Qiu, M. Saidani et al., Air-processed depleted bulk heterojunction solar cells based on PbS/CdS core-shell quantum dots and TiO2 nanorod arrays. Sol. Energy Mater. Sol. Cells 124, 67–74 (2014). doi:10.1016/j.solmat.2014.01.037
W. Ma, S.L. Swisher, T. Ewers, J. Engel, V.E. Ferry, H.A. Atwater, A.P. Alivisatos, Photovoltaic performance of ultrasmall PbSe quantum dots. ACS Nano 5(10), 8140–8147 (2011). doi:10.1021/nn202786g
M. Tabachnyk, B. Ehrler, S. Gelinas, M.L. Bohm, B.J. Walker et al., Resonant energy transfer of triplet excitons from pentacene to PbSe nanocrystals. Nat. Mater. 13, 1033–1038 (2014). doi:10.1038/nmat4093
J. Gao, J.M. Luther, O.E. Semonin, R.J. Ellingson, A.J. Nozik, M.C. Beard, Quantum dot size dependent J-V characteristics in heterojunction ZnO/PbS quantum dot solar cells. Nano Lett. 11(3), 1002–1008 (2011). doi:10.1021/nl103814g
B.D. Weil, S.T. Connor, Y. Cui, CuInS2 solar cells by air-stable ink rolling. JACS 132(13), 6642–6643 (2010). doi:10.1021/ja1020475
M.A. Hines, G.D. Scholes, Colloidal PbS nanocrystals with size-tunable near-infrared emission: observation of post-synthesis self-narrowing of the particle size distribution. Adv. Mater. 15(21), 1844–1849 (2003). doi:10.1002/adma.200305395
S.A. McDonald, G. Konstantatos, S. Zhang, P.W. Cyr, E.J.D. Klem, L. Levina, E.H. Sargent, Solution-processed PbS quantum dot infrared photodetectors and photovoltaics. Nat. Mater. 4, 138–142 (2005). doi:10.1038/nmat1299
J. Tang, X. Wang, L. Brzozowski, D.A.R. Barkhouse, R. Debnath, L. Levina, E.H. Sargent, Schottky quantum dot solar cells stable in air under solar illumination. Adv. Mater. 22(12), 1398–1402 (2010). doi:10.1002/adma.200903240
J.M. Luther, M. Law, M.C. Beard, Q. Song, M.O. Reese, R.J. Ellingson, A.J. Nozik, Schottky solar cells based on colloidal nanocrystal films. Nano Lett. 8(10), 3488–3492 (2008). doi:10.1021/nl802476m
D. Zhitomirsky, M. Furukawa, J. Tang, P. Stadler, S. Hoogland, O. Voznyy, H. Liu, E.H. Sargent, N-type colloidal-quantum-dot solids for photovoltaics. Adv. Mater. 24(46), 6181–6185 (2012). doi:10.1002/adma.201202825
H. Liu, J. Tang, I.J. Kramer, R. Debnath, G.I. Koleilat et al., Electron acceptor materials engineering in colloidal quantum dot solar cells. Adv. Mater. 23(33), 3832–3837 (2011). doi:10.1002/adma.201101783
A.H. Ip, S.M. Thon, S. Hoogland, O. Voznyy, D. Zhitomirsky, R. Debnath, L. Levina, A. Amassian, E.H. Sargent, Hybrid passivated colloidal quantum dot solids. Nat. Nanotechnol. 7(9), 577–582 (2012). doi:10.1038/nnano.2012.127
C.M. Chuang, P.R. Brown, V. Bulovic, M.G. Bawendi, Improved performance and stability in quantum dot solar cells through band alignment engineering. Nat. Mater. 13, 796–801 (2014). doi:10.1038/nmat3984
Z. Ning, O. Voznyy, J. Pan, S. Hoogland, V. Adinolfi et al., Air-stable n-type colloidal quantum dot solids. Nat. Mater. 13, 822–828 (2014). doi:10.1038/nmat4007
L.J. Kramer, E.H. Sargent, The architecture of colloidal quantum dot solar cells: materials to devices. Chem. Rev. 114(1), 863–882 (2014). doi:10.1021/cr400299t
W. Yoon, J.E. Boercker, M.P. Lumb, D. Placencia, E.E. Foos, J.G. Tischler, Enhanced open-circuit voltage of PbS nanocrystal quantum dot solar cells. Sci. Rep.-UK 3, 2225 (2013). doi:10.1038/srep02225
V. Malgras, A. Nattestad, Y. Yamauchi, S.X. Dou, J.H. Kim, The effect of surface passivation on the structure of sulphur-rich PbS colloidal quantum dots for photovoltaic application. Nanoscale 7(13), 5706–5711 (2015). doi:10.1039/C4NR07006B
R. Ciach, Y.P. Dotsenko, V.V. Naumov, A.N. Shmyryeva, Injection technique for the study of solar cell test structures. Sol. Energy Mater. Sol. Cells 76(4), 613–624 (2003). doi:10.1016/S0927-0248(02)00271-4