Hydroiodic Acid Additive Enhanced the Performance and Stability of PbS-QDs Solar Cells via Suppressing Hydroxyl Ligand
Corresponding Author: Chun Cheng
Nano-Micro Letters,
Vol. 12 (2020), Article Number: 37
Abstract
The recent emerging progress of quantum dot ink (QD-ink) has overcome the complexity of multiple-step colloidal QD (CQD) film preparation and pronouncedly promoted the device performance. However, the detrimental hydroxyl (OH) ligands induced from synthesis procedure have not been completely removed. Here, a halide ligand additive strategy was devised to optimize QD-ink process. It simultaneously reduced sub-bandgap states and converted them into iodide-passivated surface, which increase carrier mobility of the QDs films and achieve thicker absorber with improved performances. The corresponding power conversion efficiency of this optimized device reached 10.78%. (The control device was 9.56%.) Therefore, this stratege can support as a candidate strategy to solve the QD original limitation caused by hydroxyl ligands, which is also compatible with other CQD-based optoelectronic devices.
Highlights:
1 The hydroiodic acid was explored systematically to modify PbS quantum dots (QDs) ink process, which could remove trap states by hydroxyl ligand and improve iodine passivation on the PbS-QDs surface.
2 This strategy solved the essential question of PbS-QDs ink process and showed the favorable application prospects in QDs technology.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- F.P. García de Arquer, A. Armin, P. Meredith, E.H. Sargent, Solution-processed semiconductors for next-generation photodetectors. Nat. Rev. Mater. 2, 16100 (2017). https://doi.org/10.1038/natrevmats.2016.100
- J. Tang, K.W. Kemp, S. Hoogland, K.S. Jeong, H. Liu et al., Colloidal-quantum-dot photovoltaics using atomic-ligand passivation. Nat. Mater. 10(10), 765–771 (2011). https://doi.org/10.1038/nmat3118
- C.H. Chuang, P.R. Brown, V. Bulovic, M.G. Bawendi, Improved performance and stability in quantum dot solar cells through band alignment engineering. Nat. Mater. 13(8), 796–801 (2014). https://doi.org/10.1038/nmat3984
- D.M. Kroupa, M. Voros, N.P. Brawand, B.W. McNichols, E.M. Miller et al., Tuning colloidal quantum dot band edge positions through solution-phase surface chemistry modification. Nat. Commun. 8, 15257 (2017). https://doi.org/10.1038/ncomms15257
- N. Zhang, D.C. Neo, Y. Tazawa, X. Li, H.E. Assender, R.G. Compton, A.A. Watt, Narrow band gap lead sulfide hole transport layers for quantum dot photovoltaics. ACS Appl. Mater. Interfaces 8(33), 21417–21422 (2016). https://doi.org/10.1021/acsami.6b01018
- J.W. Jo, Y. Kim, J. Choi, F.P.G. de Arquer, G. Walters et al., Enhanced open-circuit voltage in colloidal quantum dot photovoltaics via reactivity-controlled solution-phase ligand exchange. Adv. Mater. 29(43), 1703627 (2017). https://doi.org/10.1002/adma.201703627
- M. Yuan, D. Zhitomirsky, V. Adinolfi, O. Voznyy, K.W. Kemp et al., Doping control via molecularly engineered surface ligand coordination. Adv. Mater. 25(39), 5586–5592 (2013). https://doi.org/10.1002/adma201302802
- X. Lan, O. Voznyy, A. Kiani, F.P. Garcia de Arquer, A.S. Abbas et al., Passivation using molecular halides increases quantum dot solar cell performance. Adv. Mater. 28(2), 299–304 (2016). https://doi.org/10.1002/adma.201503657
- D. Mandal, P.N. Goswami, A.K. Rath, Thiol, halometallate, mutually passivated quantum dot ink for photovoltaic application. ACS Appl. Mater. Interfaces 11(29), 26100–26108 (2019). https://doi.org/10.1021/acsami.9b07605
- A.R. Kirmani, F.P. García de Arquer, J.Z. Fan, J.I. Khan, G. Walters et al., Molecular doping of the hole-transporting layer for efficient, single-step-deposited colloidal quantum dot photovoltaics. ACS Energy Lett. 2(9), 1952–1959 (2017). https://doi.org/10.1021/acsenergylett.7b00540
- Z. Ning, O. Voznyy, J. Pan, S. Hoogland, V. Adinolfi et al., Air-stable n-type colloidal quantum dot solids. Nat. Mater. 13(8), 822–828 (2014). https://doi.org/10.1038/nmat4007
- M. Liu, F.P. de Arquer, Y. Li, X. Lan, G.H. Kim et al., Doublesided junctions enable high-performance colloidal-quantum-dot photovoltaics. Adv. Mater. 28(21), 4142–4148 (2016). https://doi.org/10.1002/adma.201506213
- D.A. Barkhouse, R. Debnath, I.J. Kramer, D. Zhitomirsky, A.G. Pattantyus-Abraham et al., Depleted bulk heterojunction colloidal quantum dot photovoltaics. Adv. Mater. 23(28), 3134–3138 (2011). https://doi.org/10.1002/adma.201101065
- L. Hu, Z. Zhang, R.J. Patterson, Y. Hu, W. Chen et al., Achieving high-performance PbS quantum dot solar cells by improving hole extraction through Ag doping. Nano Energy 46, 212–219 (2018). https://doi.org/10.1016/j.nanoen.2018.01.047
- M. Liu, Y. Chen, C.S. Tan, R. Quintero-Bermudez, A.H. Proppe et al., Lattice anchoring stabilizes solution-processed semiconductors. Nature 570, 96–101 (2019). https://doi.org/10.1038/s41586-019-1239-7
- H. Aqoma, M. Al Mubarok, W.T. Hadmojo, E.H. Lee, T.W. Kim et al., High-efficiency photovoltaic devices using trap-controlled quantum-dot ink prepared via phase-transfer exchange. Adv. Mater. 29(19), 1605756 (2017). https://doi.org/10.1002/adma.201605756
- M. Liu, O. Voznyy, R. Sabatini, F.P. García de Arquer, R. Munir et al., Hybrid organic–inorganic inks flatten the energy landscape in colloidal quantum dot solids. Nat. Mater. 16, 258 (2016). https://doi.org/10.1038/nmat4800
- D. Zherebetskyy, M. Scheele, Y. Zhang, N. Bronstein, C. Thompson et al., Hydroxylation of the surface of PbS nanocrystals passivated with oleic acid. Science 344(6190), 1380–1384 (2014). https://doi.org/10.1126/science.1252727
- Z. Ning, H. Dong, Q. Zhang, O. Voznyy, E.H. Sargent, Solar cells based on inks of n-type colloidal quantum dots. ACS Nano 8(10), 10321–10327 (2014). https://doi.org/10.1021/nn503569p
- P.R. Brown, R.R. Lunt, N. Zhao, T.P. Osedach, D.D. Wanger, L.Y. Chang, M.G. Bawendi, V. Bulovic, Improved current extraction from ZnO/PbS quantum dot heterojunction photovoltaics using a MoO3 interfacial layer. Nano Lett. 11(7), 2955–2961 (2011). https://doi.org/10.1021/nl201472u
- Y. Cao, A. Stavrinadis, T. Lasanta, D. So, G. Konstantatos, The role of surface passivation for efficient and photostable PbS quantum dot solar cells. Nat. Energy 1(4), 16035 (2016). https://doi.org/10.1038/nenergy.2016.35
- Y. Wang, K. Lu, L. Han, Z. Liu, G. Shi et al., In situ passivation for efficient PbS quantum dot solar cells by precursor engineering. Adv. Mater. 30(16), e1704871 (2018). https://doi.org/10.1002/adma.201704871
- D.K. Ko, A. Maurano, S.K. Suh, D. Kim, G.W. Hwang et al., Photovoltaic performance of PbS quantum dots treated with metal salts. ACS Nano 10(3), 3382–3388 (2016). https://doi.org/10.1021/acsnano.5b07186
- A.H. Ip, S.M. Thon, S. Hoogland, O. Voznyy, D. Zhitomirsky et al., Hybrid passivated colloidal quantum dot solids. Nat. Nanotechnol. 7(9), 577–582 (2012). https://doi.org/10.1038/nnano.2012.127
- X. Lan, O. Voznyy, F.P. Garcia de Arquer, M. Liu, J. Xu et al., 10.6% certified colloidal quantum dot solar cells via solvent-polarity-engineered halide passivation. Nano Lett. 16(7), 4630–4634 (2016). https://doi.org/10.1021/acs.nanolett.6b01957
- J. Chen, Q. Ma, X.J. Wu, L. Li, J. Liu, H. Zhang, Wet-chemical synthesis and applications of semiconductor nanomaterial-based epitaxial heterostructures. Nano-Micro Lett. 11, 86 (2019). https://doi.org/10.1007/s40820-019-0317-6
- Y. Bai, Y. Lu, K. Wang, Z. Cheng, Y. Qu et al., Rapid isolation and multiplexed detection of exosome tumor markers via queued beads combined with quantum dots in a microarray. Nano-Micro Lett. 11, 59 (2019). https://doi.org/10.1007/s40820-019-0285-x
- M. Li, Y. Gu, Y. Liu, Y. Li, Z. Zhang, Interfacial improvement of carbon fiber/epoxy composites using a simple process for depositing commercially functionalized carbon nanotubes on the fibers. Carbon 52, 109–121 (2013). https://doi.org/10.1016/j.carbon.2012.09.011
- A. Stavrinadis, S. Pradhan, P. Papagiorgis, G. Itskos, G. Konstantatos, Suppressing deep traps in PbS colloidal quantum dots via facile iodide substitutional doping for solar cells with efficiency > 10%. ACS Energy Lett. 2(4), 739–744 (2017). https://doi.org/10.1021/acsenergylett.7b00091
- S. Chen, T.W. Goh, D. Sabba, J. Chua, N. Mathews, C. Huan, T.C. Sum, Energy level alignment at the methylammonium lead iodide/copper phthalocyanine interface. Appl. Mater. 2(8), 081512 (2014). https://doi.org/10.1063/1.4889844
- J.W. Jo, J. Choi, F.P. Garcia de Arquer, A. Seifitokaldani, B. Sun, Y. Kim et al., Acid-assisted ligand exchange enhances coupling in colloidal quantum dot solids. Nano Lett. 18(7), 4417–4423 (2018). https://doi.org/10.1021/acs.nanolett.8b01470
- C.H. Chuang, A. Maurano, R.E. Brandt, G.W. Hwang, J. Jean, T. Buonassisi, V. Bulovic, M.G. Bawendi, Open-circuit voltage deficit, radiative sub-bandgap states, and prospects in quantum dot solar cells. Nano Lett. 15(5), 3286–3294 (2015). https://doi.org/10.1021/acs.nanolett.5b00513
- L. Wang, D.-B. Li, K. Li, C. Chen, H.-X. Deng et al., Stable 6%-efficient Sb2Se3 solar cells with a ZnO buffer layer. Nat. Energy 2(4), 17046 (2017). https://doi.org/10.1038/nenergy.2017.46
- C. Chen, D.C. Bobela, Y. Yang, S. Lu, K. Zeng et al., Characterization of basic physical properties of Sb2Se3 and its relevance for photovoltaics. Front. Optoelectron. 10(1), 18–30 (2017). https://doi.org/10.1007/s12200-017-0702-z
- J.T. Heath, J.D. Cohen, W.N. Shafarman, Bulk and metastable defects in CuIn1−xGaxSe2 thin films using drive-level capacitance profiling. J. Appl. Phys. 95(3), 1000–1010 (2004). https://doi.org/10.1063/1.1633982
- D. Hsin-Sheng, Y. Wenbing, B. Brion, H. Chia-Jung, L. Bao, Y. Yang, The role of sulfur in solution-processed Cu2ZnSn(S,Se)4 and its effect on defect properties. Adv. Funct. Mater. 23(11), 1466–1471 (2013). https://doi.org/10.1002/adfm.201201732
- J. Khan, X. Yang, K. Qiao, H. Deng, J. Zhang et al., Low-temperature-processed SnO2–Cl for efficient PbS quantum-dot solar cells via defect passivation. J. Mater. Chem. A 5(33), 17240–17247 (2017). https://doi.org/10.1039/C7TA05366E
- X. Yang, L. Hu, H. Deng, K. Qiao, C. Hu et al., Improving the performance of PbS quantum dot solar cells by optimizing ZnO window layer. Nano-Micro Lett. 9(2), 24 (2017). https://doi.org/10.1007/s40820-016-0124-2
References
F.P. García de Arquer, A. Armin, P. Meredith, E.H. Sargent, Solution-processed semiconductors for next-generation photodetectors. Nat. Rev. Mater. 2, 16100 (2017). https://doi.org/10.1038/natrevmats.2016.100
J. Tang, K.W. Kemp, S. Hoogland, K.S. Jeong, H. Liu et al., Colloidal-quantum-dot photovoltaics using atomic-ligand passivation. Nat. Mater. 10(10), 765–771 (2011). https://doi.org/10.1038/nmat3118
C.H. Chuang, P.R. Brown, V. Bulovic, M.G. Bawendi, Improved performance and stability in quantum dot solar cells through band alignment engineering. Nat. Mater. 13(8), 796–801 (2014). https://doi.org/10.1038/nmat3984
D.M. Kroupa, M. Voros, N.P. Brawand, B.W. McNichols, E.M. Miller et al., Tuning colloidal quantum dot band edge positions through solution-phase surface chemistry modification. Nat. Commun. 8, 15257 (2017). https://doi.org/10.1038/ncomms15257
N. Zhang, D.C. Neo, Y. Tazawa, X. Li, H.E. Assender, R.G. Compton, A.A. Watt, Narrow band gap lead sulfide hole transport layers for quantum dot photovoltaics. ACS Appl. Mater. Interfaces 8(33), 21417–21422 (2016). https://doi.org/10.1021/acsami.6b01018
J.W. Jo, Y. Kim, J. Choi, F.P.G. de Arquer, G. Walters et al., Enhanced open-circuit voltage in colloidal quantum dot photovoltaics via reactivity-controlled solution-phase ligand exchange. Adv. Mater. 29(43), 1703627 (2017). https://doi.org/10.1002/adma.201703627
M. Yuan, D. Zhitomirsky, V. Adinolfi, O. Voznyy, K.W. Kemp et al., Doping control via molecularly engineered surface ligand coordination. Adv. Mater. 25(39), 5586–5592 (2013). https://doi.org/10.1002/adma201302802
X. Lan, O. Voznyy, A. Kiani, F.P. Garcia de Arquer, A.S. Abbas et al., Passivation using molecular halides increases quantum dot solar cell performance. Adv. Mater. 28(2), 299–304 (2016). https://doi.org/10.1002/adma.201503657
D. Mandal, P.N. Goswami, A.K. Rath, Thiol, halometallate, mutually passivated quantum dot ink for photovoltaic application. ACS Appl. Mater. Interfaces 11(29), 26100–26108 (2019). https://doi.org/10.1021/acsami.9b07605
A.R. Kirmani, F.P. García de Arquer, J.Z. Fan, J.I. Khan, G. Walters et al., Molecular doping of the hole-transporting layer for efficient, single-step-deposited colloidal quantum dot photovoltaics. ACS Energy Lett. 2(9), 1952–1959 (2017). https://doi.org/10.1021/acsenergylett.7b00540
Z. Ning, O. Voznyy, J. Pan, S. Hoogland, V. Adinolfi et al., Air-stable n-type colloidal quantum dot solids. Nat. Mater. 13(8), 822–828 (2014). https://doi.org/10.1038/nmat4007
M. Liu, F.P. de Arquer, Y. Li, X. Lan, G.H. Kim et al., Doublesided junctions enable high-performance colloidal-quantum-dot photovoltaics. Adv. Mater. 28(21), 4142–4148 (2016). https://doi.org/10.1002/adma.201506213
D.A. Barkhouse, R. Debnath, I.J. Kramer, D. Zhitomirsky, A.G. Pattantyus-Abraham et al., Depleted bulk heterojunction colloidal quantum dot photovoltaics. Adv. Mater. 23(28), 3134–3138 (2011). https://doi.org/10.1002/adma.201101065
L. Hu, Z. Zhang, R.J. Patterson, Y. Hu, W. Chen et al., Achieving high-performance PbS quantum dot solar cells by improving hole extraction through Ag doping. Nano Energy 46, 212–219 (2018). https://doi.org/10.1016/j.nanoen.2018.01.047
M. Liu, Y. Chen, C.S. Tan, R. Quintero-Bermudez, A.H. Proppe et al., Lattice anchoring stabilizes solution-processed semiconductors. Nature 570, 96–101 (2019). https://doi.org/10.1038/s41586-019-1239-7
H. Aqoma, M. Al Mubarok, W.T. Hadmojo, E.H. Lee, T.W. Kim et al., High-efficiency photovoltaic devices using trap-controlled quantum-dot ink prepared via phase-transfer exchange. Adv. Mater. 29(19), 1605756 (2017). https://doi.org/10.1002/adma.201605756
M. Liu, O. Voznyy, R. Sabatini, F.P. García de Arquer, R. Munir et al., Hybrid organic–inorganic inks flatten the energy landscape in colloidal quantum dot solids. Nat. Mater. 16, 258 (2016). https://doi.org/10.1038/nmat4800
D. Zherebetskyy, M. Scheele, Y. Zhang, N. Bronstein, C. Thompson et al., Hydroxylation of the surface of PbS nanocrystals passivated with oleic acid. Science 344(6190), 1380–1384 (2014). https://doi.org/10.1126/science.1252727
Z. Ning, H. Dong, Q. Zhang, O. Voznyy, E.H. Sargent, Solar cells based on inks of n-type colloidal quantum dots. ACS Nano 8(10), 10321–10327 (2014). https://doi.org/10.1021/nn503569p
P.R. Brown, R.R. Lunt, N. Zhao, T.P. Osedach, D.D. Wanger, L.Y. Chang, M.G. Bawendi, V. Bulovic, Improved current extraction from ZnO/PbS quantum dot heterojunction photovoltaics using a MoO3 interfacial layer. Nano Lett. 11(7), 2955–2961 (2011). https://doi.org/10.1021/nl201472u
Y. Cao, A. Stavrinadis, T. Lasanta, D. So, G. Konstantatos, The role of surface passivation for efficient and photostable PbS quantum dot solar cells. Nat. Energy 1(4), 16035 (2016). https://doi.org/10.1038/nenergy.2016.35
Y. Wang, K. Lu, L. Han, Z. Liu, G. Shi et al., In situ passivation for efficient PbS quantum dot solar cells by precursor engineering. Adv. Mater. 30(16), e1704871 (2018). https://doi.org/10.1002/adma.201704871
D.K. Ko, A. Maurano, S.K. Suh, D. Kim, G.W. Hwang et al., Photovoltaic performance of PbS quantum dots treated with metal salts. ACS Nano 10(3), 3382–3388 (2016). https://doi.org/10.1021/acsnano.5b07186
A.H. Ip, S.M. Thon, S. Hoogland, O. Voznyy, D. Zhitomirsky et al., Hybrid passivated colloidal quantum dot solids. Nat. Nanotechnol. 7(9), 577–582 (2012). https://doi.org/10.1038/nnano.2012.127
X. Lan, O. Voznyy, F.P. Garcia de Arquer, M. Liu, J. Xu et al., 10.6% certified colloidal quantum dot solar cells via solvent-polarity-engineered halide passivation. Nano Lett. 16(7), 4630–4634 (2016). https://doi.org/10.1021/acs.nanolett.6b01957
J. Chen, Q. Ma, X.J. Wu, L. Li, J. Liu, H. Zhang, Wet-chemical synthesis and applications of semiconductor nanomaterial-based epitaxial heterostructures. Nano-Micro Lett. 11, 86 (2019). https://doi.org/10.1007/s40820-019-0317-6
Y. Bai, Y. Lu, K. Wang, Z. Cheng, Y. Qu et al., Rapid isolation and multiplexed detection of exosome tumor markers via queued beads combined with quantum dots in a microarray. Nano-Micro Lett. 11, 59 (2019). https://doi.org/10.1007/s40820-019-0285-x
M. Li, Y. Gu, Y. Liu, Y. Li, Z. Zhang, Interfacial improvement of carbon fiber/epoxy composites using a simple process for depositing commercially functionalized carbon nanotubes on the fibers. Carbon 52, 109–121 (2013). https://doi.org/10.1016/j.carbon.2012.09.011
A. Stavrinadis, S. Pradhan, P. Papagiorgis, G. Itskos, G. Konstantatos, Suppressing deep traps in PbS colloidal quantum dots via facile iodide substitutional doping for solar cells with efficiency > 10%. ACS Energy Lett. 2(4), 739–744 (2017). https://doi.org/10.1021/acsenergylett.7b00091
S. Chen, T.W. Goh, D. Sabba, J. Chua, N. Mathews, C. Huan, T.C. Sum, Energy level alignment at the methylammonium lead iodide/copper phthalocyanine interface. Appl. Mater. 2(8), 081512 (2014). https://doi.org/10.1063/1.4889844
J.W. Jo, J. Choi, F.P. Garcia de Arquer, A. Seifitokaldani, B. Sun, Y. Kim et al., Acid-assisted ligand exchange enhances coupling in colloidal quantum dot solids. Nano Lett. 18(7), 4417–4423 (2018). https://doi.org/10.1021/acs.nanolett.8b01470
C.H. Chuang, A. Maurano, R.E. Brandt, G.W. Hwang, J. Jean, T. Buonassisi, V. Bulovic, M.G. Bawendi, Open-circuit voltage deficit, radiative sub-bandgap states, and prospects in quantum dot solar cells. Nano Lett. 15(5), 3286–3294 (2015). https://doi.org/10.1021/acs.nanolett.5b00513
L. Wang, D.-B. Li, K. Li, C. Chen, H.-X. Deng et al., Stable 6%-efficient Sb2Se3 solar cells with a ZnO buffer layer. Nat. Energy 2(4), 17046 (2017). https://doi.org/10.1038/nenergy.2017.46
C. Chen, D.C. Bobela, Y. Yang, S. Lu, K. Zeng et al., Characterization of basic physical properties of Sb2Se3 and its relevance for photovoltaics. Front. Optoelectron. 10(1), 18–30 (2017). https://doi.org/10.1007/s12200-017-0702-z
J.T. Heath, J.D. Cohen, W.N. Shafarman, Bulk and metastable defects in CuIn1−xGaxSe2 thin films using drive-level capacitance profiling. J. Appl. Phys. 95(3), 1000–1010 (2004). https://doi.org/10.1063/1.1633982
D. Hsin-Sheng, Y. Wenbing, B. Brion, H. Chia-Jung, L. Bao, Y. Yang, The role of sulfur in solution-processed Cu2ZnSn(S,Se)4 and its effect on defect properties. Adv. Funct. Mater. 23(11), 1466–1471 (2013). https://doi.org/10.1002/adfm.201201732
J. Khan, X. Yang, K. Qiao, H. Deng, J. Zhang et al., Low-temperature-processed SnO2–Cl for efficient PbS quantum-dot solar cells via defect passivation. J. Mater. Chem. A 5(33), 17240–17247 (2017). https://doi.org/10.1039/C7TA05366E
X. Yang, L. Hu, H. Deng, K. Qiao, C. Hu et al., Improving the performance of PbS quantum dot solar cells by optimizing ZnO window layer. Nano-Micro Lett. 9(2), 24 (2017). https://doi.org/10.1007/s40820-016-0124-2