Observation of Van Hove Singularities and Temperature Dependence of Electrical Characteristics in Suspended Carbon Nanotube Schottky Barrier Transistors
Corresponding Author: Lianfeng Sun
Nano-Micro Letters,
Vol. 10 No. 2 (2018), Article Number: 25
Abstract
A Van Hove singularity (VHS) is a singularity in the phonon or electronic density of states of a crystalline solid. When the Fermi energy is close to the VHS, instabilities will occur, which can give rise to new phases of matter with desirable properties. However, the position of the VHS in the band structure cannot be changed in most materials. In this work, we demonstrate that the carrier densities required to approach the VHS are reached by gating in a suspended carbon nanotube Schottky barrier transistor. Critical saddle points were observed in regions of both positive and negative gate voltage, and the conductance flattened out when the gate voltage exceeded the critical value. These novel physical phenomena were evident when the temperature is below 100 K. Further, the temperature dependence of the electrical characteristics was also investigated in this type of Schottky barrier transistor.
Highlights:
1 A clear signature of VHSs in the conductance versus gate voltage was observed in Schottky barrier transistors with an individual suspended single-walled carbon nanotube (SWNT).
2 Critical saddle points appear in regions of both positive and negative gate voltage, and the conductance flattens out when the gate voltage exceeds the critical value.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S. Zhang, L. Kang, X. Wang, L. Tong, L. Yang et al., Arrays of horizontal carbon nanotubes of controlled chirality grown using designed catalysts. Nature 543(7644), 234–238 (2017). https://doi.org/10.1038/nature21051
- F. Yang, X. Wang, D. Zhang, J. Yang, D. Luo et al., Chirality-specific growth of single-walled carbon nanotubes on solid alloy catalysts. Nature 510(7506), 522 (2014). https://doi.org/10.1038/nature13434
- J. Zhang, Y. Deng, J.P. Nshimiyimana, G. Hou, X. Chi et al., Wettability of graphene nanoribbons films with different surface density. RSC Adv. 7(20), 11890–11895 (2017). https://doi.org/10.1039/C7RA00770A
- Z. Zhu, N. Wei, H. Xie, R. Zhang, Y. Bai et al., Acoustic-assisted assembly of an individual monochromatic ultralong carbon nanotube for high on-current transistors. Sci. Adv. 2(11), e1601572 (2016). https://doi.org/10.1126/sciadv.1601572
- C. Qiu, Z. Zhang, M. Xiao, Y. Yang, D. Zhong, L.M. Peng, Scaling carbon nanotube complementary transistors to 5-nm gate lengths. Science 355(6322), 271 (2017). https://doi.org/10.1126/science.aaj1628
- B. Tian, X. Liang, J. Xia, H. Zhang, G. Dong, Q. Huang, L. Peng, S. Xie, Carbon nanotube thin film transistors fabricated by an etching based manufacturing compatible process. Nanoscale 9(13), 4388–4396 (2017). https://doi.org/10.1039/C7NR00685C
- J. Li, W. Yue, Z. Guo, Y. Yang, X. Wang, A.A. Syed, Y. Zhang, Unique characteristics of vertical carbon nanotube field-effect transistors on silicon. Nano-Micro Lett. 6(3), 287–292 (2014). https://doi.org/10.1007/BF03353793
- S. Heinze, J. Tersoff, R. Martel, V. Derycke, J. Appenzeller, P. Avouris, Carbon nanotubes as Schottky barrier transistors. Phys. Rev. Lett. 89(10), 106801 (2002). https://doi.org/10.1103/PhysRevLett.89.106801
- J. Zhao, Y. Su, Z. Yang, L. Wei, Y. Wang, Y. Zhang, Arc synthesis of double-walled carbon nanotubes in low pressure air and their superior field emission properties. Carbon 58, 92–98 (2013). https://doi.org/10.1016/j.carbon.2013.02.036
- V. Derycke, R. Martel, J. Appenzeller, P. Avouris, Controlling doping and carrier injection in carbon nanotube transistors. Appl. Phys. Lett. 80(15), 2773–2775 (2002). https://doi.org/10.1063/1.1467702
- J.W. Wildoer, L.C. Venema, A.G. Rinzler, R.E. Smalley, C. Dekker, Electronic structure of atomically resolved carbon nanotubes. Nature 391(6662), 59–62 (1998). https://doi.org/10.1038/34139
- Y. Yang, G. Fedorov, J. Zhang, A. Tselev, S. Shafranjuk, P. Barbara, The search for superconductivity at van Hove singularities in carbon nanotubes. Supercond. Sci. Technol. 25(12), 124005 (2012). https://doi.org/10.1088/0953-2048/25/12/124005
- Y. Yang, G. Fedorov, S. Shafranjuk, T. Klapwijk, B. Cooper, R. Lewis, C. Lobb, P. Barbara, Electronic transport and possible superconductivity at van hove singularities in carbon nanotubes. Nano Lett. 15(12), 7859–7866 (2015). https://doi.org/10.1021/acs.nanolett.5b02564
- E. Margine, F. Giustino, Two-gap superconductivity in heavily n-doped graphene: Ab initio Migdal-Eliashberg theory. Phys. Rev. B 90(1), 014518 (2014). https://doi.org/10.1103/PhysRevB.90.014518
- Y. Zhao, L. Song, K. Deng, Z. Liu, Z. Zhang et al., Individual water-filled single-walled carbon nanotubes as hydroelectric power converters. Adv. Mater. 20(9), 1772–1776 (2010). https://doi.org/10.1002/adma.200702956
- J. Zhang, S. Liu, J.P. Nshimiyimana, Y. Deng, G. Hou et al., Wafer-scale fabrication of suspended single-walled carbon nanotube arrays by silver liquid dynamics. Small 1701218 (2017). https://doi.org/10.1002/smll.201701218
- M.J. Biercuk, S. Ilani, C.M. Marcus, P.L. McEuen, Electrical transport in single-wall carbon nanotubes. Top. Appl. Phys. 111, 455–493 (2007)
- M. Ossaimee, M.E. Sabbagh, S. Gamal, Temperature dependence of carrier transport and electrical characteristics of Schottky-barrier carbon nanotube field effect transistors. Nano-Micro Lett. 11(2), 114–117 (2016). https://doi.org/10.1049/mnl.2015.0448
- W. Lang, M. Bockrath, D. Bozovic, J.H. Hafner, Fabry–Perot interference in a nanotube electron waveguide. Nature 411(6838), 665–669 (2001). https://doi.org/10.1038/35079517
- C.T. White, J.W. Mintmire, Density of states reflects diameter in nanotubes. Nature 394(6688), 29–30 (1998). https://doi.org/10.1038/27801
- G. Grosso, G.P. Parravicini, Solid State Physics (Elsevier, London, 2000)
- M. Muoth, T. Helbling, L. Durrer, S.W. Lee, C. Roman, C. Hierold, Hysteresis-free operation of suspended carbon nanotube transistors. Nat. Nanotechnol. 5(8), 589–592 (2010). https://doi.org/10.1038/nnano.2010.129
- B. Lassagne, D. Garcia-Sanchez, A. Aguasca, A. Bachtold, Ultrasensitive mass sensing with a nanotube electromechanical resonator. Nano Lett. 8(11), 3735–3738 (2008). https://doi.org/10.1021/nl801982v
- T. Helbling, R. Pohle, L. Durrer, C. Stampfer, C. Roman, A. Jungen, M. Fleischer, C. Hierold, Sensing NO2 with individual suspended single-walled carbon nanotubes. Sens. Actuators B Chem. 132(2), 491–497 (2008). https://doi.org/10.1016/j.snb.2007.11.036
- J.H. Werner, H.H. Güttler, Temperature dependence of Schottky barrier heights on silicon. J. Appl. Phys. 73(3), 1315–1319 (1993). https://doi.org/10.1063/1.353249
- A. Gümüş, A. Türüt, N. Yalçin, Temperature dependent barrier characteristics of CrNiCo alloy Schottky contacts on n-type molecular-beam epitaxy GaAs. J. Appl. Phys. 91(1), 245–250 (2002). https://doi.org/10.1063/1.1424054
References
S. Zhang, L. Kang, X. Wang, L. Tong, L. Yang et al., Arrays of horizontal carbon nanotubes of controlled chirality grown using designed catalysts. Nature 543(7644), 234–238 (2017). https://doi.org/10.1038/nature21051
F. Yang, X. Wang, D. Zhang, J. Yang, D. Luo et al., Chirality-specific growth of single-walled carbon nanotubes on solid alloy catalysts. Nature 510(7506), 522 (2014). https://doi.org/10.1038/nature13434
J. Zhang, Y. Deng, J.P. Nshimiyimana, G. Hou, X. Chi et al., Wettability of graphene nanoribbons films with different surface density. RSC Adv. 7(20), 11890–11895 (2017). https://doi.org/10.1039/C7RA00770A
Z. Zhu, N. Wei, H. Xie, R. Zhang, Y. Bai et al., Acoustic-assisted assembly of an individual monochromatic ultralong carbon nanotube for high on-current transistors. Sci. Adv. 2(11), e1601572 (2016). https://doi.org/10.1126/sciadv.1601572
C. Qiu, Z. Zhang, M. Xiao, Y. Yang, D. Zhong, L.M. Peng, Scaling carbon nanotube complementary transistors to 5-nm gate lengths. Science 355(6322), 271 (2017). https://doi.org/10.1126/science.aaj1628
B. Tian, X. Liang, J. Xia, H. Zhang, G. Dong, Q. Huang, L. Peng, S. Xie, Carbon nanotube thin film transistors fabricated by an etching based manufacturing compatible process. Nanoscale 9(13), 4388–4396 (2017). https://doi.org/10.1039/C7NR00685C
J. Li, W. Yue, Z. Guo, Y. Yang, X. Wang, A.A. Syed, Y. Zhang, Unique characteristics of vertical carbon nanotube field-effect transistors on silicon. Nano-Micro Lett. 6(3), 287–292 (2014). https://doi.org/10.1007/BF03353793
S. Heinze, J. Tersoff, R. Martel, V. Derycke, J. Appenzeller, P. Avouris, Carbon nanotubes as Schottky barrier transistors. Phys. Rev. Lett. 89(10), 106801 (2002). https://doi.org/10.1103/PhysRevLett.89.106801
J. Zhao, Y. Su, Z. Yang, L. Wei, Y. Wang, Y. Zhang, Arc synthesis of double-walled carbon nanotubes in low pressure air and their superior field emission properties. Carbon 58, 92–98 (2013). https://doi.org/10.1016/j.carbon.2013.02.036
V. Derycke, R. Martel, J. Appenzeller, P. Avouris, Controlling doping and carrier injection in carbon nanotube transistors. Appl. Phys. Lett. 80(15), 2773–2775 (2002). https://doi.org/10.1063/1.1467702
J.W. Wildoer, L.C. Venema, A.G. Rinzler, R.E. Smalley, C. Dekker, Electronic structure of atomically resolved carbon nanotubes. Nature 391(6662), 59–62 (1998). https://doi.org/10.1038/34139
Y. Yang, G. Fedorov, J. Zhang, A. Tselev, S. Shafranjuk, P. Barbara, The search for superconductivity at van Hove singularities in carbon nanotubes. Supercond. Sci. Technol. 25(12), 124005 (2012). https://doi.org/10.1088/0953-2048/25/12/124005
Y. Yang, G. Fedorov, S. Shafranjuk, T. Klapwijk, B. Cooper, R. Lewis, C. Lobb, P. Barbara, Electronic transport and possible superconductivity at van hove singularities in carbon nanotubes. Nano Lett. 15(12), 7859–7866 (2015). https://doi.org/10.1021/acs.nanolett.5b02564
E. Margine, F. Giustino, Two-gap superconductivity in heavily n-doped graphene: Ab initio Migdal-Eliashberg theory. Phys. Rev. B 90(1), 014518 (2014). https://doi.org/10.1103/PhysRevB.90.014518
Y. Zhao, L. Song, K. Deng, Z. Liu, Z. Zhang et al., Individual water-filled single-walled carbon nanotubes as hydroelectric power converters. Adv. Mater. 20(9), 1772–1776 (2010). https://doi.org/10.1002/adma.200702956
J. Zhang, S. Liu, J.P. Nshimiyimana, Y. Deng, G. Hou et al., Wafer-scale fabrication of suspended single-walled carbon nanotube arrays by silver liquid dynamics. Small 1701218 (2017). https://doi.org/10.1002/smll.201701218
M.J. Biercuk, S. Ilani, C.M. Marcus, P.L. McEuen, Electrical transport in single-wall carbon nanotubes. Top. Appl. Phys. 111, 455–493 (2007)
M. Ossaimee, M.E. Sabbagh, S. Gamal, Temperature dependence of carrier transport and electrical characteristics of Schottky-barrier carbon nanotube field effect transistors. Nano-Micro Lett. 11(2), 114–117 (2016). https://doi.org/10.1049/mnl.2015.0448
W. Lang, M. Bockrath, D. Bozovic, J.H. Hafner, Fabry–Perot interference in a nanotube electron waveguide. Nature 411(6838), 665–669 (2001). https://doi.org/10.1038/35079517
C.T. White, J.W. Mintmire, Density of states reflects diameter in nanotubes. Nature 394(6688), 29–30 (1998). https://doi.org/10.1038/27801
G. Grosso, G.P. Parravicini, Solid State Physics (Elsevier, London, 2000)
M. Muoth, T. Helbling, L. Durrer, S.W. Lee, C. Roman, C. Hierold, Hysteresis-free operation of suspended carbon nanotube transistors. Nat. Nanotechnol. 5(8), 589–592 (2010). https://doi.org/10.1038/nnano.2010.129
B. Lassagne, D. Garcia-Sanchez, A. Aguasca, A. Bachtold, Ultrasensitive mass sensing with a nanotube electromechanical resonator. Nano Lett. 8(11), 3735–3738 (2008). https://doi.org/10.1021/nl801982v
T. Helbling, R. Pohle, L. Durrer, C. Stampfer, C. Roman, A. Jungen, M. Fleischer, C. Hierold, Sensing NO2 with individual suspended single-walled carbon nanotubes. Sens. Actuators B Chem. 132(2), 491–497 (2008). https://doi.org/10.1016/j.snb.2007.11.036
J.H. Werner, H.H. Güttler, Temperature dependence of Schottky barrier heights on silicon. J. Appl. Phys. 73(3), 1315–1319 (1993). https://doi.org/10.1063/1.353249
A. Gümüş, A. Türüt, N. Yalçin, Temperature dependent barrier characteristics of CrNiCo alloy Schottky contacts on n-type molecular-beam epitaxy GaAs. J. Appl. Phys. 91(1), 245–250 (2002). https://doi.org/10.1063/1.1424054