Recent Progress of Layered Perovskite Solar Cells Incorporating Aromatic Spacers
Corresponding Author: Yongsheng Liu
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 169
Abstract
Layered two dimensional (2D) or quasi-2D perovskites are emerging photovoltaic materials due to their superior environment and structure stability in comparison with their 3D counterparts. The typical 2D perovskites can be obtained by cutting 3D perovskites along < 100 > orientation by incorporation of bulky organic spacers, which play a key role in the performance of 2D perovskite solar cells (PSCs). Compared with aliphatic spacers, aromatic spacers with high dielectric constant have the potential to decrease the dielectric and quantum confinement effect of 2D perovskites, promote efficient charge transport and reduce the exciton binding energy, all of which are beneficial for the photovoltaic performance of 2D PSCs. In this review, we aim to provide useful guidelines for the design of aromatic spacers for 2D perovskites. We systematically reviewed the recent progress of aromatic spacers used in 2D PSCs. Finally, we propose the possible design strategies for aromatic spacers that may lead to more efficient and stable 2D PSCs.
Highlights:
1 Layered two-dimensional (2D) perovskites are emerging photovoltaic materials with superior structural and environmental stability.
2 Aromatic spacers offer unique advantages over aliphatic spacers, including higher dielectric constants, better charge transport properties, and the ability to regulate crystal arrangement, making them indispensable for constructing efficient and stable 2D perovskites.
3 This review mainly focus on recent progress and achievements in developing aromatic spacer-based 2D perovskite solar cells.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J.Y. Kim, J.W. Lee, H.S. Jung, H. Shin, N.G. Park, High-efficiency perovskite solar cells. Chem. Rev. 120(15), 7867–7918 (2020). https://doi.org/10.1021/acs.chemrev.0c00107
- X. Li, J.M. Hoffman, M.G. Kanatzidis, The 2D halide perovskite rulebook: How the spacer influences everything from the structure to optoelectronic device efficiency. Chem. Rev. 121(4), 2230–2291 (2021). https://doi.org/10.1021/acs.chemrev.0c01006
- G. Xing, N. Mathews, S. Sun, S.S. Lim, Y.M. Lam et al., Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3. Science 342(6156), 344–347 (2013). https://doi.org/10.1126/science.1243167
- Q. Dong, Y. Fang, Y. Shao, P. Mulligan, J. Qiu et al., Electron-hole diffusion lengths >175 mum in solution-grown CH3NH3PbI3 single crystals. Science 347(6225), 967–970 (2015). https://doi.org/10.1126/science.aaa5760
- X. Yang, Y. Fu, R. Su, Y. Zheng, Y. Zhang et al., Superior carrier lifetimes exceeding 6 micros in polycrystalline halide perovskites. Adv. Mater. 32(39), e2002585 (2020). https://doi.org/10.1002/adma.202002585
- N. Zhou, H. Zhou, Spacer organic cation engineering for quasi-2d metal halide perovskites and the optoelectronic application. Small Struct. 3(7), 2100232 (2022). https://doi.org/10.1002/sstr.202100232
- M. Jung, S.G. Ji, G. Kim, S.I. Seok, Perovskite precursor solution chemistry: from fundamentals to photovoltaic applications. Chem. Soc. Rev. 48(7), 2011–2038 (2019). https://doi.org/10.1039/c8cs00656c
- K. Lin, J. Xing, L.N. Quan, F.P.G. de Arquer, X. Gong et al., Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent. Nature 562(7726), 245–248 (2018). https://doi.org/10.1038/s41586-018-0575-3
- Y. Cao, N. Wang, H. Tian, J. Guo, Y. Wei et al., Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures. Nature 562(7726), 249–253 (2018). https://doi.org/10.1038/s41586-018-0576-2
- S.P. Senanayak, B. Yang, T.H. Thomas, N. Giesbrecht, W. Huang et al., Understanding charge transport in lead iodide perovskite thin-film field-effect transistors. Sci. Adv. 3(1), e1601935 (2017). https://doi.org/10.1126/sciadv.1601935
- H. Wei, Y. Fang, P. Mulligan, W. Chuirazzi, H.-H. Fang et al., Sensitive x-ray detectors made of methylammonium lead tribromide perovskite single crystals. Nat. Photonics 10(5), 333–339 (2016). https://doi.org/10.1038/nphoton.2016.41
- A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131(17), 6050–6051 (2009). https://doi.org/10.1021/ja809598r
- H.S. Kim, C.R. Lee, J.H. Im, K.B. Lee, T. Moehl et al., Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep. 2, 591 (2012). https://doi.org/10.1038/srep00591
- H. Min, D.Y. Lee, J. Kim, G. Kim, K.S. Lee et al., Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes. Nature 598(7881), 444–450 (2021). https://doi.org/10.1038/s41586-021-03964-8
- S. Tan, T. Huang, I. Yavuz, R. Wang, T.W. Yoon et al., Stability-limiting heterointerfaces of perovskite photovoltaics. Nature 605(7909), 268–273 (2022). https://doi.org/10.1038/s41586-022-04604-5
- M. Wang, H. Sun, L. Meng, M. Wang, L. Li, A universal strategy of intermolecular exchange to stabilize alpha-FaPbI3 and manage crystal orientation for high-performance humid-air-processed perovskite solar cells. Adv. Mater. 34(23), e2200041 (2022). https://doi.org/10.1002/adma.202200041
- H. Tsai, W. Nie, J.-C. Blancon, C.C. Stoumpos, R. Asadpour et al., High-efficiency two-dimensional ruddlesden–popper perovskite solar cells. Nature 536(7616), 312–316 (2016). https://doi.org/10.1038/nature18306
- S. Ahmad, P. Fu, S. Yu, Q. Yang, X. Liu et al., Dion-jacobson phase 2D layered perovskites for solar cells with ultrahigh stability. Joule 3(3), 794–806 (2019). https://doi.org/10.1016/j.joule.2018.11.026
- C. Ortiz-Cervantes, P. Carmona-Monroy, D. Solis-Ibarra, Two-dimensional halide perovskites in solar cells: 2D or not 2D? Chemsuschem 12(8), 1560–1575 (2019). https://doi.org/10.1002/cssc.201802992
- J.-Y. Shao, D. Li, J. Shi, C. Ma, Y. Wang et al., Recent progress in perovskite solar cells: Material science. Sci. China Chem. 66(1), 10–64 (2022). https://doi.org/10.1007/s11426-022-1445-2
- D.H. Cao, C.C. Stoumpos, O.K. Farha, J.T. Hupp, M.G. Kanatzidis, 2D homologous perovskites as light-absorbing materials for solar cell applications. J. Am. Chem. Soc. 137(24), 7843–7850 (2015). https://doi.org/10.1021/jacs.5b03796
- X. Zhang, X. Ren, B. Liu, R. Munir, X. Zhu et al., Stable high efficiency two-dimensional perovskite solar cells via cesium doping. Energy Environ. Sci. 10(10), 2095–2102 (2017). https://doi.org/10.1039/c7ee01145h
- N. Zhou, Y. Shen, L. Li, S. Tan, N. Liu et al., Exploration of crystallization kinetics in quasi two-dimensional perovskite and high performance solar cells. J. Am. Chem. Soc. 140(1), 459–465 (2018). https://doi.org/10.1021/jacs.7b11157
- G. Wu, X. Li, J. Zhou, J. Zhang, X. Zhang et al., Fine multi-phase alignments in 2D perovskite solar cells with efficiency over 17% via slow post-annealing. Adv. Mater. 31(42), 1903889 (2019). https://doi.org/10.1002/adma.201903889
- L.N. Quan, M. Yuan, R. Comin, O. Voznyy, E.M. Beauregard et al., Ligand-stabilized reduced-dimensionality perovskites. J. Am. Chem. Soc. 138(8), 2649–2655 (2016). https://doi.org/10.1021/jacs.5b11740
- H. Lai, B. Kan, T. Liu, N. Zheng, Z. Xie et al., Two-dimensional ruddlesden-popper perovskite with nanorod-like morphology for solar cells with efficiency exceeding 15. J. Am. Chem. Soc. 140(37), 11639–11646 (2018). https://doi.org/10.1021/jacs.8b04604
- M. Shao, T. Bie, L. Yang, Y. Gao, X. Jin et al., Over 21% efficiency stable 2d perovskite solar cells. Adv. Mater. 34(1), 2107211 (2021). https://doi.org/10.1002/adma.202107211
- Y. Zhang, N.-G. Park, Quasi-two-dimensional perovskite solar cells with efficiency exceeding 22%. ACS Energy Lett. 7(2), 757–765 (2022). https://doi.org/10.1021/acsenergylett.1c02645
- A.H. Proppe, R. Quintero-Bermudez, H. Tan, O. Voznyy, S.O. Kelley et al., Synthetic control over quantum well width distribution and carrier migration in low-dimensional perovskite photovoltaics. J. Am. Chem. Soc. 140(8), 2890–2896 (2018). https://doi.org/10.1021/jacs.7b12551
- Y. Gao, E. Shi, S. Deng, S.B. Shiring, J.M. Snaider et al., Molecular engineering of organic-inorganic hybrid perovskites quantum wells. Nat. Chem. 11(12), 1151–1157 (2019). https://doi.org/10.1038/s41557-019-0354-2
- J. Liang, Z. Zhang, Q. Xue, Y. Zheng, X. Wu et al., A finely regulated quantum well structure in quasi-2D ruddlesden–popper perovskite solar cells with efficiency exceeding 20%. Energy Environ. Sci. 15(1), 296–310 (2022). https://doi.org/10.1039/d1ee01695d
- D.B. Straus, C.R. Kagan, Electrons, excitons, and phonons in two-dimensional hybrid perovskites: Connecting structural, optical, and electronic properties. J. Phys. Chem. Lett. 9(6), 1434–1447 (2018). https://doi.org/10.1021/acs.jpclett.8b00201
- C. Liang, D. Zhao, Y. Li, X. Li, S. Peng et al., Ruddlesden-popper perovskite for stable solar cells. Energ. Environ. Sci. 1(4), 221–231 (2018). https://doi.org/10.1002/eem2.12022
- Y. Lao, S. Yang, W. Yu, H. Guo, Y. Zou et al., Multifunctional π-conjugated additives for halide perovskite. Adv. Sci. 9(17), 2105307 (2022). https://doi.org/10.1002/advs.202105307
- I.C. Smith, E.T. Hoke, D. Solis-Ibarra, M.D. McGehee, H.I. Karunadasa, A layered hybrid perovskite solar-cell absorber with enhanced moisture stability. Angew. Chem. Int. Ed. 53(42), 11232–11235 (2014). https://doi.org/10.1002/anie.201406466
- J.H. Kim, C.M. Oh, I.W. Hwang, J. Kim, C. Lee et al., Efficient and stable quasi-2d ruddlesden-popper perovskite solar cells by tailoring crystal orientation and passivating surface defects. Adv. Mater. (2023). https://doi.org/10.1002/adma.202302143
- Q. Li, Y. Dong, G. Lv, T. Liu, D. Lu et al., Fluorinated aromatic formamidinium spacers boost efficiency of layered ruddlesden–popper perovskite solar cells. ACS Energy Lett. 6(6), 2072–2080 (2021). https://doi.org/10.1021/acsenergylett.1c00620
- X. Li, W. Ke, B. Traore, P. Guo, I. Hadar et al., Two-dimensional dion-jacobson hybrid lead iodide perovskites with aromatic diammonium cations. J. Am. Chem. Soc. 141(32), 12880–12890 (2019). https://doi.org/10.1021/jacs.9b06398
- R. Wang, X. Dong, Q. Ling, Q. Fu, Z. Hu et al., Spacer engineering for 2D ruddlesden–popper perovskites with an ultralong carrier lifetime of over 18 μs enable efficient solar cells. ACS Energy Lett. 7(10), 3656–3665 (2022). https://doi.org/10.1021/acsenergylett.2c01800
- Y. Li, J.V. Milic, A. Ummadisingu, J.Y. Seo, J.H. Im et al., Bifunctional organic spacers for formamidinium-based hybrid dion-jacobson two-dimensional perovskite solar cells. Nano Lett. 19(1), 150–157 (2019). https://doi.org/10.1021/acs.nanolett.8b03552
- B.E. Cohen, Y. Li, Q. Meng, L. Etgar, Dion-jacobson two-dimensional perovskite solar cells based on benzene dimethanammonium cation. Nano Lett. 19(4), 2588–2597 (2019). https://doi.org/10.1021/acs.nanolett.9b00387
- S. Yu, Y. Yan, M. Abdellah, T. Pullerits, K. Zheng et al., Nonconfinement structure revealed in dion-jacobson type quasi-2D perovskite expedites interlayer charge transport. Small 15(49), e1905081 (2019). https://doi.org/10.1002/smll.201905081
- G. Lv, L. Li, D. Lu, Z. Xu, Y. Dong et al., Multiple-noncovalent-interaction-stabilized layered dion-jacobson perovskite for efficient solar cells. Nano Lett. 21(13), 5788–5797 (2021). https://doi.org/10.1021/acs.nanolett.1c01505
- Y. Dong, X. Dong, D. Lu, M. Chen, N. Zheng et al., Orbital interactions between organic semiconductor spacer and inorganic layer in dion-jacobson perovskite enable efficient solar cells. Adv. Mater. 35(3), e2205258 (2022). https://doi.org/10.1002/adma.202205258
- L. Zhang, G. Qi, Y. Zhang, H. Wu, X. Xu et al., Intermolecular interaction assisted fabrication of dion-jacobson perovskite film with promoted photovoltaic property. Chem. Eng. J. 451, 13865 (2023). https://doi.org/10.1016/j.cej.2022.138654
- X. Lian, J. Chen, M. Qin, Y. Zhang, S. Tian et al., The second spacer cation assisted growth of a 2d perovskite film with oriented large grain for highly efficient and stable solar cells. Angew. Chem. Int. Ed. 58(28), 9409–9413 (2019). https://doi.org/10.1002/anie.201902959
- J. Qing, X.-K. Liu, M. Li, F. Liu, Z. Yuan et al., Aligned and graded type-ii ruddlesden-popper perovskite films for efficient solar cells. Adv. Energy Mater. 8(21), 1800185 (2018). https://doi.org/10.1002/aenm.201800185
- J. Qing, C. Kuang, H. Wang, Y. Wang, X.K. Liu et al., High-quality ruddlesden-popper perovskite films based on in situ formed organic spacer cations. Adv. Mater. 31(41), e1904243 (2019). https://doi.org/10.1002/adma.201904243
- C. Ma, D. Shen, T.W. Ng, M.F. Lo, C.S. Lee, 2d perovskites with short interlayer distance for high-performance solar cell application. Adv. Mater. 30(22), e1800710 (2018). https://doi.org/10.1002/adma.201800710
- P. Li, L. Yan, Q. Cao, C. Liang, H. Zhu et al., Dredging the charge-carrier transfer pathway for efficient low-dimensional ruddlesden-popper perovskite solar cells. Angew. Chem. Int. Ed. 62(13), e202217910 (2023). https://doi.org/10.1002/anie.202217910
- L. Mao, W. Ke, L. Pedesseau, Y. Wu, C. Katan et al., Hybrid dion-jacobson 2d lead iodide perovskites. J. Am. Chem. Soc. 140(10), 3775–3783 (2018). https://doi.org/10.1021/jacs.8b00542
- W. Ke, L. Mao, C.C. Stoumpos, J. Hoffman, I. Spanopoulos et al., Compositional and solvent engineering in dion–jacobson 2d perovskites boosts solar cell efficiency and stability. Adv. Energy Mater. 9(10), 1803384 (2019). https://doi.org/10.1002/aenm.201803384
- Y. Wei, H. Chu, Y. Tian, B. Chen, K. Wu et al., Reverse-graded 2d ruddlesden–popper perovskites for efficient air-stable solar cells. Adv. Energy Mater. 9(21), 1900612 (2019). https://doi.org/10.1002/aenm.201900612
- J. Rodríguez-Romero, B.C. Hames, I. Mora-Seró, E.M. Barea, Conjugated organic cations to improve the optoelectronic properties of 2D/3D perovskites. ACS Energy Lett. 2(9), 1969–1970 (2017). https://doi.org/10.1021/acsenergylett.7b00654
- D. Wang, S.-C. Chen, Q. Zheng, Enhancing the efficiency and stability of two-dimensional dion–jacobson perovskite solar cells using a fluorinated diammonium spacer. J. Mater. Chem. A 9(19), 11778–11786 (2021). https://doi.org/10.1039/d1ta01447a
- J. Hu, I.W.H. Oswald, S.J. Stuard, M.M. Nahid, N. Zhou et al., Synthetic control over orientational degeneracy of spacer cations enhances solar cell efficiency in two-dimensional perovskites. Nat. Commun. 10(1), 1276 (2019). https://doi.org/10.1038/s41467-019-08980-x
- J. Hu, I.W.H. Oswald, H. Hu, S.J. Stuard, M.M. Nahid et al., Aryl-perfluoroaryl interaction in two-dimensional organic–inorganic hybrid perovskites boosts stability and photovoltaic efficiency. ACS Mater. Lett. 1(1), 171–176 (2019). https://doi.org/10.1021/acsmaterialslett.9b00102
- W. Fu, H. Chen, A.K.Y. Jen, Two-dimensional perovskites for photovoltaics. Mater. Today Nano 14, 100117 (2021). https://doi.org/10.1016/j.mtnano.2021.100117
- N.-G. Park, Perovskite solar cells: An emerging photovoltaic technology. Mater. Today 18(2), 65–72 (2015). https://doi.org/10.1016/j.mattod.2014.07.007
- C. Katan, N. Mercier, J. Even, Quantum and dielectric confinement effects in lower-dimensional hybrid perovskite semiconductors. Chem. Rev. 119(5), 3140–3192 (2019). https://doi.org/10.1021/acs.chemrev.8b00417
- X. Zhao, T. Liu, Y.L. Loo, Advancing 2d perovskites for efficient and stable solar cells: challenges and opportunities. Adv. Mater. 34(3), e2105849 (2022). https://doi.org/10.1002/adma.202105849
- J.V. Milic, S.M. Zakeeruddin, M. Gratzel, Layered hybrid formamidinium lead iodide perovskites: challenges and opportunities. Acc. Chem. Res. 54(12), 2729–2740 (2021). https://doi.org/10.1021/acs.accounts.0c00879
- J. Gong, M. Hao, Y. Zhang, M. Liu, Y. Zhou, Layered 2d halide perovskites beyond the ruddlesden–popper phase: Tailored interlayer chemistries for high-performance solar cells. Angew. Chem. Int. Ed. 61(10), e202112022 (2022). https://doi.org/10.1002/anie.202112022
- Q. Cao, P. Li, W. Chen, S. Zang, L. Han et al., Two-dimensional perovskites: Impacts of species, components, and properties of organic spacers on solar cells. Nano Today 43, 101394 (2022). https://doi.org/10.1016/j.nantod.2022.101394
- F. Zhang, H. Lu, J. Tong, J.J. Berry, M.C. Beard et al., Advances in two-dimensional organic–inorganic hybrid perovskites. Energy Environ. Sci. 13(4), 1154–1186 (2020). https://doi.org/10.1039/c9ee03757h
- L. Gao, J. You, S. Liu, Superior photovoltaics/optoelectronics of two-dimensional halide perovskites. J. Energy Chem. 57, 69–82 (2021). https://doi.org/10.1016/j.jechem.2020.08.022
- T. Luo, Y. Zhang, Z. Xu, T. Niu, J. Wen et al., Compositional control in 2d perovskites with alternating cations in the interlayer space for photovoltaics with efficiency over 18. Adv. Mater. 31(44), e1903848 (2019). https://doi.org/10.1002/adma.201903848
- Y. Zhang, P. Wang, M.C. Tang, D. Barrit, W. Ke et al., Dynamical transformation of two-dimensional perovskites with alternating cations in the interlayer space for high-performance photovoltaics. J. Am. Chem. Soc. 141(6), 2684–2694 (2019). https://doi.org/10.1021/jacs.8b13104
- C.C. Stoumpos, D.H. Cao, D.J. Clark, J. Young, J.M. Rondinelli et al., Ruddlesden–popper hybrid lead iodide perovskite 2d homologous semiconductors. Chem. Mater. 28(8), 2852–2867 (2016). https://doi.org/10.1021/acs.chemmater.6b00847
- W. Fu, J. Wang, L. Zuo, K. Gao, F. Liu et al., Two-dimensional perovskite solar cells with 14.1% power conversion efficiency and 0.68% external radiative efficiency. ACS Energy Lett. 3(9), 2086–2093 (2018). https://doi.org/10.1021/acsenergylett.8b01181
- M.E. Kamminga, H.-H. Fang, M.R. Filip, F. Giustino, J. Baas et al., Confinement effects in low-dimensional lead iodide perovskite hybrids. Chem. Mater. 28(13), 4554–4562 (2016). https://doi.org/10.1021/acs.chemmater.6b00809
- R. Yang, R. Li, Y. Cao, Y. Wei, Y. Miao et al., Oriented quasi-2d perovskites for high performance optoelectronic devices. Adv. Mater. 30(51), e1804771 (2018). https://doi.org/10.1002/adma.201804771
- W. Fu, H. Liu, X. Shi, L. Zuo, X. Li et al., Tailoring the functionality of organic spacer cations for efficient and stable quasi-2d perovskite solar cells. Adv. Funct. Mater. 29(25), 1900221 (2019). https://doi.org/10.1002/adfm.201900221
- J. Shi, Y. Gao, X. Gao, Y. Zhang, J. Zhang et al., Fluorinated low-dimensional ruddlesden-popper perovskite solar cells with over 17% power conversion efficiency and improved stability. Adv. Mater. 31(37), e1901673 (2019). https://doi.org/10.1002/adma.201901673
- F. Zhang, D.H. Kim, H. Lu, J.-S. Park, B.W. Larson et al., Enhanced charge transport in 2d perovskites via fluorination of organic cation. J. Am. Chem. Soc. 141(14), 5972–5979 (2019). https://doi.org/10.1021/jacs.9b00972
- H. Pan, X. Zhao, X. Gong, Y. Shen, M. Wang, Atomic-scale tailoring of organic cation of layered ruddlesden-popper perovskite compounds. J. Phys. Chem. Lett. 10(8), 1813–1819 (2019). https://doi.org/10.1021/acs.jpclett.9b00479
- Y. Zhang, M. Chen, T. He, H. Chen, Z. Zhang et al., Highly efficient and stable fa-based quasi-2d ruddlesden-popper perovskite solar cells by the incorporation of beta-fluorophenylethanamine cations. Adv. Mater. 35, e2210836 (2023). https://doi.org/10.1002/adma.202210836
- Z. Li, N. Liu, K. Meng, Z. Liu, Y. Hu et al., A new organic interlayer spacer for stable and efficient 2d ruddlesden-popper perovskite solar cells. Nano Lett. 19(8), 5237–5245 (2019). https://doi.org/10.1021/acs.nanolett.9b01652
- H. Lai, D. Lu, Z. Xu, N. Zheng, Z. Xie et al., Organic-salt-assisted crystal growth and orientation of quasi-2d ruddlesden-popper perovskites for solar cells with efficiency over 19. Adv. Mater. 32(33), e2001470 (2020). https://doi.org/10.1002/adma.202001470
- C. Ni, Y. Huang, T. Zeng, D. Chen, H. Chen et al., Thiophene cation intercalation to improve band-edge integrity in reduced-dimensional perovskites. Angew. Chem. Int. Ed. 59(33), 13977–13983 (2020). https://doi.org/10.1002/anie.202006112
- Y. Yan, S. Yu, A. Honarfar, T. Pullerits, K. Zheng et al., Benefiting from spontaneously generated 2d/3d bulk-heterojunctions in ruddlesden-popper perovskite by incorporation of s-bearing spacer cation. Adv. Sci. 6(14), 1900548 (2019). https://doi.org/10.1002/advs.201900548
- A.H. Coffey, S.J. Yang, M. Gómez, B.P. Finkenauer, T. Terlier et al., Controlling crystallization of quasi-2d perovskite solar cells: Incorporating bulky conjugated ligands. Adv. Energy Mater. (2022). https://doi.org/10.1002/aenm.202201501
- Y. Qin, H. Zhong, J.J. Intemann, S. Leng, M. Cui et al., Coordination engineering of single-crystal precursor for phase control in ruddlesden–popper perovskite solar cells. Adv. Energy Mater. 10(16), 1904050 (2020). https://doi.org/10.1002/aenm.201904050
- Y. Dong, D. Lu, Z. Xu, H. Lai, Y. Liu, 2-thiopheneformamidinium-based 2D ruddlesden–popper perovskite solar cells with efficiency of 16.72% and negligible hysteresis. Adv. Energy Mater. 10(28), 2022694 (2020). https://doi.org/10.1002/aenm.202000694
- Z. Xu, L. Li, X. Dong, D. Lu, R. Wang et al., CsPbI3-based phase-stable 2D ruddlesden-popper perovskites for efficient solar cells. Nano Lett. 22(7), 2874–2880 (2022). https://doi.org/10.1021/acs.nanolett.2c00002
- Y. Li, H. Cheng, K. Zhao, Z.S. Wang, 4-(aminoethyl)pyridine as a bifunctional spacer cation for efficient and stable 2D ruddlesden-popper perovskite solar cells. Acs. Appl. Mater. Interfaces 11(41), 37804–37811 (2019). https://doi.org/10.1021/acsami.9b13951
- Z. Xu, D. Lu, F. Liu, H. Lai, X. Wan et al., Phase distribution and carrier dynamics in multiple-ring aromatic spacer-based two-dimensional ruddlesden-popper perovskite solar cells. ACS Nano 14(4), 4871–4881 (2020). https://doi.org/10.1021/acsnano.0c00875
- J.V. Passarelli, D.J. Fairfield, N.A. Sather, M.P. Hendricks, H. Sai et al., Enhanced out-of-plane conductivity and photovoltaic performance in n=1 layered perovskites through organic cation design. J. Am. Chem. Soc. 140(23), 7313–7323 (2018). https://doi.org/10.1021/jacs.8b03659
- J. Yang, T. He, M. Li, G. Li, H. Liu et al., Π-conjugated carbazole cations enable wet-stable quasi-2D perovskite photovoltaics. ACS Energy Lett. 7(12), 4451–4458 (2022). https://doi.org/10.1021/acsenergylett.2c02219
- Y. Zheng, S.-C. Chen, Y. Ma, Q. Zheng, Furfurylammonium as a spacer for efficient 2D ruddlesden–popper perovskite solar cells. Sol. RRL 6(8), 2200221 (2022). https://doi.org/10.1002/solr.202200221
- B. Febriansyah, T.M. Koh, Y. Lekina, N.F. Jamaludin, A. Bruno et al., Improved photovoltaic efficiency and amplified photocurrent generation in mesoporous n = 1 two-dimensional lead–iodide perovskite solar cells. Chem. Mater. 31(3), 890–898 (2019). https://doi.org/10.1021/acs.chemmater.8b04064
- X. Zhang, T. Yang, X. Ren, L. Zhang, K. Zhao et al., Film formation control for high performance dion–jacobson 2D perovskite solar cells. Adv. Energy Mater. 11(19), 2002733 (2021). https://doi.org/10.1002/aenm.202002733
- R.D. Yukta, D. Chavan, P. Prochowicz, M.M.T. Yadav et al., Thiocyanate-passivated diaminonaphthalene-incorporated dion-jacobson perovskite for highly efficient and stable solar cells. ACS Appl. Mater. Interfaces 14(1), 850–860 (2022). https://doi.org/10.1021/acsami.1c19546
- Y.C. Liu, J.T. Lin, Y.L. Lee, C.M. Hung, T.C. Chou et al., Recognizing the importance of fast nonisothermal crystallization for high-performance two-dimensional dion-jacobson perovskite solar cells with high fill factors: a comprehensive mechanistic study. J. Am. Chem. Soc. 144(32), 14897–14906 (2022). https://doi.org/10.1021/jacs.2c06342
- D. Lu, G. Lv, Z. Xu, Y. Dong, X. Ji et al., Thiophene-based two-dimensional dion-jacobson perovskite solar cells with over 15% efficiency. J. Am. Chem. Soc. 142(25), 11114–11122 (2020). https://doi.org/10.1021/jacs.0c03363
- Z. Xu, D. Lu, X. Dong, M. Chen, Q. Fu et al., Highly efficient and stable dion-jacobson perovskite solar cells enabled by extended pi-conjugation of organic spacer. Adv. Mater. 33(51), e2105083 (2021). https://doi.org/10.1002/adma.202105083
- C. Liu, Z. Fang, J. Sun, M. Shang, K. Zheng et al., Donor-acceptor-donor type organic spacer for regulating the quantum wells of dion-jacobson 2d perovskites. Nano Energy 93, 106800 (2022). https://doi.org/10.1016/j.nanoen.2021.106800
References
J.Y. Kim, J.W. Lee, H.S. Jung, H. Shin, N.G. Park, High-efficiency perovskite solar cells. Chem. Rev. 120(15), 7867–7918 (2020). https://doi.org/10.1021/acs.chemrev.0c00107
X. Li, J.M. Hoffman, M.G. Kanatzidis, The 2D halide perovskite rulebook: How the spacer influences everything from the structure to optoelectronic device efficiency. Chem. Rev. 121(4), 2230–2291 (2021). https://doi.org/10.1021/acs.chemrev.0c01006
G. Xing, N. Mathews, S. Sun, S.S. Lim, Y.M. Lam et al., Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3. Science 342(6156), 344–347 (2013). https://doi.org/10.1126/science.1243167
Q. Dong, Y. Fang, Y. Shao, P. Mulligan, J. Qiu et al., Electron-hole diffusion lengths >175 mum in solution-grown CH3NH3PbI3 single crystals. Science 347(6225), 967–970 (2015). https://doi.org/10.1126/science.aaa5760
X. Yang, Y. Fu, R. Su, Y. Zheng, Y. Zhang et al., Superior carrier lifetimes exceeding 6 micros in polycrystalline halide perovskites. Adv. Mater. 32(39), e2002585 (2020). https://doi.org/10.1002/adma.202002585
N. Zhou, H. Zhou, Spacer organic cation engineering for quasi-2d metal halide perovskites and the optoelectronic application. Small Struct. 3(7), 2100232 (2022). https://doi.org/10.1002/sstr.202100232
M. Jung, S.G. Ji, G. Kim, S.I. Seok, Perovskite precursor solution chemistry: from fundamentals to photovoltaic applications. Chem. Soc. Rev. 48(7), 2011–2038 (2019). https://doi.org/10.1039/c8cs00656c
K. Lin, J. Xing, L.N. Quan, F.P.G. de Arquer, X. Gong et al., Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent. Nature 562(7726), 245–248 (2018). https://doi.org/10.1038/s41586-018-0575-3
Y. Cao, N. Wang, H. Tian, J. Guo, Y. Wei et al., Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures. Nature 562(7726), 249–253 (2018). https://doi.org/10.1038/s41586-018-0576-2
S.P. Senanayak, B. Yang, T.H. Thomas, N. Giesbrecht, W. Huang et al., Understanding charge transport in lead iodide perovskite thin-film field-effect transistors. Sci. Adv. 3(1), e1601935 (2017). https://doi.org/10.1126/sciadv.1601935
H. Wei, Y. Fang, P. Mulligan, W. Chuirazzi, H.-H. Fang et al., Sensitive x-ray detectors made of methylammonium lead tribromide perovskite single crystals. Nat. Photonics 10(5), 333–339 (2016). https://doi.org/10.1038/nphoton.2016.41
A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131(17), 6050–6051 (2009). https://doi.org/10.1021/ja809598r
H.S. Kim, C.R. Lee, J.H. Im, K.B. Lee, T. Moehl et al., Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep. 2, 591 (2012). https://doi.org/10.1038/srep00591
H. Min, D.Y. Lee, J. Kim, G. Kim, K.S. Lee et al., Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes. Nature 598(7881), 444–450 (2021). https://doi.org/10.1038/s41586-021-03964-8
S. Tan, T. Huang, I. Yavuz, R. Wang, T.W. Yoon et al., Stability-limiting heterointerfaces of perovskite photovoltaics. Nature 605(7909), 268–273 (2022). https://doi.org/10.1038/s41586-022-04604-5
M. Wang, H. Sun, L. Meng, M. Wang, L. Li, A universal strategy of intermolecular exchange to stabilize alpha-FaPbI3 and manage crystal orientation for high-performance humid-air-processed perovskite solar cells. Adv. Mater. 34(23), e2200041 (2022). https://doi.org/10.1002/adma.202200041
H. Tsai, W. Nie, J.-C. Blancon, C.C. Stoumpos, R. Asadpour et al., High-efficiency two-dimensional ruddlesden–popper perovskite solar cells. Nature 536(7616), 312–316 (2016). https://doi.org/10.1038/nature18306
S. Ahmad, P. Fu, S. Yu, Q. Yang, X. Liu et al., Dion-jacobson phase 2D layered perovskites for solar cells with ultrahigh stability. Joule 3(3), 794–806 (2019). https://doi.org/10.1016/j.joule.2018.11.026
C. Ortiz-Cervantes, P. Carmona-Monroy, D. Solis-Ibarra, Two-dimensional halide perovskites in solar cells: 2D or not 2D? Chemsuschem 12(8), 1560–1575 (2019). https://doi.org/10.1002/cssc.201802992
J.-Y. Shao, D. Li, J. Shi, C. Ma, Y. Wang et al., Recent progress in perovskite solar cells: Material science. Sci. China Chem. 66(1), 10–64 (2022). https://doi.org/10.1007/s11426-022-1445-2
D.H. Cao, C.C. Stoumpos, O.K. Farha, J.T. Hupp, M.G. Kanatzidis, 2D homologous perovskites as light-absorbing materials for solar cell applications. J. Am. Chem. Soc. 137(24), 7843–7850 (2015). https://doi.org/10.1021/jacs.5b03796
X. Zhang, X. Ren, B. Liu, R. Munir, X. Zhu et al., Stable high efficiency two-dimensional perovskite solar cells via cesium doping. Energy Environ. Sci. 10(10), 2095–2102 (2017). https://doi.org/10.1039/c7ee01145h
N. Zhou, Y. Shen, L. Li, S. Tan, N. Liu et al., Exploration of crystallization kinetics in quasi two-dimensional perovskite and high performance solar cells. J. Am. Chem. Soc. 140(1), 459–465 (2018). https://doi.org/10.1021/jacs.7b11157
G. Wu, X. Li, J. Zhou, J. Zhang, X. Zhang et al., Fine multi-phase alignments in 2D perovskite solar cells with efficiency over 17% via slow post-annealing. Adv. Mater. 31(42), 1903889 (2019). https://doi.org/10.1002/adma.201903889
L.N. Quan, M. Yuan, R. Comin, O. Voznyy, E.M. Beauregard et al., Ligand-stabilized reduced-dimensionality perovskites. J. Am. Chem. Soc. 138(8), 2649–2655 (2016). https://doi.org/10.1021/jacs.5b11740
H. Lai, B. Kan, T. Liu, N. Zheng, Z. Xie et al., Two-dimensional ruddlesden-popper perovskite with nanorod-like morphology for solar cells with efficiency exceeding 15. J. Am. Chem. Soc. 140(37), 11639–11646 (2018). https://doi.org/10.1021/jacs.8b04604
M. Shao, T. Bie, L. Yang, Y. Gao, X. Jin et al., Over 21% efficiency stable 2d perovskite solar cells. Adv. Mater. 34(1), 2107211 (2021). https://doi.org/10.1002/adma.202107211
Y. Zhang, N.-G. Park, Quasi-two-dimensional perovskite solar cells with efficiency exceeding 22%. ACS Energy Lett. 7(2), 757–765 (2022). https://doi.org/10.1021/acsenergylett.1c02645
A.H. Proppe, R. Quintero-Bermudez, H. Tan, O. Voznyy, S.O. Kelley et al., Synthetic control over quantum well width distribution and carrier migration in low-dimensional perovskite photovoltaics. J. Am. Chem. Soc. 140(8), 2890–2896 (2018). https://doi.org/10.1021/jacs.7b12551
Y. Gao, E. Shi, S. Deng, S.B. Shiring, J.M. Snaider et al., Molecular engineering of organic-inorganic hybrid perovskites quantum wells. Nat. Chem. 11(12), 1151–1157 (2019). https://doi.org/10.1038/s41557-019-0354-2
J. Liang, Z. Zhang, Q. Xue, Y. Zheng, X. Wu et al., A finely regulated quantum well structure in quasi-2D ruddlesden–popper perovskite solar cells with efficiency exceeding 20%. Energy Environ. Sci. 15(1), 296–310 (2022). https://doi.org/10.1039/d1ee01695d
D.B. Straus, C.R. Kagan, Electrons, excitons, and phonons in two-dimensional hybrid perovskites: Connecting structural, optical, and electronic properties. J. Phys. Chem. Lett. 9(6), 1434–1447 (2018). https://doi.org/10.1021/acs.jpclett.8b00201
C. Liang, D. Zhao, Y. Li, X. Li, S. Peng et al., Ruddlesden-popper perovskite for stable solar cells. Energ. Environ. Sci. 1(4), 221–231 (2018). https://doi.org/10.1002/eem2.12022
Y. Lao, S. Yang, W. Yu, H. Guo, Y. Zou et al., Multifunctional π-conjugated additives for halide perovskite. Adv. Sci. 9(17), 2105307 (2022). https://doi.org/10.1002/advs.202105307
I.C. Smith, E.T. Hoke, D. Solis-Ibarra, M.D. McGehee, H.I. Karunadasa, A layered hybrid perovskite solar-cell absorber with enhanced moisture stability. Angew. Chem. Int. Ed. 53(42), 11232–11235 (2014). https://doi.org/10.1002/anie.201406466
J.H. Kim, C.M. Oh, I.W. Hwang, J. Kim, C. Lee et al., Efficient and stable quasi-2d ruddlesden-popper perovskite solar cells by tailoring crystal orientation and passivating surface defects. Adv. Mater. (2023). https://doi.org/10.1002/adma.202302143
Q. Li, Y. Dong, G. Lv, T. Liu, D. Lu et al., Fluorinated aromatic formamidinium spacers boost efficiency of layered ruddlesden–popper perovskite solar cells. ACS Energy Lett. 6(6), 2072–2080 (2021). https://doi.org/10.1021/acsenergylett.1c00620
X. Li, W. Ke, B. Traore, P. Guo, I. Hadar et al., Two-dimensional dion-jacobson hybrid lead iodide perovskites with aromatic diammonium cations. J. Am. Chem. Soc. 141(32), 12880–12890 (2019). https://doi.org/10.1021/jacs.9b06398
R. Wang, X. Dong, Q. Ling, Q. Fu, Z. Hu et al., Spacer engineering for 2D ruddlesden–popper perovskites with an ultralong carrier lifetime of over 18 μs enable efficient solar cells. ACS Energy Lett. 7(10), 3656–3665 (2022). https://doi.org/10.1021/acsenergylett.2c01800
Y. Li, J.V. Milic, A. Ummadisingu, J.Y. Seo, J.H. Im et al., Bifunctional organic spacers for formamidinium-based hybrid dion-jacobson two-dimensional perovskite solar cells. Nano Lett. 19(1), 150–157 (2019). https://doi.org/10.1021/acs.nanolett.8b03552
B.E. Cohen, Y. Li, Q. Meng, L. Etgar, Dion-jacobson two-dimensional perovskite solar cells based on benzene dimethanammonium cation. Nano Lett. 19(4), 2588–2597 (2019). https://doi.org/10.1021/acs.nanolett.9b00387
S. Yu, Y. Yan, M. Abdellah, T. Pullerits, K. Zheng et al., Nonconfinement structure revealed in dion-jacobson type quasi-2D perovskite expedites interlayer charge transport. Small 15(49), e1905081 (2019). https://doi.org/10.1002/smll.201905081
G. Lv, L. Li, D. Lu, Z. Xu, Y. Dong et al., Multiple-noncovalent-interaction-stabilized layered dion-jacobson perovskite for efficient solar cells. Nano Lett. 21(13), 5788–5797 (2021). https://doi.org/10.1021/acs.nanolett.1c01505
Y. Dong, X. Dong, D. Lu, M. Chen, N. Zheng et al., Orbital interactions between organic semiconductor spacer and inorganic layer in dion-jacobson perovskite enable efficient solar cells. Adv. Mater. 35(3), e2205258 (2022). https://doi.org/10.1002/adma.202205258
L. Zhang, G. Qi, Y. Zhang, H. Wu, X. Xu et al., Intermolecular interaction assisted fabrication of dion-jacobson perovskite film with promoted photovoltaic property. Chem. Eng. J. 451, 13865 (2023). https://doi.org/10.1016/j.cej.2022.138654
X. Lian, J. Chen, M. Qin, Y. Zhang, S. Tian et al., The second spacer cation assisted growth of a 2d perovskite film with oriented large grain for highly efficient and stable solar cells. Angew. Chem. Int. Ed. 58(28), 9409–9413 (2019). https://doi.org/10.1002/anie.201902959
J. Qing, X.-K. Liu, M. Li, F. Liu, Z. Yuan et al., Aligned and graded type-ii ruddlesden-popper perovskite films for efficient solar cells. Adv. Energy Mater. 8(21), 1800185 (2018). https://doi.org/10.1002/aenm.201800185
J. Qing, C. Kuang, H. Wang, Y. Wang, X.K. Liu et al., High-quality ruddlesden-popper perovskite films based on in situ formed organic spacer cations. Adv. Mater. 31(41), e1904243 (2019). https://doi.org/10.1002/adma.201904243
C. Ma, D. Shen, T.W. Ng, M.F. Lo, C.S. Lee, 2d perovskites with short interlayer distance for high-performance solar cell application. Adv. Mater. 30(22), e1800710 (2018). https://doi.org/10.1002/adma.201800710
P. Li, L. Yan, Q. Cao, C. Liang, H. Zhu et al., Dredging the charge-carrier transfer pathway for efficient low-dimensional ruddlesden-popper perovskite solar cells. Angew. Chem. Int. Ed. 62(13), e202217910 (2023). https://doi.org/10.1002/anie.202217910
L. Mao, W. Ke, L. Pedesseau, Y. Wu, C. Katan et al., Hybrid dion-jacobson 2d lead iodide perovskites. J. Am. Chem. Soc. 140(10), 3775–3783 (2018). https://doi.org/10.1021/jacs.8b00542
W. Ke, L. Mao, C.C. Stoumpos, J. Hoffman, I. Spanopoulos et al., Compositional and solvent engineering in dion–jacobson 2d perovskites boosts solar cell efficiency and stability. Adv. Energy Mater. 9(10), 1803384 (2019). https://doi.org/10.1002/aenm.201803384
Y. Wei, H. Chu, Y. Tian, B. Chen, K. Wu et al., Reverse-graded 2d ruddlesden–popper perovskites for efficient air-stable solar cells. Adv. Energy Mater. 9(21), 1900612 (2019). https://doi.org/10.1002/aenm.201900612
J. Rodríguez-Romero, B.C. Hames, I. Mora-Seró, E.M. Barea, Conjugated organic cations to improve the optoelectronic properties of 2D/3D perovskites. ACS Energy Lett. 2(9), 1969–1970 (2017). https://doi.org/10.1021/acsenergylett.7b00654
D. Wang, S.-C. Chen, Q. Zheng, Enhancing the efficiency and stability of two-dimensional dion–jacobson perovskite solar cells using a fluorinated diammonium spacer. J. Mater. Chem. A 9(19), 11778–11786 (2021). https://doi.org/10.1039/d1ta01447a
J. Hu, I.W.H. Oswald, S.J. Stuard, M.M. Nahid, N. Zhou et al., Synthetic control over orientational degeneracy of spacer cations enhances solar cell efficiency in two-dimensional perovskites. Nat. Commun. 10(1), 1276 (2019). https://doi.org/10.1038/s41467-019-08980-x
J. Hu, I.W.H. Oswald, H. Hu, S.J. Stuard, M.M. Nahid et al., Aryl-perfluoroaryl interaction in two-dimensional organic–inorganic hybrid perovskites boosts stability and photovoltaic efficiency. ACS Mater. Lett. 1(1), 171–176 (2019). https://doi.org/10.1021/acsmaterialslett.9b00102
W. Fu, H. Chen, A.K.Y. Jen, Two-dimensional perovskites for photovoltaics. Mater. Today Nano 14, 100117 (2021). https://doi.org/10.1016/j.mtnano.2021.100117
N.-G. Park, Perovskite solar cells: An emerging photovoltaic technology. Mater. Today 18(2), 65–72 (2015). https://doi.org/10.1016/j.mattod.2014.07.007
C. Katan, N. Mercier, J. Even, Quantum and dielectric confinement effects in lower-dimensional hybrid perovskite semiconductors. Chem. Rev. 119(5), 3140–3192 (2019). https://doi.org/10.1021/acs.chemrev.8b00417
X. Zhao, T. Liu, Y.L. Loo, Advancing 2d perovskites for efficient and stable solar cells: challenges and opportunities. Adv. Mater. 34(3), e2105849 (2022). https://doi.org/10.1002/adma.202105849
J.V. Milic, S.M. Zakeeruddin, M. Gratzel, Layered hybrid formamidinium lead iodide perovskites: challenges and opportunities. Acc. Chem. Res. 54(12), 2729–2740 (2021). https://doi.org/10.1021/acs.accounts.0c00879
J. Gong, M. Hao, Y. Zhang, M. Liu, Y. Zhou, Layered 2d halide perovskites beyond the ruddlesden–popper phase: Tailored interlayer chemistries for high-performance solar cells. Angew. Chem. Int. Ed. 61(10), e202112022 (2022). https://doi.org/10.1002/anie.202112022
Q. Cao, P. Li, W. Chen, S. Zang, L. Han et al., Two-dimensional perovskites: Impacts of species, components, and properties of organic spacers on solar cells. Nano Today 43, 101394 (2022). https://doi.org/10.1016/j.nantod.2022.101394
F. Zhang, H. Lu, J. Tong, J.J. Berry, M.C. Beard et al., Advances in two-dimensional organic–inorganic hybrid perovskites. Energy Environ. Sci. 13(4), 1154–1186 (2020). https://doi.org/10.1039/c9ee03757h
L. Gao, J. You, S. Liu, Superior photovoltaics/optoelectronics of two-dimensional halide perovskites. J. Energy Chem. 57, 69–82 (2021). https://doi.org/10.1016/j.jechem.2020.08.022
T. Luo, Y. Zhang, Z. Xu, T. Niu, J. Wen et al., Compositional control in 2d perovskites with alternating cations in the interlayer space for photovoltaics with efficiency over 18. Adv. Mater. 31(44), e1903848 (2019). https://doi.org/10.1002/adma.201903848
Y. Zhang, P. Wang, M.C. Tang, D. Barrit, W. Ke et al., Dynamical transformation of two-dimensional perovskites with alternating cations in the interlayer space for high-performance photovoltaics. J. Am. Chem. Soc. 141(6), 2684–2694 (2019). https://doi.org/10.1021/jacs.8b13104
C.C. Stoumpos, D.H. Cao, D.J. Clark, J. Young, J.M. Rondinelli et al., Ruddlesden–popper hybrid lead iodide perovskite 2d homologous semiconductors. Chem. Mater. 28(8), 2852–2867 (2016). https://doi.org/10.1021/acs.chemmater.6b00847
W. Fu, J. Wang, L. Zuo, K. Gao, F. Liu et al., Two-dimensional perovskite solar cells with 14.1% power conversion efficiency and 0.68% external radiative efficiency. ACS Energy Lett. 3(9), 2086–2093 (2018). https://doi.org/10.1021/acsenergylett.8b01181
M.E. Kamminga, H.-H. Fang, M.R. Filip, F. Giustino, J. Baas et al., Confinement effects in low-dimensional lead iodide perovskite hybrids. Chem. Mater. 28(13), 4554–4562 (2016). https://doi.org/10.1021/acs.chemmater.6b00809
R. Yang, R. Li, Y. Cao, Y. Wei, Y. Miao et al., Oriented quasi-2d perovskites for high performance optoelectronic devices. Adv. Mater. 30(51), e1804771 (2018). https://doi.org/10.1002/adma.201804771
W. Fu, H. Liu, X. Shi, L. Zuo, X. Li et al., Tailoring the functionality of organic spacer cations for efficient and stable quasi-2d perovskite solar cells. Adv. Funct. Mater. 29(25), 1900221 (2019). https://doi.org/10.1002/adfm.201900221
J. Shi, Y. Gao, X. Gao, Y. Zhang, J. Zhang et al., Fluorinated low-dimensional ruddlesden-popper perovskite solar cells with over 17% power conversion efficiency and improved stability. Adv. Mater. 31(37), e1901673 (2019). https://doi.org/10.1002/adma.201901673
F. Zhang, D.H. Kim, H. Lu, J.-S. Park, B.W. Larson et al., Enhanced charge transport in 2d perovskites via fluorination of organic cation. J. Am. Chem. Soc. 141(14), 5972–5979 (2019). https://doi.org/10.1021/jacs.9b00972
H. Pan, X. Zhao, X. Gong, Y. Shen, M. Wang, Atomic-scale tailoring of organic cation of layered ruddlesden-popper perovskite compounds. J. Phys. Chem. Lett. 10(8), 1813–1819 (2019). https://doi.org/10.1021/acs.jpclett.9b00479
Y. Zhang, M. Chen, T. He, H. Chen, Z. Zhang et al., Highly efficient and stable fa-based quasi-2d ruddlesden-popper perovskite solar cells by the incorporation of beta-fluorophenylethanamine cations. Adv. Mater. 35, e2210836 (2023). https://doi.org/10.1002/adma.202210836
Z. Li, N. Liu, K. Meng, Z. Liu, Y. Hu et al., A new organic interlayer spacer for stable and efficient 2d ruddlesden-popper perovskite solar cells. Nano Lett. 19(8), 5237–5245 (2019). https://doi.org/10.1021/acs.nanolett.9b01652
H. Lai, D. Lu, Z. Xu, N. Zheng, Z. Xie et al., Organic-salt-assisted crystal growth and orientation of quasi-2d ruddlesden-popper perovskites for solar cells with efficiency over 19. Adv. Mater. 32(33), e2001470 (2020). https://doi.org/10.1002/adma.202001470
C. Ni, Y. Huang, T. Zeng, D. Chen, H. Chen et al., Thiophene cation intercalation to improve band-edge integrity in reduced-dimensional perovskites. Angew. Chem. Int. Ed. 59(33), 13977–13983 (2020). https://doi.org/10.1002/anie.202006112
Y. Yan, S. Yu, A. Honarfar, T. Pullerits, K. Zheng et al., Benefiting from spontaneously generated 2d/3d bulk-heterojunctions in ruddlesden-popper perovskite by incorporation of s-bearing spacer cation. Adv. Sci. 6(14), 1900548 (2019). https://doi.org/10.1002/advs.201900548
A.H. Coffey, S.J. Yang, M. Gómez, B.P. Finkenauer, T. Terlier et al., Controlling crystallization of quasi-2d perovskite solar cells: Incorporating bulky conjugated ligands. Adv. Energy Mater. (2022). https://doi.org/10.1002/aenm.202201501
Y. Qin, H. Zhong, J.J. Intemann, S. Leng, M. Cui et al., Coordination engineering of single-crystal precursor for phase control in ruddlesden–popper perovskite solar cells. Adv. Energy Mater. 10(16), 1904050 (2020). https://doi.org/10.1002/aenm.201904050
Y. Dong, D. Lu, Z. Xu, H. Lai, Y. Liu, 2-thiopheneformamidinium-based 2D ruddlesden–popper perovskite solar cells with efficiency of 16.72% and negligible hysteresis. Adv. Energy Mater. 10(28), 2022694 (2020). https://doi.org/10.1002/aenm.202000694
Z. Xu, L. Li, X. Dong, D. Lu, R. Wang et al., CsPbI3-based phase-stable 2D ruddlesden-popper perovskites for efficient solar cells. Nano Lett. 22(7), 2874–2880 (2022). https://doi.org/10.1021/acs.nanolett.2c00002
Y. Li, H. Cheng, K. Zhao, Z.S. Wang, 4-(aminoethyl)pyridine as a bifunctional spacer cation for efficient and stable 2D ruddlesden-popper perovskite solar cells. Acs. Appl. Mater. Interfaces 11(41), 37804–37811 (2019). https://doi.org/10.1021/acsami.9b13951
Z. Xu, D. Lu, F. Liu, H. Lai, X. Wan et al., Phase distribution and carrier dynamics in multiple-ring aromatic spacer-based two-dimensional ruddlesden-popper perovskite solar cells. ACS Nano 14(4), 4871–4881 (2020). https://doi.org/10.1021/acsnano.0c00875
J.V. Passarelli, D.J. Fairfield, N.A. Sather, M.P. Hendricks, H. Sai et al., Enhanced out-of-plane conductivity and photovoltaic performance in n=1 layered perovskites through organic cation design. J. Am. Chem. Soc. 140(23), 7313–7323 (2018). https://doi.org/10.1021/jacs.8b03659
J. Yang, T. He, M. Li, G. Li, H. Liu et al., Π-conjugated carbazole cations enable wet-stable quasi-2D perovskite photovoltaics. ACS Energy Lett. 7(12), 4451–4458 (2022). https://doi.org/10.1021/acsenergylett.2c02219
Y. Zheng, S.-C. Chen, Y. Ma, Q. Zheng, Furfurylammonium as a spacer for efficient 2D ruddlesden–popper perovskite solar cells. Sol. RRL 6(8), 2200221 (2022). https://doi.org/10.1002/solr.202200221
B. Febriansyah, T.M. Koh, Y. Lekina, N.F. Jamaludin, A. Bruno et al., Improved photovoltaic efficiency and amplified photocurrent generation in mesoporous n = 1 two-dimensional lead–iodide perovskite solar cells. Chem. Mater. 31(3), 890–898 (2019). https://doi.org/10.1021/acs.chemmater.8b04064
X. Zhang, T. Yang, X. Ren, L. Zhang, K. Zhao et al., Film formation control for high performance dion–jacobson 2D perovskite solar cells. Adv. Energy Mater. 11(19), 2002733 (2021). https://doi.org/10.1002/aenm.202002733
R.D. Yukta, D. Chavan, P. Prochowicz, M.M.T. Yadav et al., Thiocyanate-passivated diaminonaphthalene-incorporated dion-jacobson perovskite for highly efficient and stable solar cells. ACS Appl. Mater. Interfaces 14(1), 850–860 (2022). https://doi.org/10.1021/acsami.1c19546
Y.C. Liu, J.T. Lin, Y.L. Lee, C.M. Hung, T.C. Chou et al., Recognizing the importance of fast nonisothermal crystallization for high-performance two-dimensional dion-jacobson perovskite solar cells with high fill factors: a comprehensive mechanistic study. J. Am. Chem. Soc. 144(32), 14897–14906 (2022). https://doi.org/10.1021/jacs.2c06342
D. Lu, G. Lv, Z. Xu, Y. Dong, X. Ji et al., Thiophene-based two-dimensional dion-jacobson perovskite solar cells with over 15% efficiency. J. Am. Chem. Soc. 142(25), 11114–11122 (2020). https://doi.org/10.1021/jacs.0c03363
Z. Xu, D. Lu, X. Dong, M. Chen, Q. Fu et al., Highly efficient and stable dion-jacobson perovskite solar cells enabled by extended pi-conjugation of organic spacer. Adv. Mater. 33(51), e2105083 (2021). https://doi.org/10.1002/adma.202105083
C. Liu, Z. Fang, J. Sun, M. Shang, K. Zheng et al., Donor-acceptor-donor type organic spacer for regulating the quantum wells of dion-jacobson 2d perovskites. Nano Energy 93, 106800 (2022). https://doi.org/10.1016/j.nanoen.2021.106800