Machine Learning-Assisted Low-Dimensional Electrocatalysts Design for Hydrogen Evolution Reaction
Corresponding Author: Qiaobao Zhang
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 227
Abstract
Efficient electrocatalysts are crucial for hydrogen generation from electrolyzing water. Nevertheless, the conventional "trial and error" method for producing advanced electrocatalysts is not only cost-ineffective but also time-consuming and labor-intensive. Fortunately, the advancement of machine learning brings new opportunities for electrocatalysts discovery and design. By analyzing experimental and theoretical data, machine learning can effectively predict their hydrogen evolution reaction (HER) performance. This review summarizes recent developments in machine learning for low-dimensional electrocatalysts, including zero-dimension nanoparticles and nanoclusters, one-dimensional nanotubes and nanowires, two-dimensional nanosheets, as well as other electrocatalysts. In particular, the effects of descriptors and algorithms on screening low-dimensional electrocatalysts and investigating their HER performance are highlighted. Finally, the future directions and perspectives for machine learning in electrocatalysis are discussed, emphasizing the potential for machine learning to accelerate electrocatalyst discovery, optimize their performance, and provide new insights into electrocatalytic mechanisms. Overall, this work offers an in-depth understanding of the current state of machine learning in electrocatalysis and its potential for future research.
Highlights:
1 The process of machine learning is introduced in detail.
2 Recent developments in machine learning for low-dimensional electrocatalysts are briefly reviewed.
3 Future directions and perspectives for machine learning in hydrogen evolution reaction are critically discussed.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J. Xiong, D. Xu, Relationship between energy consumption, economic growth and environmental pollution in China. Environ. Res. 194, 110718 (2021). https://doi.org/10.1016/j.envres.2021.110718
- S. Ligani Fereja, P. Li, Z. Zhang, J. Guo, Z. Fang et al., W-doping induced abundant active sites in a 3D NiS2/MoO2 heterostructure as an efficient electrocatalyst for urea oxidation and hydrogen evolution reaction. Chem. Eng. J. 432, 134274 (2022). https://doi.org/10.1016/j.cej.2021.134274
- B. Zhao, J. Liu, C. Xu, R. Feng, P. Sui et al., Hollow NiSe nanocrystals heterogenized with carbon nanotubes for efficient electrocatalytic methanol upgrading to boost hydrogen co-production. Adv. Funct. Mater. 31(8), 2008812 (2020). https://doi.org/10.1002/adfm.202008812
- A. Mistry, A.A. Franco, S.J. Cooper, S.A. Roberts, V. Viswanathan, How machine learning will revolutionize electrochemical sciences. ACS Energy Lett. 6(4), 1422–1431 (2021). https://doi.org/10.1021/acsenergylett.1c00194
- Y. Wu, W. Wei, R. Yu, L. Xia, X. Hong et al., Anchoring sub-nanometer Pt clusters on crumpled paper-like mxene enables high hydrogen evolution mass activity. Adv. Funct. Mater. 32(17), 2110910 (2022). https://doi.org/10.1002/adfm.202110910
- J. Zhang, R. Cui, C. Gao, L. Bian, Y. Pu et al., Cation-modulated HER and OER activities of hierarchical VOOH hollow architectures for high-efficiency and stable overall water splitting. Small 15(47), 1904688 (2019). https://doi.org/10.1002/smll.201904688
- G. Qian, J. Chen, T. Yu, J. Liu, L. Luo et al., Three-phase heterojunction NiMo-based nano-needle for water splitting at industrial alkaline condition. Nano-Micro Lett. 14, 1–15 (2022). https://doi.org/10.1007/s40820-021-00744-x
- C. Pylianidis, V. Snow, H. Overweg, S. Osinga, J. Kean et al., Simulation-assisted machine learning for operational digital twins. Environ. Modell. Softw. 148, 105274 (2022). https://doi.org/10.1016/j.envsoft.2021.105274
- J. Li, J. Luo, H. Chen, B. Qin, C. Yuan et al., Strong electronic metal-support interaction between Pt and stainless mesh for enhancing the hydrogen evolution reaction. Chem. Commun. 58(71), 9918–9921 (2022). https://doi.org/10.1039/d2cc02988j
- J. Li, J. Wang, Y. Liu, C. Yuan, G. Liu et al., Sodium tungsten bronze-supported Pt electrocatalysts for the high-performance hydrogen evolution reaction. Catal. Sci. Technol. 12(14), 4498–4510 (2022). https://doi.org/10.1039/d2cy00577h
- S. Anantharaj, Ru-tweaking of non-precious materials: the tale of a strategy that ensures both cost and energy efficiency in electrocatalytic water splitting. J. Mater. Chem. A 9(11), 6710–6731 (2021). https://doi.org/10.1039/d0ta12424a
- C. Walter, P.W. Menezes, M. Driess, Perspective on intermetallics towards efficient electrocatalytic water-splitting. Chem. Sci. 12(25), 8603–8631 (2021). https://doi.org/10.1039/d1sc01901e
- T. Gu, R. Sa, L. Zhang, D.-S. Li, R. Wang, Engineering interfacial coupling between Mo2C nanosheets and Co@NC polyhedron for boosting electrocatalytic water splitting and zinc-air batteries. Appl. Catal. B: Environ. 296, 120360 (2021). https://doi.org/10.1016/j.apcatb.2021.120360
- J. Zhang, J. Li, H. Huang, W. Chen, Y. Cui et al., Spatial relation controllable di-defects synergy boosts electrocatalytic hydrogen evolution reaction over VSe2 nanoflakes in all pH electrolytes. Small 18(47), 2204557 (2022). https://doi.org/10.1002/smll.202204557
- J. Li, J. Zhang, J. Shen, H.-H. Wu, H. Chen et al., Self-supported electrocatalysts for hydrogen evolution reaction. Mater. Chem. Front. 7, 567–606 (2023). https://doi.org/10.1039/d2qm00931e
- Y. Zhao, S. Wei, K. Pan, Z. Dong, B. Zhang et al., Self-supporting transition metal chalcogenides on metal substrates for catalytic water splitting. Chem. Eng. J. 421, 129645 (2021). https://doi.org/10.1016/j.cej.2021.129645
- Y. Zhao, S. Wei, L. Xia, K. Pan, B. Zhang et al., Sintered Ni metal as a matrix of robust self-supporting electrode for ultra-stable hydrogen evolution. Chem. Eng. J. 430, 133040 (2022). https://doi.org/10.1016/j.cej.2021.133040
- C.-Y. Pei, T. Li, M. Zhang, J.-W. Wang, L. Chang et al., Synergistic effects of interface coupling and defect sites in WO3/InVO4 architectures for highly efficient nitrogen photofixation. Sep. Purif. Technol. 290, 120875 (2022). https://doi.org/10.1016/j.seppur.2022.120875
- J. Chen, M. Qin, S. Ma, R. Fan, X. Zheng et al., Rational construction of Pt/PtTex interface with optimal intermediate adsorption energy for efficient hydrogen evolution reaction. Appl. Catal. B-Environ. 299, 120640 (2021). https://doi.org/10.1016/j.apcatb.2021.120640
- G.L.W. Hart, T. Mueller, C. Toher, S. Curtarolo, Machine learning for alloys. Nat. Rev. Mater. 6(8), 730–755 (2021). https://doi.org/10.1038/s41578-021-00340-w
- N. Artrith, K.T. Butler, F.X. Coudert, S. Han, O. Isayev et al., Best practices in machine learning for chemistry. Nat. Chem. 13(6), 505–508 (2021). https://doi.org/10.1038/s41557-021-00716-z
- J. Peng, D. Schwalbe-Koda, K. Akkiraju, T. Xie, L. Giordano et al., Human- and machine-centred designs of molecules and materials for sustainability and decarbonization. Nat. Rev. Mater. 7(12), 991–1009 (2022). https://doi.org/10.1038/s41578-022-00466-5
- C.H. Chan, M. Sun, B. Huang, Application of machine learning for advanced material prediction and design. EcoMat 4(4), 12194 (2022). https://doi.org/10.1002/eom2.12194
- P. Riley, Three pitfalls to avoid in machine learning. Nature 572(7767), 27–29 (2019). https://doi.org/10.1038/d41586-019-02307-y
- Z.H. Zhou, Open-environment machine learning. Nat. Sci. Rev. 9(8), 123 (2022). https://doi.org/10.1093/nsr/nwac123
- Z. Yao, Y. Lum, A. Johnston, L.M. Mejia-Mendoza, X. Zhou et al., Machine learning for a sustainable energy future. Nat. Rev. Mater. 8, 202–215 (2023). https://doi.org/10.1038/s41578-022-00490-5
- T. Liu, X. Zhao, X. Liu, W. Xiao, Z. Luo et al., Understanding the hydrogen evolution reaction activity of doped single-atom catalysts on two-dimensional GaPS4 by DFT and machine learning. J. Energy Chem. 81, 93–100 (2023). https://doi.org/10.1016/j.jechem.2023.02.018
- R.B. Wexler, J.M.P. Martirez, A.M. Rappe, Chemical pressure-driven enhancement of the hydrogen evolving activity of Ni2P from nonmetal surface doping interpreted via machine learning. J. Am. Chem. Soc. 140(13), 4678–4683 (2018). https://doi.org/10.1021/jacs.8b00947
- N.K. Pandit, D. Roy, S.C. Mandal, B. Pathak, Rational designing of bimetallic/trimetallic hydrogen evolution reaction catalysts using supervised machine learning. J. Phys. Chem. Lett. 13(32), 7583–7593 (2022). https://doi.org/10.1021/acs.jpclett.2c01401
- A.J. Parker, G. Opletal, A.S. Barnard, Classification of platinum nanop catalysts using machine learning. J. Appl. Phys. 128(1), 14301 (2020). https://doi.org/10.1063/5.0009129
- J. Kim, D. Kang, S. Kim, H.W. Jang, Catalyze materials science with machine learning. ACS Mater. Lett. 3(8), 1151–1171 (2021). https://doi.org/10.1021/acsmaterialslett.1c00204
- R. Ding, Y. Ding, H. Zhang, R. Wang, Z. Xu et al., Applying machine learning to boost the development of high-performance membrane electrode assembly for proton exchange membrane fuel cells. J. Mater. Chem. A 9(11), 6841–6850 (2021). https://doi.org/10.1039/d0ta12571g
- Y. Jia, X. Hou, Z. Wang, X. Hu, Machine learning boosts the design and discovery of nanomaterials. ACS Sustain. Chem. Eng. 9(18), 6130–6147 (2021). https://doi.org/10.1021/acssuschemeng.1c00483
- J. Thiyagalingam, M. Shankar, G. Fox, T. Hey, Scientific machine learning benchmarks. Nat. Rev. Phys. 4(6), 413–420 (2022). https://doi.org/10.1038/s42254-022-00441-7
- X. Zhang, Y. Tian, L. Chen, X. Hu, Z. Zhou, Machine learning: a new paradigm in computational electrocatalysis. J. Phys. Chem. Lett. 13(34), 7920–7930 (2022). https://doi.org/10.1021/acs.jpclett.2c01710
- R. Pederson, B. Kalita, K. Burke, Machine learning and density functional theory. Nat. Rev. Phys. 4(6), 357–358 (2022). https://doi.org/10.1038/s42254-022-00470-2
- J.A. Keith, V. Vassilev-Galindo, B. Cheng, S. Chmiela, M. Gastegger et al., Combining machine learning and computational chemistry for predictive insights into chemical systems. Chem. Rev. 121(16), 9816–9872 (2021). https://doi.org/10.1021/acs.chemrev.1c00107
- O.A. von Lilienfeld, K.-R. Müller, A. Tkatchenko, Exploring chemical compound space with quantum-based machine learning. Nat. Rev. Chem. 4(7), 347–358 (2020). https://doi.org/10.1038/s41570-020-0189-9
- F. Strieth-Kalthoff, F. Sandfort, M.H.S. Segler, F. Glorius, Machine learning the ropes: principles, applications and directions in synthetic chemistry. Chem. Soc. Rev. 49(17), 6154–6168 (2020). https://doi.org/10.1039/c9cs00786e
- Y. Chen, S. Wang, J. Xiong, G. Wu, J. Gao et al., Identifying facile material descriptors for charpy impact toughness in low-alloy steel via machine learning. J. Mater. Sci. Technol. 132, 213–222 (2023). https://doi.org/10.1016/j.jmst.2022.05.051
- Y. Liu, O.C. Esan, Z. Pan, L. An, Machine learning for advanced energy materials. Energy and AI 3, 100049 (2021). https://doi.org/10.1016/j.egyai.2021.100049
- K. Gulati, S. Saravana Kumar, R. Sarath Kumar Boddu, K. Sarvakar, D. Kumar Sharma et al., Comparative analysis of machine learning-based classification models using sentiment classification of tweets related to covid-19 pandemic. Mater. Today: Proc. 51, 38–41 (2022). https://doi.org/10.1016/j.matpr.2021.04.364
- X. Li, S. Yi, A.B. Cundy, W. Chen, Sustainable decision-making for contaminated site risk management: a decision tree model using machine learning algorithms. J. Clean Prod. 371, 133612 (2022). https://doi.org/10.1016/j.jclepro.2022.133612
- Y. Lai, Z. Zhang, Z. Zhang, Y. Tan, L. Yu et al., Electronic modulation of Pt nanoclusters through tuning the interface of Pt-SnO2 clusters for enhanced hydrogen evolution catalysis. Chem. Eng. J. 435, 135102 (2022). https://doi.org/10.1016/j.cej.2022.135102
- M. Tamtaji, H. Gao, M.D. Hossain, P.R. Galligan, H. Wong et al., Machine learning for design principles for single atom catalysts towards electrochemical reactions. J. Mater. Chem. A 10(29), 15309–15331 (2022). https://doi.org/10.1039/d2ta02039d
- Z. Xu, G. Zhu, N. Metawa, Q. Zhou, Machine learning based customer meta-combination brand equity analysis for marketing behavior evaluation. Inform. Process Manag. 59(1), 102800 (2022). https://doi.org/10.1016/j.ipm.2021.102800
- Y. Ding, L. Fan, X. Liu, Analysis of feature matrix in machine learning algorithms to predict energy consumption of public buildings. Energy Build. 249, 111208 (2021). https://doi.org/10.1016/j.enbuild.2021.111208
- J. Li, L. Liu, T.D. Le, J. Liu, Accurate data-driven prediction does not mean high reproducibility. Nat. Mach. Intell. 2(1), 13–15 (2020). https://doi.org/10.1038/s42256-019-0140-2
- M. Meuwly, Machine learning for chemical reactions. Chem. Rev. 121(16), 10218–10239 (2021). https://doi.org/10.1021/acs.chemrev.1c00033
- W. Sha, Y. Li, S. Tang, J. Tian, Y. Zhao et al., Machine learning in polymer informatics. InfoMat 3(4), 353–361 (2021). https://doi.org/10.1002/inf2.12167
- A. Bender, N. Schneider, M. Segler, W. Patrick Walters, O. Engkvist et al., Evaluation guidelines for machine learning tools in the chemical sciences. Nat. Rev. Chem. 6(6), 428–442 (2022). https://doi.org/10.1038/s41570-022-00391-9
- C. Gao, X. Min, M. Fang, T. Tao, X. Zheng et al., Innovative materials science via machine learning. Adv. Funct. Mater. 32(1), 2108044 (2022). https://doi.org/10.1002/adfm.202108044
- V. Venkatraman, P.A. Carvalho, On the value of popular crystallographic databases for machine learning prediction of space groups. Acta Mater. 240, 118353 (2022). https://doi.org/10.1016/j.actamat.2022.118353
- R.M. Geilhufe, B. Olsthoorn, A.V. Balatsky, Shifting computational boundaries for complex organic materials. Nat. Phys. 17(2), 152–154 (2021). https://doi.org/10.1038/s41567-020-01135-6
- Y. Iwasaki, R. Sawada, E. Saitoh, M. Ishida, Machine learning autonomous identification of magnetic alloys beyond the slater-pauling limit. Commun. Mater. 2(1), 31 (2021). https://doi.org/10.1038/s43246-021-00135-0
- Q. Tao, P. Xu, M. Li, W. Lu, Machine learning for perovskite materials design and discovery. npj Comput. Mater. 7(1), 23 (2021). https://doi.org/10.1038/s41524-021-00495-8
- A.S. Rosen, S.M. Iyer, D. Ray, Z. Yao, A. Aspuru-Guzik et al., Machine learning the quantum-chemical properties of metal-organic frameworks for accelerated materials discovery. Matter 4(5), 1578–1597 (2021). https://doi.org/10.1016/j.matt.2021.02.015
- N. Zhang, B. Yang, K. Liu, H. Li, G. Chen et al., Machine learning in screening high performance electrocatalysts for CO2 reduction. Small Methods 5(11), 2100987 (2021). https://doi.org/10.1002/smtd.202100987
- J. Cai, X. Chu, K. Xu, H. Li, J. Wei, Machine learning-driven new material discovery. Nanoscale Adv. 2(8), 3115–3130 (2020). https://doi.org/10.1039/d0na00388c
- A.A.B. Baloch, S.M. Alqahtani, F. Mumtaz, A.H. Muqaibel, S.N. Rashkeev et al., Extending shannon’s ionic radii database using machine learning. Phys. Rev. Mater. 5(4), 043804 (2021). https://doi.org/10.1103/PhysRevMaterials.5.043804
- P. Nguyen, D. Loveland, J.T. Kim, P. Karande, A.M. Hiszpanski et al., Predicting energetics materials’ crystalline density from chemical structure by machine learning. J. Chem. Inf. Model 61(5), 2147–2158 (2021). https://doi.org/10.1021/acs.jcim.0c01318
- C. Backes, S. Bartus, C. Casiraghi, A. Ferrari, A.R. Kamali et al., Applications in opto-electronics: general discussion. Faraday Discuss. 227, 184–188 (2021). https://doi.org/10.1039/d1fd90006d
- K.T. Winther, M.J. Hoffmann, J.R. Boes, O. Mamun, M. Bajdich et al., Catalysis-hub.Org, an open electronic structure database for surface reactions. Sci. Data 6(1), 75 (2019). https://doi.org/10.1038/s41597-019-0081-y
- E. Komp, N. Janulaitis, S. Valleau, Progress towards machine learning reaction rate constants. Phys. Chem. Chem. Phys. 24(5), 2692–2705 (2022). https://doi.org/10.1039/d1cp04422b
- J. Deng, J. Pan, Y.F. Zhang, S. Du, Database construction of two-dimensional charged building blocks for functional-oriented material design. Nano Lett. 23(10), 4634–4641 (2023). https://doi.org/10.1021/acs.nanolett.3c01237
- A. Tropsha, K.C. Mills, A.J. Hickey, Reproducibility, sharing and progress in nanomaterial databases. Nature nanotech. 12(12), 1111–1114 (2017). https://doi.org/10.1038/nnano.2017.233
- F.A. Rasmussen, K.S. Thygesen, Computational 2D materials database: electronic structure of transition-metal dichalcogenides and oxides. J. Phys. Chem. C 119(23), 13169–13183 (2015). https://doi.org/10.1021/acs.jpcc.5b02950
- H. Lu, X. Ma, Hybrid decision tree-based machine learning models for short-term water quality prediction. Chemosphere 249, 126169 (2020). https://doi.org/10.1016/j.chemosphere.2020.126169
- A. Mahmood, J.-L. Wang, Machine learning for high performance organic solar cells: current scenario and future prospects. Energy Environ. Sci. 14(1), 90–105 (2021). https://doi.org/10.1039/d0ee02838j
- Y. Zhang, P.J. Thorburn, Handling missing data in near real-time environmental monitoring: a system and a review of selected methods. Future Gener. Comp. Sy. 128, 63–72 (2022). https://doi.org/10.1016/j.future.2021.09.033
- S.K. Baduge, S. Thilakarathna, J.S. Perera, M. Arashpour, P. Sharafi et al., Artificial intelligence and smart vision for building and construction 4.0: machine and deep learning methods and applications. Automat. Constr. 141, 104440 (2022). https://doi.org/10.1016/j.autcon.2022.104440
- A. Turetskyy, J. Wessel, C. Herrmann, S. Thiede, Battery production design using multi-output machine learning models. Energy Storage Mater. 38, 93–112 (2021). https://doi.org/10.1016/j.ensm.2021.03.002
- S. Guo, J. Popp, T. Bocklitz, Chemometric analysis in Raman spectroscopy from experimental design to machine learning-based modeling. Nat. Protoc. 16(12), 5426–5459 (2021). https://doi.org/10.1038/s41596-021-00620-3
- W. Zhao, H. Zhang, J. Zheng, Y. Dai, L. Huang et al., A point prediction method based automatic machine learning for day-ahead power output of multi-region photovoltaic plants. Energy 223, 120026 (2021). https://doi.org/10.1016/j.energy.2021.120026
- Z. Yao, Y. Lum, A. Johnston, L.M. Mejia-Mendoza, X. Zhou et al., Machine learning for a sustainable energy future. Nat. Rev. Mater. 8(3), 202–215 (2023). https://doi.org/10.1038/s41578-022-00490-5
- D. Roman, S. Saxena, V. Robu, M. Pecht, D. Flynn, Machine learning pipeline for battery state-of-health estimation. Nat. Mach. Intell. 3(5), 447–456 (2021). https://doi.org/10.1038/s42256-021-00312-3
- B. Wang, F. Zhang, Main descriptors to correlate structures with the performances of electrocatalysts. Angew. Chem. Int. Ed. 61(4), 2111026 (2022). https://doi.org/10.1002/anie.202111026
- M. Ducamp, F.-X. Coudert, Prediction of thermal properties of zeolites through machine learning. J. Phys. Chem. C 126(3), 1651–1660 (2022). https://doi.org/10.1021/acs.jpcc.1c09737
- S. Liu, B.B. Kappes, B. Amin-ahmadi, O. Benafan, X. Zhang et al., Physics-informed machine learning for composition-process-property design: shape memory alloy demonstration. Appl. Mater. Today 22, 100898 (2021). https://doi.org/10.1016/j.apmt.2020.100898
- L. Zhang, J. Wen, Y. Li, J. Chen, Y. Ye et al., A review of machine learning in building load prediction. Appl. Energy 285, 116452 (2021). https://doi.org/10.1016/j.apenergy.2021.116452
- W. Li, N. Sengupta, P. Dechent, D. Howey, A. Annaswamy et al., Online capacity estimation of lithium-ion batteries with deep long short-term memory networks. J. Power Sources 482, 228863 (2021). https://doi.org/10.1016/j.jpowsour.2020.228863
- D.P. Finegan, J. Zhu, X. Feng, M. Keyser, M. Ulmefors et al., The application of data-driven methods and physics-based learning for improving battery safety. Joule 5(2), 316–329 (2021). https://doi.org/10.1016/j.joule.2020.11.018
- J. Westermayr, M. Gastegger, M. Menger, S. Mai, L. Gonzalez et al., Machine learning enables long time scale molecular photodynamics simulations. Chem. Sci. 10(35), 8100–8107 (2019). https://doi.org/10.1039/c9sc01742a
- Y. Xu, D. Verma, R.P. Sheridan, A. Liaw, J. Ma et al., Deep dive into machine learning models for protein engineering. J. Chem. Inf. Model. 60(6), 2773–2790 (2020). https://doi.org/10.1021/acs.jcim.0c00073
- A. Harari, G. Katz, Automatic features generation and selection from external sources: a DBpedia use case. Inform. Sci. 582, 398–414 (2022). https://doi.org/10.1016/j.ins.2021.09.036
- J. Xiong, S.-Q. Shi, T.-Y. Zhang, Machine learning of phases and mechanical properties in complex concentrated alloys. J. Mater. Sci. Technol. 87, 133–142 (2021). https://doi.org/10.1016/j.jmst.2021.01.054
- C. Janiesch, P. Zschech, K. Heinrich, Machine learning and deep learning. Electron. Mark. 31(3), 685–695 (2021). https://doi.org/10.1007/s12525-021-00475-2
- B.B. Gupta, K. Yadav, I. Razzak, K. Psannis, A. Castiglione et al., A novel approach for phishing urls detection using lexical based machine learning in a real-time environment. Comput. Commun. 175, 47–57 (2021). https://doi.org/10.1016/j.comcom.2021.04.023
- D.S. Wigh, J.M. Goodman, A.A. Lapkin, A review of molecular representation in the age of machine learning. WIREs Comput. Mol. Sci. 12(5), 1603 (2022). https://doi.org/10.1002/wcms.1603
- G.G.C. Peterson, J. Brgoch, Materials discovery through machine learning formation energy. J. Phys. Energy 3(2), 022002 (2021). https://doi.org/10.1088/2515-7655/abe425
- S.Y. Louis, Y. Zhao, A. Nasiri, X. Wang, Y. Song et al., Graph convolutional neural networks with global attention for improved materials property prediction. Phys. Chem. Chem. Phys. 22(32), 18141–18148 (2020). https://doi.org/10.1039/d0cp01474e
- M. Sun, T. Wu, A.W. Dougherty, M. Lam, B. Huang et al., Self-validated machine learning study of graphdiyne-based dual atomic catalyst. Adv. Energy Mater. 11(13), 2003796 (2021). https://doi.org/10.1002/aenm.202003796
- K. Fukami, R. Maulik, N. Ramachandra, K. Fukagata, K. Taira, Global field reconstruction from sparse sensors with voronoi tessellation-assisted deep learning. Nat. Mach. Intell. 3(11), 945–951 (2021). https://doi.org/10.1038/s42256-021-00402-2
- H. Mai, T.C. Le, D. Chen, D.A. Winkler, R.A. Caruso, Machine learning for electrocatalyst and photocatalyst design and discovery. Chem. Rev. 122(16), 13478–13515 (2022). https://doi.org/10.1021/acs.chemrev.2c00061
- A. Mosallanezhad, C. Wei, P. Ahmadian Koudakan, Y. Fang, S. Niu et al., Interfacial synergies between single-atomic Pt and CoS for enhancing hydrogen evolution reaction catalysis. Appl. Catal. B-Environ. 315, 121534 (2022). https://doi.org/10.1016/j.apcatb.2022.121534
- R. Ding, Y. Chen, P. Chen, R. Wang, J. Wang et al., Machine learning-guided discovery of underlying decisive factors and new mechanisms for the design of nonprecious metal electrocatalysts. ACS Catal. 11(15), 9798–9808 (2021). https://doi.org/10.1021/acscatal.1c01473
- M. Zhong, K. Tran, Y. Min, C. Wang, Z. Wang et al., Accelerated discovery of CO2 electrocatalysts using active machine learning. Nature 581(7807), 178–183 (2020). https://doi.org/10.1038/s41586-020-2242-8
- L. Chen, X. Zhang, A. Chen, S. Yao, X. Hu et al., Targeted design of advanced electrocatalysts by machine learning. Chinese J. Catal. 43(1), 11–32 (2022). https://doi.org/10.1016/s1872-2067(21)63852-4
- M. Umer, S. Umer, M. Zafari, M. Ha, R. Anand et al., Machine learning assisted high-throughput screening of transition metal single atom based superb hydrogen evolution electrocatalysts. J. Mater. Chem. A 10(12), 6679–6689 (2022). https://doi.org/10.1039/d1ta09878k
- L. Giordano, K. Akkiraju, R. Jacobs, D. Vivona, D. Morgan et al., Electronic structure-based descriptors for oxide properties and functions. Acc. Chem. Res. 55(3), 298–308 (2022). https://doi.org/10.1021/acs.accounts.1c00509
- L. Chen, Y. Tian, X. Hu, S. Yao, Z. Lu et al., A universal machine learning framework for electrocatalyst innovation: a case study of discovering alloys for hydrogen evolution reaction. Adv. Funct. Mater. 32(47), 2208418 (2022). https://doi.org/10.1002/adfm.202208418
- M.O.J. Jäger, E.V. Morooka, F. Federici Canova, L. Himanen, A.S. Foster, Machine learning hydrogen adsorption on nanoclusters through structural descriptors. npj Comput. Mater. 4(1), 37 (2018). https://doi.org/10.1038/s41524-018-0096-5
- S. Jiao, X. Fu, H. Huang, Descriptors for the evaluation of electrocatalytic reactions: D-band theory and beyond. Adv. Funct. Mater. 32(4), 2107651 (2021). https://doi.org/10.1002/adfm.202107651
- S. Lu, J. Cao, Y. Zhang, F. Lou, Z. Yu, Transition metal single-atom supported on PC3 monolayer for highly efficient hydrogen evolution reaction by combined density functional theory and machine learning study. Appl. Surf. Sci. 606, 154945 (2022). https://doi.org/10.1016/j.apsusc.2022.154945
- C. Zou, J. Li, W.Y. Wang, Y. Zhang, D. Lin et al., Integrating data mining and machine learning to discover high-strength ductile titanium alloys. Acta Mater. 202, 211–221 (2021). https://doi.org/10.1016/j.actamat.2020.10.056
- P.O. Dral, M. Barbatti, Molecular excited states through a machine learning lens. Nat. Rev. Chem. 5(6), 388–405 (2021). https://doi.org/10.1038/s41570-021-00278-1
- C. Altintas, O.F. Altundal, S. Keskin, R. Yildirim, Machine learning meets with metal organic frameworks for gas storage and separation. J. Chem. Inf. Model. 61(5), 2131–2146 (2021). https://doi.org/10.1021/acs.jcim.1c00191
- A. Nandy, C. Duan, M.G. Taylor, F. Liu, A.H. Steeves et al., Computational discovery of transition-metal complexes: from high-throughput screening to machine learning. Chem. Rev. 121(16), 9927–10000 (2021). https://doi.org/10.1021/acs.chemrev.1c00347
- C. Lv, X. Zhou, L. Zhong, C. Yan, M. Srinivasan et al., Machine learning: an advanced platform for materials development and state prediction in lithium-ion batteries. Adv. Mater. 34(25), 2101474 (2022). https://doi.org/10.1002/adma.202101474
- D. Lemm, G.F. von Rudorff, O.A. von Lilienfeld, Machine learning based energy-free structure predictions of molecules, transition states, and solids. Nat. Commun. 12(1), 4468 (2021). https://doi.org/10.1038/s41467-021-24525-7
- Y. Guan, C.W. Coley, H. Wu, D. Ranasinghe, E. Heid et al., Regio-selectivity prediction with a machine-learned reaction representation and on-the-fly quantum mechanical descriptors. Chem. Sci. 12(6), 2198–2208 (2020). https://doi.org/10.1039/d0sc04823b
- K. Choudhary, B. DeCost, C. Chen, A. Jain, F. Tavazza et al., Recent advances and applications of deep learning methods in materials science. npj Comput. Mater. 8(1), 59 (2022). https://doi.org/10.1038/s41524-022-00734-6
- T.H. Pham, Y. Qiu, J. Zeng, L. Xie, P. Zhang, A deep learning framework for high-throughput mechanism-driven phenotype compound screening and its application to covid-19 drug repurposing. Nat. Mach. Intell. 3(3), 247–257 (2021). https://doi.org/10.1038/s42256-020-00285-9
- J. Tian, R. Xiong, W. Shen, J. Lu, F. Sun, Flexible battery state of health and state of charge estimation using partial charging data and deep learning. Energy Storage Mater. 51, 372–381 (2022). https://doi.org/10.1016/j.ensm.2022.06.053
- Y. Li, C. Huang, L. Ding, Z. Li, Y. Pan et al., Deep learning in bioinformatics: introduction, application, and perspective in the big data era. Methods 166, 4–21 (2019). https://doi.org/10.1016/j.ymeth.2019.04.008
- Y. Ji, S. Ma, S. Lv, Y. Wang, S. Lu et al., Nanomaterials for targeted delivery of agrochemicals by an all-in-one combination strategy and deep learning. ACS Appl. Mater. Interfaces 13(36), 43374–43386 (2021). https://doi.org/10.1021/acsami.1c11914
- H. Masood, C.Y. Toe, W.Y. Teoh, V. Sethu, R. Amal, Machine learning for accelerated discovery of solar photocatalysts. ACS Catal. 9(12), 11774–11787 (2019). https://doi.org/10.1021/acscatal.9b02531
- G. Pan, F. Wang, C. Shang, H.-H. Wu, G. Wu et al., Advances in machine learning- and artificial intelligence-assisted material design of steels. Int. J. Min. Met. Mater. 30, 1003–1024 (2023). https://doi.org/10.1007/s12613-022-2595-0
- S. Manna, D. Roy, S. Das, B. Pathak, Capacity prediction of K-ion batteries: a machine learning based approach for high throughput screening of electrode materials. Mater. Adv. 3(21), 7833–7845 (2022). https://doi.org/10.1039/d2ma00746k
- T. Gao, W. Lu, Machine learning toward advanced energy storage devices and systems. iScience 24(1), 101936 (2021). https://doi.org/10.1016/j.isci.2020.101936
- Y. Guan, D. Chaffart, G. Liu, Z. Tan, D. Zhang et al., Machine learning in solid heterogeneous catalysis: recent developments, challenges and perspectives. Chem. Eng. Sci. 248, 117224 (2022). https://doi.org/10.1016/j.ces.2021.117224
- P.S. Rice, Z.P. Liu, P. Hu, Hydrogen coupling on platinum using artificial neural network potentials and DFT. J. Phys. Chem. Lett. 12(43), 10637–10645 (2021). https://doi.org/10.1021/acs.jpclett.1c02998
- H.-H. Wu, L.-S. Dong, S.-Z. Wang, G.-L. Wu, J.-H. Gao et al., Local chemical ordering coordinated thermal stability of nanograined high-entropy alloys. Rare Met. 42(5), 1645–1655 (2022). https://doi.org/10.1007/s12598-022-02194-9
- F. Wang, H.-H. Wu, L. Dong, G. Pan, X. Zhou et al., Atomic-scale simulations in multi-component alloys and compounds: a review on advances in interatomic potential. J. Mater. Sci. Technol. 165, 49–65 (2023). https://doi.org/10.1016/j.jmst.2023.05.010
- S. Mehrabi-Kalajahi, A.O. Moghaddam, F. Hadavimoghaddam, M.A. Varfolomeev, A.L. Zinnatullin et al., Entropy-stabilized metal oxide nanops supported on reduced graphene oxide as a highly active heterogeneous catalyst for selective and solvent-free oxidation of toluene: a combined experimental and numerical investigation. J. Mater. Chem. A 10(27), 14488–14500 (2022). https://doi.org/10.1039/d2ta02027k
- Y. Zhang, T.C. Peck, G.K. Reddy, D. Banerjee, H. Jia et al., Descriptor-free design of multicomponent catalysts. ACS Catal. 12(17), 10562–10571 (2022). https://doi.org/10.1021/acscatal.2c02807
- K.E. McCullough, D.S. King, S.P. Chheda, M.S. Ferrandon, T.A. Goetjen et al., High-throughput experimentation, theoretical modeling, and human intuition: lessons learned in metal-organic-framework-supported catalyst design. ACS Cent. Sci. 9(2), 266–276 (2023). https://doi.org/10.1021/acscentsci.2c01422
- A. Chen, J. Cai, Z. Wang, Y. Han, S. Ye et al., An ensemble learning classifier to discover arsenene catalysts with implanted heteroatoms for hydrogen evolution reaction. J. Energy Chem. 78, 268–276 (2023). https://doi.org/10.1016/j.jechem.2022.11.035
- Z. Yang, W. Gao, Applications of machine learning in alloy catalysts: rational selection and future development of descriptors. Adv. Sci. 9(12), 2106043 (2022). https://doi.org/10.1002/advs.202106043
- Z. Xiong, Y. Cui, Z. Liu, Y. Zhao, M. Hu et al., Evaluating explorative prediction power of machine learning algorithms for materials discovery using k-fold forward cross-validation. Comput. Mater. Sci. 171, 109203 (2020). https://doi.org/10.1016/j.commatsci.2019.109203
- D. Perez-Guaita, G. Quintas, J. Kuligowski, Discriminant analysis and feature selection in mass spectrometry imaging using constrained repeated random sampling-cross validation (corrs-cv). Anal. Chim. Acta 1097, 30–36 (2020). https://doi.org/10.1016/j.aca.2019.10.039
- S.Y. Ho, K. Phua, L. Wong, W.W. Bin Goh, Extensions of the external validation for checking learned model interpretability and generalizability. Patterns 1(8), 100129 (2020). https://doi.org/10.1016/j.patter.2020.100129
- N.O. Dogan, U. Bozuyuk, P. Erkoc, A.C. Karacakol, A. Cingoz et al., Parameters influencing gene delivery efficiency of pegylated chitosan nanops: experimental and modeling approach. Adv. NanoBiomed Res. 2(1), 2100033 (2021). https://doi.org/10.1002/anbr.202100033
- M. Karthikeyan, D.M. Mahapatra, A.S.A. Razak, A.A.M. Abahussain, B. Ethiraj et al., Machine learning aided synthesis and screening of HER catalyst: present developments and prospects. Catal. Rev. (2022). https://doi.org/10.1080/01614940.2022.2103980
- D. Sui, M. Yao, L. Si, K. Yan, J. Shi et al., Biomass-derived carbon coated SiO2 nanotubes as superior anode for lithium-ion batteries. Carbon 205, 510–518 (2023). https://doi.org/10.1016/j.carbon.2023.01.039
- G. Liu, T. Zhang, X. Li, J. Li, N. Wu et al., MoS2@C with S vacancies vertically anchored onV2C-MXene for efficient lithium and sodium storage. Inorg. Chem. Front. 10(5), 1587–1602 (2023). https://doi.org/10.1039/d2qi02389j
- Y. Liu, P. Vijayakumar, Q. Liu, T. Sakthivel, F. Chen et al., Shining light on anion-mixed nanocatalysts for efficient water electrolysis: fundamentals, progress, and perspectives. Nano-Micro Lett. 14(1), 43 (2022). https://doi.org/10.1007/s40820-021-00785-2
- C. Wang, X. Wei, D. Ren, X. Wang, W. Xu, High-throughput map design of creep life in low-alloy steels by integrating machine learning with a genetic algorithm. Mater. Design 213, 110326 (2022). https://doi.org/10.1016/j.matdes.2021.110326
- Z. Liu, S. Ha, Y. Liu, F. Wang, F. Tao et al., Application of Ag-based materials in high-performance lithium metal anode: a review. J. Mater. Sci. Technol. 133, 165–182 (2023). https://doi.org/10.1016/j.jmst.2022.06.015
- X. Zhao, H. Qiu, Y. Shao, P. Wang, S. Yu et al., Silver nanop-modified 2D MOF nanosheets for photothermally enhanced silver ion release antibacterial treatment. Acta Phys-Chim. Sin. 1, 2211043 (2023). https://doi.org/10.3866/pku.whxb202211043
- L. Wu, T. Guo, T. Li, Machine learning-accelerated prediction of overpotential of oxygen evolution reaction of single-atom catalysts. iScience 24(5), 102398 (2021). https://doi.org/10.1016/j.isci.2021.102398
- M. Kim, M.Y. Ha, W.B. Jung, J. Yoon, E. Shin et al., Searching for an optimal multi-metallic alloy catalyst by active learning combined with experiments. Adv. Mater. 34(19), 2108900 (2022). https://doi.org/10.1002/adma.202108900
- Y.L. Wu, X. Li, Y.S. Wei, Z. Fu, W. Wei et al., Ordered macroporous superstructure of nitrogen-doped nanoporous carbon implanted with ultrafine Ru nanoclusters for efficient pH-universal hydrogen evolution reaction. Adv. Mater. 33(12), 2006965 (2021). https://doi.org/10.1002/adma.202006965
- Y. Xu, R. Wang, J. Wang, J. Li, T. Jiao et al., Facile fabrication of molybdenum compounds (Mo2C, MoP and MoS2) nanoclusters supported on N-doped reduced graphene oxide for highly efficient hydrogen evolution reaction over broad pH range. Chem. Eng. J. 417, 129233 (2021). https://doi.org/10.1016/j.cej.2021.129233
- Y. Li, Y. Luo, Z. Zhang, Q. Yu, C. Li et al., Implanting Ru nanoclusters into N-doped graphene for efficient alkaline hydrogen evolution. Carbon 183, 362–367 (2021). https://doi.org/10.1016/j.carbon.2021.07.039
- C. Li, H. Jang, S. Liu, M.G. Kim, L. Hou et al., P and Mo dual doped Ru ultrasmall nanoclusters embedded in P-doped porous carbon toward efficient hydrogen evolution reaction. Adv. Energy Mater. 12(23), 2200029 (2022). https://doi.org/10.1002/aenm.202200029
- M.O.J. Jager, Y.S. Ranawat, F.F. Canova, E.V. Morooka, A.S. Foster, Efficient machine-learning-aided screening of hydrogen adsorption on bimetallic nanoclusters. ACS Comb. Sci. 22(12), 768–781 (2020). https://doi.org/10.1021/acscombsci.0c00102
- D.X. Zhu, K.M. Pan, Y. Wu, X.Y. Zhou, X.Y. Li et al., Improved material descriptors for bulk modulus in intermetallic compounds via machine learning. Rare Met. 42, 2396–2405 (2023). https://doi.org/10.1007/s12598-023-02282-4
- X. Mao, L. Wang, Y. Xu, P. Wang, Y. Li et al., Computational high-throughput screening of alloy nanoclusters for electrocatalytic hydrogen evolution. npj Comput. Mater. 7(1), 46 (2021). https://doi.org/10.1038/s41524-021-00514-8
- Q. Yang, H. Liu, P. Yuan, Y. Jia, L. Zhuang et al., Single carbon vacancy traps atomic platinum for hydrogen evolution catalysis. J. Am. Chem. Soc. 144(5), 2171–2178 (2022). https://doi.org/10.1021/jacs.1c10814
- H. Prats, K. Chan, The determination of the HOR/HER reaction mechanism from experimental kinetic data. Phys. Chem. Chem. Phys. 23(48), 27150–27158 (2021). https://doi.org/10.1039/d1cp04134g
- A. Gross, S. Sakong, Ab initio simulations of water/metal interfaces. Chem. Rev. 122(12), 10746–10776 (2022). https://doi.org/10.1021/acs.chemrev.1c00679
- S.M.N. Jeghan, D. Kim, Y. Lee, M. Kim, G. Lee, Designing a smart heterojunction coupling of cobalt-iron layered double hydroxide on nickel selenide nanosheets for highly efficient overall water splitting kinetics. Appl. Catal. B-Environ. 308, 121221 (2022). https://doi.org/10.1016/j.apcatb.2022.121221
- G.H. Gu, J. Lim, C. Wan, T. Cheng, H. Pu et al., Autobifunctional mechanism of jagged Pt nanowires for hydrogen evolution kinetics via end-to-end simulation. J. Am. Chem. Soc. 143(14), 5355–5363 (2021). https://doi.org/10.1021/jacs.0c11261
- H. Jin, H. Yu, H. Li, K. Davey, T. Song et al., MXene analogue: a 2D nitridene solid solution for high-rate hydrogen production. Angew. Chem. Int. Ed. 61(27), 2203850 (2022). https://doi.org/10.1002/anie.202203850
- R. Kronberg, H. Lappalainen, K. Laasonen, Hydrogen adsorption on defective nitrogen-doped carbon nanotubes explained via machine learning augmented DFT calculations and game-theoretic feature attributions. J. Phys. Chem. C 125(29), 15918–15933 (2021). https://doi.org/10.1021/acs.jpcc.1c03858
- J. Mao, J. Miao, Y. Lu, Z. Tong, Machine learning of materials design and state prediction for lithium ion batteries. Chinese J. Chem. Eng. 37, 1–11 (2021). https://doi.org/10.1016/j.cjche.2021.04.009
- H. Jin, T. Song, U. Paik, S.-Z. Qiao, Metastable two-dimensional materials for electrocatalytic energy conversions. Accounts Mater. Res. 2(7), 559–573 (2021). https://doi.org/10.1021/accountsmr.1c00115
- Y. Ding, M. Zeng, Q. Zheng, J. Zhang, D. Xu et al., Bidirectional and reversible tuning of the interlayer spacing of two-dimensional materials. Nat. Commun. 12(1), 5886 (2021). https://doi.org/10.1038/s41467-021-26139-5
- H.S. Kim, Computational design of a switchable heterostructure electrocatalyst based on a two-dimensional ferroelectric In2Se3 material for the hydrogen evolution reaction. J. Mater. Chem. A 9(19), 11553–11562 (2021). https://doi.org/10.1039/d0ta09738a
- L. Najafi, R. Oropesa-Nunez, S. Bellani, B. Martin-Garcia, L. Pasquale et al., Topochemical transformation of two-dimensional VSe2 into metallic nonlayered VO2 for water splitting reactions in acidic and alkaline media. ACS Nano 16(1), 351–367 (2021). https://doi.org/10.1021/acsnano.1c06662
- Y. Cui, X. Guo, J. Zhang, X. Li, X. Zhu et al., Di-defects synergy boost electrocatalysis hydrogen evolution over two-dimensional heterojunctions. Nano Res. 15(1), 677–684 (2021). https://doi.org/10.1007/s12274-021-3545-2
- S. Wu, Z. Wang, H. Zhang, J. Cai, J. Li, Deep learning accelerates the discovery of two-dimensional catalysts for hydrogen evolution reaction. Energy Environ. Mater. 1, 1–7 (2022). https://doi.org/10.1002/eem2.12259
- H. He, Y. Chen, C. Yang, L. Yang, Q. Jiang et al., Constructing 3D interweaved mxene/graphitic carbon nitride nanosheets/graphene nanoarchitectures for promoted electrocatalytic hydrogen evolution. J. Energy Chem. 67, 483–491 (2022). https://doi.org/10.1016/j.jechem.2021.10.019
- C. Wang, X. Wang, T. Zhang, P. Qian, T. Lookman et al., A descriptor for the design of 2D MXene hydrogen evolution reaction electrocatalysts. J. Mater. Chem. A 10(35), 18195–18205 (2022). https://doi.org/10.1039/d2ta02837a
- J. Zheng, X. Sun, C. Qiu, Y. Yan, Z. Yao et al., High-throughput screening of hydrogen evolution reaction catalysts in MXene materials. J. Phys. Chem. C 124(25), 13695–13705 (2020). https://doi.org/10.1021/acs.jpcc.0c02265
- X. Sun, J. Zheng, Y. Gao, C. Qiu, Y. Yan et al., Machine-learning-accelerated screening of hydrogen evolution catalysts in Mbenes materials. Appl. Surf. Sci. 526, 146522 (2020). https://doi.org/10.1016/j.apsusc.2020.146522
- X. Wang, C. Wang, S. Ci, Y. Ma, T. Liu et al., Accelerating 2D MXene catalyst discovery for the hydrogen evolution reaction by computer-driven workflow and an ensemble learning strategy. J. Mater. Chem. A 8(44), 23488–23497 (2020). https://doi.org/10.1039/d0ta06583h
- R. Liu, Z. Gong, J. Liu, J. Dong, J. Liao et al., Design of aligned porous carbon films with single-atom Co-N-C sites for high-current-density hydrogen generation. Adv. Mater. 33(41), 2103533 (2021). https://doi.org/10.1002/adma.202103533
- A. Baby, L. Trovato, C. Di Valentin, Single atom catalysts (SAC) trapped in defective and nitrogen-doped graphene supported on metal substrates. Carbon 174, 772–788 (2021). https://doi.org/10.1016/j.carbon.2020.12.045
- H. Choi, D.H. Kim, M.H. Han, H.-S. Oh, J. Heo et al., Prediction of the catalytic site of single-atom Ni catalyst using the hydrogen evolution reaction as a model platform. Electrochim. Acta 431, 141138 (2022). https://doi.org/10.1016/j.electacta.2022.141138
- C. Rong, X. Shen, Y. Wang, L. Thomsen, T. Zhao et al., Electronic structure engineering of single-atom Ru sites via Co-N4 sites for bifunctional pH-universal water splitting. Adv. Mater. 34(21), 2110103 (2022). https://doi.org/10.1002/adma.202110103
- T. Jin, X. Liu, Q. Gao, H. Zhu, C. Lian et al., Pyrolysis-free, facile mechanochemical strategy toward cobalt single-atom/nitrogen-doped carbon for highly efficient water splitting. Chem. Eng. J. 433, 134089 (2022). https://doi.org/10.1016/j.cej.2021.134089
- V. Fung, G. Hu, Z. Wu, D.-E. Jiang, Descriptors for hydrogen evolution on single atom catalysts in nitrogen-doped graphene. J. Phys. Chem. C 124(36), 19571–19578 (2020). https://doi.org/10.1021/acs.jpcc.0c04432
- S. Lin, H. Xu, Y. Wang, X.C. Zeng, Z. Chen, Directly predicting limiting potentials from easily obtainable physical properties of graphene-supported single-atom electrocatalysts by machine learning. J. Mater. Chem. A 8(11), 5663–5670 (2020). https://doi.org/10.1039/c9ta13404b
- M. Sun, A.W. Dougherty, B. Huang, Y. Li, C.H. Yan, Accelerating atomic catalyst discovery by theoretical calculations-machine learning strategy. Adv. Energy Mater. 10(12), 1903949 (2020). https://doi.org/10.1002/aenm.201903949
- C. Guo, T. Zhang, X. Lu, C.L. Wu, Rational design and effective control of gold-based bimetallic electrocatalyst for boosting CO2 reduction reaction: a first-principles study. Chemsuschem 14(13), 2731–2739 (2021). https://doi.org/10.1002/cssc.202100785
- H. Li, S. Xu, M. Wang, Z. Chen, F. Ji et al., Computational design of (100) alloy surfaces for the hydrogen evolution reaction. J. Mater. Chem. A 8(35), 17987–17997 (2020). https://doi.org/10.1039/d0ta04615a
- H. Liu, K. Liu, P. Zhong, J. Qi, J. Bian et al., Ultrathin Pt-Ag alloy nanotubes with regular nanopores for enhanced electrocatalytic activity. Chem. Mater. 30(21), 7744–7751 (2018). https://doi.org/10.1021/acs.chemmater.8b03085
- H. Wu, F. Zhuo, H. Qiao, L. Kodumudi Venkataraman, M. Zheng et al., Polymer-/ceramic-based dielectric composites for energy storage and conversion. Energy Environ. Mater. 5(2), 486–514 (2022). https://doi.org/10.1002/eem2.12237
- L. Ding, Z. Xie, S. Yu, W. Wang, A.Y. Terekhov et al., Electrochemically grown ultrathin platinum nanosheet electrodes with ultralow loadings for energy-saving and industrial-level hydrogen evolution. Nano-Micro Lett. 15(1), 144 (2023). https://doi.org/10.1007/s40820-023-01117-2
- J. Chen, Y. Ha, R. Wang, Y. Liu, H. Xu et al., Inner Co synergizing outer Ru supported on carbon nanotubes for efficient pH-universal hydrogen evolution catalysis. Nano-Micro Lett. 14(1), 186 (2022). https://doi.org/10.1007/s40820-022-00933-2
- Z. Wu, T. Liao, S. Wang, J.A. Mudiyanselage, A.S. Micallef et al., Conversion of catalytically inert 2D bismuth oxide nanosheets for effective electrochemical hydrogen evolution reaction catalysis via oxygen vacancy concentration modulation. Nano-Micro Lett. 14(1), 90 (2022). https://doi.org/10.1007/s40820-022-00832-6
- Y. Sun, Z. Xue, Q. Liu, Y. Jia, Y. Li et al., Modulating electronic structure of metal-organic frameworks by introducing atomically dispersed Ru for efficient hydrogen evolution. Nat. Commun. 12(1), 1369 (2021). https://doi.org/10.1038/s41467-021-21595-5
- Y. Gao, J. Wang, Y. Yang, J. Wang, C. Zhang et al., Engineering spin states of isolated copper species in a metal-organic framework improves urea electrosynthesis. Nano-Micro Lett. 15(1), 158 (2023). https://doi.org/10.1007/s40820-023-01127-0
- X. He, Fundamental perspectives on the electrochemical water applications of metal-organic frameworks. Nano-Micro Lett. 15(1), 148 (2023). https://doi.org/10.1007/s40820-023-01124-3
References
J. Xiong, D. Xu, Relationship between energy consumption, economic growth and environmental pollution in China. Environ. Res. 194, 110718 (2021). https://doi.org/10.1016/j.envres.2021.110718
S. Ligani Fereja, P. Li, Z. Zhang, J. Guo, Z. Fang et al., W-doping induced abundant active sites in a 3D NiS2/MoO2 heterostructure as an efficient electrocatalyst for urea oxidation and hydrogen evolution reaction. Chem. Eng. J. 432, 134274 (2022). https://doi.org/10.1016/j.cej.2021.134274
B. Zhao, J. Liu, C. Xu, R. Feng, P. Sui et al., Hollow NiSe nanocrystals heterogenized with carbon nanotubes for efficient electrocatalytic methanol upgrading to boost hydrogen co-production. Adv. Funct. Mater. 31(8), 2008812 (2020). https://doi.org/10.1002/adfm.202008812
A. Mistry, A.A. Franco, S.J. Cooper, S.A. Roberts, V. Viswanathan, How machine learning will revolutionize electrochemical sciences. ACS Energy Lett. 6(4), 1422–1431 (2021). https://doi.org/10.1021/acsenergylett.1c00194
Y. Wu, W. Wei, R. Yu, L. Xia, X. Hong et al., Anchoring sub-nanometer Pt clusters on crumpled paper-like mxene enables high hydrogen evolution mass activity. Adv. Funct. Mater. 32(17), 2110910 (2022). https://doi.org/10.1002/adfm.202110910
J. Zhang, R. Cui, C. Gao, L. Bian, Y. Pu et al., Cation-modulated HER and OER activities of hierarchical VOOH hollow architectures for high-efficiency and stable overall water splitting. Small 15(47), 1904688 (2019). https://doi.org/10.1002/smll.201904688
G. Qian, J. Chen, T. Yu, J. Liu, L. Luo et al., Three-phase heterojunction NiMo-based nano-needle for water splitting at industrial alkaline condition. Nano-Micro Lett. 14, 1–15 (2022). https://doi.org/10.1007/s40820-021-00744-x
C. Pylianidis, V. Snow, H. Overweg, S. Osinga, J. Kean et al., Simulation-assisted machine learning for operational digital twins. Environ. Modell. Softw. 148, 105274 (2022). https://doi.org/10.1016/j.envsoft.2021.105274
J. Li, J. Luo, H. Chen, B. Qin, C. Yuan et al., Strong electronic metal-support interaction between Pt and stainless mesh for enhancing the hydrogen evolution reaction. Chem. Commun. 58(71), 9918–9921 (2022). https://doi.org/10.1039/d2cc02988j
J. Li, J. Wang, Y. Liu, C. Yuan, G. Liu et al., Sodium tungsten bronze-supported Pt electrocatalysts for the high-performance hydrogen evolution reaction. Catal. Sci. Technol. 12(14), 4498–4510 (2022). https://doi.org/10.1039/d2cy00577h
S. Anantharaj, Ru-tweaking of non-precious materials: the tale of a strategy that ensures both cost and energy efficiency in electrocatalytic water splitting. J. Mater. Chem. A 9(11), 6710–6731 (2021). https://doi.org/10.1039/d0ta12424a
C. Walter, P.W. Menezes, M. Driess, Perspective on intermetallics towards efficient electrocatalytic water-splitting. Chem. Sci. 12(25), 8603–8631 (2021). https://doi.org/10.1039/d1sc01901e
T. Gu, R. Sa, L. Zhang, D.-S. Li, R. Wang, Engineering interfacial coupling between Mo2C nanosheets and Co@NC polyhedron for boosting electrocatalytic water splitting and zinc-air batteries. Appl. Catal. B: Environ. 296, 120360 (2021). https://doi.org/10.1016/j.apcatb.2021.120360
J. Zhang, J. Li, H. Huang, W. Chen, Y. Cui et al., Spatial relation controllable di-defects synergy boosts electrocatalytic hydrogen evolution reaction over VSe2 nanoflakes in all pH electrolytes. Small 18(47), 2204557 (2022). https://doi.org/10.1002/smll.202204557
J. Li, J. Zhang, J. Shen, H.-H. Wu, H. Chen et al., Self-supported electrocatalysts for hydrogen evolution reaction. Mater. Chem. Front. 7, 567–606 (2023). https://doi.org/10.1039/d2qm00931e
Y. Zhao, S. Wei, K. Pan, Z. Dong, B. Zhang et al., Self-supporting transition metal chalcogenides on metal substrates for catalytic water splitting. Chem. Eng. J. 421, 129645 (2021). https://doi.org/10.1016/j.cej.2021.129645
Y. Zhao, S. Wei, L. Xia, K. Pan, B. Zhang et al., Sintered Ni metal as a matrix of robust self-supporting electrode for ultra-stable hydrogen evolution. Chem. Eng. J. 430, 133040 (2022). https://doi.org/10.1016/j.cej.2021.133040
C.-Y. Pei, T. Li, M. Zhang, J.-W. Wang, L. Chang et al., Synergistic effects of interface coupling and defect sites in WO3/InVO4 architectures for highly efficient nitrogen photofixation. Sep. Purif. Technol. 290, 120875 (2022). https://doi.org/10.1016/j.seppur.2022.120875
J. Chen, M. Qin, S. Ma, R. Fan, X. Zheng et al., Rational construction of Pt/PtTex interface with optimal intermediate adsorption energy for efficient hydrogen evolution reaction. Appl. Catal. B-Environ. 299, 120640 (2021). https://doi.org/10.1016/j.apcatb.2021.120640
G.L.W. Hart, T. Mueller, C. Toher, S. Curtarolo, Machine learning for alloys. Nat. Rev. Mater. 6(8), 730–755 (2021). https://doi.org/10.1038/s41578-021-00340-w
N. Artrith, K.T. Butler, F.X. Coudert, S. Han, O. Isayev et al., Best practices in machine learning for chemistry. Nat. Chem. 13(6), 505–508 (2021). https://doi.org/10.1038/s41557-021-00716-z
J. Peng, D. Schwalbe-Koda, K. Akkiraju, T. Xie, L. Giordano et al., Human- and machine-centred designs of molecules and materials for sustainability and decarbonization. Nat. Rev. Mater. 7(12), 991–1009 (2022). https://doi.org/10.1038/s41578-022-00466-5
C.H. Chan, M. Sun, B. Huang, Application of machine learning for advanced material prediction and design. EcoMat 4(4), 12194 (2022). https://doi.org/10.1002/eom2.12194
P. Riley, Three pitfalls to avoid in machine learning. Nature 572(7767), 27–29 (2019). https://doi.org/10.1038/d41586-019-02307-y
Z.H. Zhou, Open-environment machine learning. Nat. Sci. Rev. 9(8), 123 (2022). https://doi.org/10.1093/nsr/nwac123
Z. Yao, Y. Lum, A. Johnston, L.M. Mejia-Mendoza, X. Zhou et al., Machine learning for a sustainable energy future. Nat. Rev. Mater. 8, 202–215 (2023). https://doi.org/10.1038/s41578-022-00490-5
T. Liu, X. Zhao, X. Liu, W. Xiao, Z. Luo et al., Understanding the hydrogen evolution reaction activity of doped single-atom catalysts on two-dimensional GaPS4 by DFT and machine learning. J. Energy Chem. 81, 93–100 (2023). https://doi.org/10.1016/j.jechem.2023.02.018
R.B. Wexler, J.M.P. Martirez, A.M. Rappe, Chemical pressure-driven enhancement of the hydrogen evolving activity of Ni2P from nonmetal surface doping interpreted via machine learning. J. Am. Chem. Soc. 140(13), 4678–4683 (2018). https://doi.org/10.1021/jacs.8b00947
N.K. Pandit, D. Roy, S.C. Mandal, B. Pathak, Rational designing of bimetallic/trimetallic hydrogen evolution reaction catalysts using supervised machine learning. J. Phys. Chem. Lett. 13(32), 7583–7593 (2022). https://doi.org/10.1021/acs.jpclett.2c01401
A.J. Parker, G. Opletal, A.S. Barnard, Classification of platinum nanop catalysts using machine learning. J. Appl. Phys. 128(1), 14301 (2020). https://doi.org/10.1063/5.0009129
J. Kim, D. Kang, S. Kim, H.W. Jang, Catalyze materials science with machine learning. ACS Mater. Lett. 3(8), 1151–1171 (2021). https://doi.org/10.1021/acsmaterialslett.1c00204
R. Ding, Y. Ding, H. Zhang, R. Wang, Z. Xu et al., Applying machine learning to boost the development of high-performance membrane electrode assembly for proton exchange membrane fuel cells. J. Mater. Chem. A 9(11), 6841–6850 (2021). https://doi.org/10.1039/d0ta12571g
Y. Jia, X. Hou, Z. Wang, X. Hu, Machine learning boosts the design and discovery of nanomaterials. ACS Sustain. Chem. Eng. 9(18), 6130–6147 (2021). https://doi.org/10.1021/acssuschemeng.1c00483
J. Thiyagalingam, M. Shankar, G. Fox, T. Hey, Scientific machine learning benchmarks. Nat. Rev. Phys. 4(6), 413–420 (2022). https://doi.org/10.1038/s42254-022-00441-7
X. Zhang, Y. Tian, L. Chen, X. Hu, Z. Zhou, Machine learning: a new paradigm in computational electrocatalysis. J. Phys. Chem. Lett. 13(34), 7920–7930 (2022). https://doi.org/10.1021/acs.jpclett.2c01710
R. Pederson, B. Kalita, K. Burke, Machine learning and density functional theory. Nat. Rev. Phys. 4(6), 357–358 (2022). https://doi.org/10.1038/s42254-022-00470-2
J.A. Keith, V. Vassilev-Galindo, B. Cheng, S. Chmiela, M. Gastegger et al., Combining machine learning and computational chemistry for predictive insights into chemical systems. Chem. Rev. 121(16), 9816–9872 (2021). https://doi.org/10.1021/acs.chemrev.1c00107
O.A. von Lilienfeld, K.-R. Müller, A. Tkatchenko, Exploring chemical compound space with quantum-based machine learning. Nat. Rev. Chem. 4(7), 347–358 (2020). https://doi.org/10.1038/s41570-020-0189-9
F. Strieth-Kalthoff, F. Sandfort, M.H.S. Segler, F. Glorius, Machine learning the ropes: principles, applications and directions in synthetic chemistry. Chem. Soc. Rev. 49(17), 6154–6168 (2020). https://doi.org/10.1039/c9cs00786e
Y. Chen, S. Wang, J. Xiong, G. Wu, J. Gao et al., Identifying facile material descriptors for charpy impact toughness in low-alloy steel via machine learning. J. Mater. Sci. Technol. 132, 213–222 (2023). https://doi.org/10.1016/j.jmst.2022.05.051
Y. Liu, O.C. Esan, Z. Pan, L. An, Machine learning for advanced energy materials. Energy and AI 3, 100049 (2021). https://doi.org/10.1016/j.egyai.2021.100049
K. Gulati, S. Saravana Kumar, R. Sarath Kumar Boddu, K. Sarvakar, D. Kumar Sharma et al., Comparative analysis of machine learning-based classification models using sentiment classification of tweets related to covid-19 pandemic. Mater. Today: Proc. 51, 38–41 (2022). https://doi.org/10.1016/j.matpr.2021.04.364
X. Li, S. Yi, A.B. Cundy, W. Chen, Sustainable decision-making for contaminated site risk management: a decision tree model using machine learning algorithms. J. Clean Prod. 371, 133612 (2022). https://doi.org/10.1016/j.jclepro.2022.133612
Y. Lai, Z. Zhang, Z. Zhang, Y. Tan, L. Yu et al., Electronic modulation of Pt nanoclusters through tuning the interface of Pt-SnO2 clusters for enhanced hydrogen evolution catalysis. Chem. Eng. J. 435, 135102 (2022). https://doi.org/10.1016/j.cej.2022.135102
M. Tamtaji, H. Gao, M.D. Hossain, P.R. Galligan, H. Wong et al., Machine learning for design principles for single atom catalysts towards electrochemical reactions. J. Mater. Chem. A 10(29), 15309–15331 (2022). https://doi.org/10.1039/d2ta02039d
Z. Xu, G. Zhu, N. Metawa, Q. Zhou, Machine learning based customer meta-combination brand equity analysis for marketing behavior evaluation. Inform. Process Manag. 59(1), 102800 (2022). https://doi.org/10.1016/j.ipm.2021.102800
Y. Ding, L. Fan, X. Liu, Analysis of feature matrix in machine learning algorithms to predict energy consumption of public buildings. Energy Build. 249, 111208 (2021). https://doi.org/10.1016/j.enbuild.2021.111208
J. Li, L. Liu, T.D. Le, J. Liu, Accurate data-driven prediction does not mean high reproducibility. Nat. Mach. Intell. 2(1), 13–15 (2020). https://doi.org/10.1038/s42256-019-0140-2
M. Meuwly, Machine learning for chemical reactions. Chem. Rev. 121(16), 10218–10239 (2021). https://doi.org/10.1021/acs.chemrev.1c00033
W. Sha, Y. Li, S. Tang, J. Tian, Y. Zhao et al., Machine learning in polymer informatics. InfoMat 3(4), 353–361 (2021). https://doi.org/10.1002/inf2.12167
A. Bender, N. Schneider, M. Segler, W. Patrick Walters, O. Engkvist et al., Evaluation guidelines for machine learning tools in the chemical sciences. Nat. Rev. Chem. 6(6), 428–442 (2022). https://doi.org/10.1038/s41570-022-00391-9
C. Gao, X. Min, M. Fang, T. Tao, X. Zheng et al., Innovative materials science via machine learning. Adv. Funct. Mater. 32(1), 2108044 (2022). https://doi.org/10.1002/adfm.202108044
V. Venkatraman, P.A. Carvalho, On the value of popular crystallographic databases for machine learning prediction of space groups. Acta Mater. 240, 118353 (2022). https://doi.org/10.1016/j.actamat.2022.118353
R.M. Geilhufe, B. Olsthoorn, A.V. Balatsky, Shifting computational boundaries for complex organic materials. Nat. Phys. 17(2), 152–154 (2021). https://doi.org/10.1038/s41567-020-01135-6
Y. Iwasaki, R. Sawada, E. Saitoh, M. Ishida, Machine learning autonomous identification of magnetic alloys beyond the slater-pauling limit. Commun. Mater. 2(1), 31 (2021). https://doi.org/10.1038/s43246-021-00135-0
Q. Tao, P. Xu, M. Li, W. Lu, Machine learning for perovskite materials design and discovery. npj Comput. Mater. 7(1), 23 (2021). https://doi.org/10.1038/s41524-021-00495-8
A.S. Rosen, S.M. Iyer, D. Ray, Z. Yao, A. Aspuru-Guzik et al., Machine learning the quantum-chemical properties of metal-organic frameworks for accelerated materials discovery. Matter 4(5), 1578–1597 (2021). https://doi.org/10.1016/j.matt.2021.02.015
N. Zhang, B. Yang, K. Liu, H. Li, G. Chen et al., Machine learning in screening high performance electrocatalysts for CO2 reduction. Small Methods 5(11), 2100987 (2021). https://doi.org/10.1002/smtd.202100987
J. Cai, X. Chu, K. Xu, H. Li, J. Wei, Machine learning-driven new material discovery. Nanoscale Adv. 2(8), 3115–3130 (2020). https://doi.org/10.1039/d0na00388c
A.A.B. Baloch, S.M. Alqahtani, F. Mumtaz, A.H. Muqaibel, S.N. Rashkeev et al., Extending shannon’s ionic radii database using machine learning. Phys. Rev. Mater. 5(4), 043804 (2021). https://doi.org/10.1103/PhysRevMaterials.5.043804
P. Nguyen, D. Loveland, J.T. Kim, P. Karande, A.M. Hiszpanski et al., Predicting energetics materials’ crystalline density from chemical structure by machine learning. J. Chem. Inf. Model 61(5), 2147–2158 (2021). https://doi.org/10.1021/acs.jcim.0c01318
C. Backes, S. Bartus, C. Casiraghi, A. Ferrari, A.R. Kamali et al., Applications in opto-electronics: general discussion. Faraday Discuss. 227, 184–188 (2021). https://doi.org/10.1039/d1fd90006d
K.T. Winther, M.J. Hoffmann, J.R. Boes, O. Mamun, M. Bajdich et al., Catalysis-hub.Org, an open electronic structure database for surface reactions. Sci. Data 6(1), 75 (2019). https://doi.org/10.1038/s41597-019-0081-y
E. Komp, N. Janulaitis, S. Valleau, Progress towards machine learning reaction rate constants. Phys. Chem. Chem. Phys. 24(5), 2692–2705 (2022). https://doi.org/10.1039/d1cp04422b
J. Deng, J. Pan, Y.F. Zhang, S. Du, Database construction of two-dimensional charged building blocks for functional-oriented material design. Nano Lett. 23(10), 4634–4641 (2023). https://doi.org/10.1021/acs.nanolett.3c01237
A. Tropsha, K.C. Mills, A.J. Hickey, Reproducibility, sharing and progress in nanomaterial databases. Nature nanotech. 12(12), 1111–1114 (2017). https://doi.org/10.1038/nnano.2017.233
F.A. Rasmussen, K.S. Thygesen, Computational 2D materials database: electronic structure of transition-metal dichalcogenides and oxides. J. Phys. Chem. C 119(23), 13169–13183 (2015). https://doi.org/10.1021/acs.jpcc.5b02950
H. Lu, X. Ma, Hybrid decision tree-based machine learning models for short-term water quality prediction. Chemosphere 249, 126169 (2020). https://doi.org/10.1016/j.chemosphere.2020.126169
A. Mahmood, J.-L. Wang, Machine learning for high performance organic solar cells: current scenario and future prospects. Energy Environ. Sci. 14(1), 90–105 (2021). https://doi.org/10.1039/d0ee02838j
Y. Zhang, P.J. Thorburn, Handling missing data in near real-time environmental monitoring: a system and a review of selected methods. Future Gener. Comp. Sy. 128, 63–72 (2022). https://doi.org/10.1016/j.future.2021.09.033
S.K. Baduge, S. Thilakarathna, J.S. Perera, M. Arashpour, P. Sharafi et al., Artificial intelligence and smart vision for building and construction 4.0: machine and deep learning methods and applications. Automat. Constr. 141, 104440 (2022). https://doi.org/10.1016/j.autcon.2022.104440
A. Turetskyy, J. Wessel, C. Herrmann, S. Thiede, Battery production design using multi-output machine learning models. Energy Storage Mater. 38, 93–112 (2021). https://doi.org/10.1016/j.ensm.2021.03.002
S. Guo, J. Popp, T. Bocklitz, Chemometric analysis in Raman spectroscopy from experimental design to machine learning-based modeling. Nat. Protoc. 16(12), 5426–5459 (2021). https://doi.org/10.1038/s41596-021-00620-3
W. Zhao, H. Zhang, J. Zheng, Y. Dai, L. Huang et al., A point prediction method based automatic machine learning for day-ahead power output of multi-region photovoltaic plants. Energy 223, 120026 (2021). https://doi.org/10.1016/j.energy.2021.120026
Z. Yao, Y. Lum, A. Johnston, L.M. Mejia-Mendoza, X. Zhou et al., Machine learning for a sustainable energy future. Nat. Rev. Mater. 8(3), 202–215 (2023). https://doi.org/10.1038/s41578-022-00490-5
D. Roman, S. Saxena, V. Robu, M. Pecht, D. Flynn, Machine learning pipeline for battery state-of-health estimation. Nat. Mach. Intell. 3(5), 447–456 (2021). https://doi.org/10.1038/s42256-021-00312-3
B. Wang, F. Zhang, Main descriptors to correlate structures with the performances of electrocatalysts. Angew. Chem. Int. Ed. 61(4), 2111026 (2022). https://doi.org/10.1002/anie.202111026
M. Ducamp, F.-X. Coudert, Prediction of thermal properties of zeolites through machine learning. J. Phys. Chem. C 126(3), 1651–1660 (2022). https://doi.org/10.1021/acs.jpcc.1c09737
S. Liu, B.B. Kappes, B. Amin-ahmadi, O. Benafan, X. Zhang et al., Physics-informed machine learning for composition-process-property design: shape memory alloy demonstration. Appl. Mater. Today 22, 100898 (2021). https://doi.org/10.1016/j.apmt.2020.100898
L. Zhang, J. Wen, Y. Li, J. Chen, Y. Ye et al., A review of machine learning in building load prediction. Appl. Energy 285, 116452 (2021). https://doi.org/10.1016/j.apenergy.2021.116452
W. Li, N. Sengupta, P. Dechent, D. Howey, A. Annaswamy et al., Online capacity estimation of lithium-ion batteries with deep long short-term memory networks. J. Power Sources 482, 228863 (2021). https://doi.org/10.1016/j.jpowsour.2020.228863
D.P. Finegan, J. Zhu, X. Feng, M. Keyser, M. Ulmefors et al., The application of data-driven methods and physics-based learning for improving battery safety. Joule 5(2), 316–329 (2021). https://doi.org/10.1016/j.joule.2020.11.018
J. Westermayr, M. Gastegger, M. Menger, S. Mai, L. Gonzalez et al., Machine learning enables long time scale molecular photodynamics simulations. Chem. Sci. 10(35), 8100–8107 (2019). https://doi.org/10.1039/c9sc01742a
Y. Xu, D. Verma, R.P. Sheridan, A. Liaw, J. Ma et al., Deep dive into machine learning models for protein engineering. J. Chem. Inf. Model. 60(6), 2773–2790 (2020). https://doi.org/10.1021/acs.jcim.0c00073
A. Harari, G. Katz, Automatic features generation and selection from external sources: a DBpedia use case. Inform. Sci. 582, 398–414 (2022). https://doi.org/10.1016/j.ins.2021.09.036
J. Xiong, S.-Q. Shi, T.-Y. Zhang, Machine learning of phases and mechanical properties in complex concentrated alloys. J. Mater. Sci. Technol. 87, 133–142 (2021). https://doi.org/10.1016/j.jmst.2021.01.054
C. Janiesch, P. Zschech, K. Heinrich, Machine learning and deep learning. Electron. Mark. 31(3), 685–695 (2021). https://doi.org/10.1007/s12525-021-00475-2
B.B. Gupta, K. Yadav, I. Razzak, K. Psannis, A. Castiglione et al., A novel approach for phishing urls detection using lexical based machine learning in a real-time environment. Comput. Commun. 175, 47–57 (2021). https://doi.org/10.1016/j.comcom.2021.04.023
D.S. Wigh, J.M. Goodman, A.A. Lapkin, A review of molecular representation in the age of machine learning. WIREs Comput. Mol. Sci. 12(5), 1603 (2022). https://doi.org/10.1002/wcms.1603
G.G.C. Peterson, J. Brgoch, Materials discovery through machine learning formation energy. J. Phys. Energy 3(2), 022002 (2021). https://doi.org/10.1088/2515-7655/abe425
S.Y. Louis, Y. Zhao, A. Nasiri, X. Wang, Y. Song et al., Graph convolutional neural networks with global attention for improved materials property prediction. Phys. Chem. Chem. Phys. 22(32), 18141–18148 (2020). https://doi.org/10.1039/d0cp01474e
M. Sun, T. Wu, A.W. Dougherty, M. Lam, B. Huang et al., Self-validated machine learning study of graphdiyne-based dual atomic catalyst. Adv. Energy Mater. 11(13), 2003796 (2021). https://doi.org/10.1002/aenm.202003796
K. Fukami, R. Maulik, N. Ramachandra, K. Fukagata, K. Taira, Global field reconstruction from sparse sensors with voronoi tessellation-assisted deep learning. Nat. Mach. Intell. 3(11), 945–951 (2021). https://doi.org/10.1038/s42256-021-00402-2
H. Mai, T.C. Le, D. Chen, D.A. Winkler, R.A. Caruso, Machine learning for electrocatalyst and photocatalyst design and discovery. Chem. Rev. 122(16), 13478–13515 (2022). https://doi.org/10.1021/acs.chemrev.2c00061
A. Mosallanezhad, C. Wei, P. Ahmadian Koudakan, Y. Fang, S. Niu et al., Interfacial synergies between single-atomic Pt and CoS for enhancing hydrogen evolution reaction catalysis. Appl. Catal. B-Environ. 315, 121534 (2022). https://doi.org/10.1016/j.apcatb.2022.121534
R. Ding, Y. Chen, P. Chen, R. Wang, J. Wang et al., Machine learning-guided discovery of underlying decisive factors and new mechanisms for the design of nonprecious metal electrocatalysts. ACS Catal. 11(15), 9798–9808 (2021). https://doi.org/10.1021/acscatal.1c01473
M. Zhong, K. Tran, Y. Min, C. Wang, Z. Wang et al., Accelerated discovery of CO2 electrocatalysts using active machine learning. Nature 581(7807), 178–183 (2020). https://doi.org/10.1038/s41586-020-2242-8
L. Chen, X. Zhang, A. Chen, S. Yao, X. Hu et al., Targeted design of advanced electrocatalysts by machine learning. Chinese J. Catal. 43(1), 11–32 (2022). https://doi.org/10.1016/s1872-2067(21)63852-4
M. Umer, S. Umer, M. Zafari, M. Ha, R. Anand et al., Machine learning assisted high-throughput screening of transition metal single atom based superb hydrogen evolution electrocatalysts. J. Mater. Chem. A 10(12), 6679–6689 (2022). https://doi.org/10.1039/d1ta09878k
L. Giordano, K. Akkiraju, R. Jacobs, D. Vivona, D. Morgan et al., Electronic structure-based descriptors for oxide properties and functions. Acc. Chem. Res. 55(3), 298–308 (2022). https://doi.org/10.1021/acs.accounts.1c00509
L. Chen, Y. Tian, X. Hu, S. Yao, Z. Lu et al., A universal machine learning framework for electrocatalyst innovation: a case study of discovering alloys for hydrogen evolution reaction. Adv. Funct. Mater. 32(47), 2208418 (2022). https://doi.org/10.1002/adfm.202208418
M.O.J. Jäger, E.V. Morooka, F. Federici Canova, L. Himanen, A.S. Foster, Machine learning hydrogen adsorption on nanoclusters through structural descriptors. npj Comput. Mater. 4(1), 37 (2018). https://doi.org/10.1038/s41524-018-0096-5
S. Jiao, X. Fu, H. Huang, Descriptors for the evaluation of electrocatalytic reactions: D-band theory and beyond. Adv. Funct. Mater. 32(4), 2107651 (2021). https://doi.org/10.1002/adfm.202107651
S. Lu, J. Cao, Y. Zhang, F. Lou, Z. Yu, Transition metal single-atom supported on PC3 monolayer for highly efficient hydrogen evolution reaction by combined density functional theory and machine learning study. Appl. Surf. Sci. 606, 154945 (2022). https://doi.org/10.1016/j.apsusc.2022.154945
C. Zou, J. Li, W.Y. Wang, Y. Zhang, D. Lin et al., Integrating data mining and machine learning to discover high-strength ductile titanium alloys. Acta Mater. 202, 211–221 (2021). https://doi.org/10.1016/j.actamat.2020.10.056
P.O. Dral, M. Barbatti, Molecular excited states through a machine learning lens. Nat. Rev. Chem. 5(6), 388–405 (2021). https://doi.org/10.1038/s41570-021-00278-1
C. Altintas, O.F. Altundal, S. Keskin, R. Yildirim, Machine learning meets with metal organic frameworks for gas storage and separation. J. Chem. Inf. Model. 61(5), 2131–2146 (2021). https://doi.org/10.1021/acs.jcim.1c00191
A. Nandy, C. Duan, M.G. Taylor, F. Liu, A.H. Steeves et al., Computational discovery of transition-metal complexes: from high-throughput screening to machine learning. Chem. Rev. 121(16), 9927–10000 (2021). https://doi.org/10.1021/acs.chemrev.1c00347
C. Lv, X. Zhou, L. Zhong, C. Yan, M. Srinivasan et al., Machine learning: an advanced platform for materials development and state prediction in lithium-ion batteries. Adv. Mater. 34(25), 2101474 (2022). https://doi.org/10.1002/adma.202101474
D. Lemm, G.F. von Rudorff, O.A. von Lilienfeld, Machine learning based energy-free structure predictions of molecules, transition states, and solids. Nat. Commun. 12(1), 4468 (2021). https://doi.org/10.1038/s41467-021-24525-7
Y. Guan, C.W. Coley, H. Wu, D. Ranasinghe, E. Heid et al., Regio-selectivity prediction with a machine-learned reaction representation and on-the-fly quantum mechanical descriptors. Chem. Sci. 12(6), 2198–2208 (2020). https://doi.org/10.1039/d0sc04823b
K. Choudhary, B. DeCost, C. Chen, A. Jain, F. Tavazza et al., Recent advances and applications of deep learning methods in materials science. npj Comput. Mater. 8(1), 59 (2022). https://doi.org/10.1038/s41524-022-00734-6
T.H. Pham, Y. Qiu, J. Zeng, L. Xie, P. Zhang, A deep learning framework for high-throughput mechanism-driven phenotype compound screening and its application to covid-19 drug repurposing. Nat. Mach. Intell. 3(3), 247–257 (2021). https://doi.org/10.1038/s42256-020-00285-9
J. Tian, R. Xiong, W. Shen, J. Lu, F. Sun, Flexible battery state of health and state of charge estimation using partial charging data and deep learning. Energy Storage Mater. 51, 372–381 (2022). https://doi.org/10.1016/j.ensm.2022.06.053
Y. Li, C. Huang, L. Ding, Z. Li, Y. Pan et al., Deep learning in bioinformatics: introduction, application, and perspective in the big data era. Methods 166, 4–21 (2019). https://doi.org/10.1016/j.ymeth.2019.04.008
Y. Ji, S. Ma, S. Lv, Y. Wang, S. Lu et al., Nanomaterials for targeted delivery of agrochemicals by an all-in-one combination strategy and deep learning. ACS Appl. Mater. Interfaces 13(36), 43374–43386 (2021). https://doi.org/10.1021/acsami.1c11914
H. Masood, C.Y. Toe, W.Y. Teoh, V. Sethu, R. Amal, Machine learning for accelerated discovery of solar photocatalysts. ACS Catal. 9(12), 11774–11787 (2019). https://doi.org/10.1021/acscatal.9b02531
G. Pan, F. Wang, C. Shang, H.-H. Wu, G. Wu et al., Advances in machine learning- and artificial intelligence-assisted material design of steels. Int. J. Min. Met. Mater. 30, 1003–1024 (2023). https://doi.org/10.1007/s12613-022-2595-0
S. Manna, D. Roy, S. Das, B. Pathak, Capacity prediction of K-ion batteries: a machine learning based approach for high throughput screening of electrode materials. Mater. Adv. 3(21), 7833–7845 (2022). https://doi.org/10.1039/d2ma00746k
T. Gao, W. Lu, Machine learning toward advanced energy storage devices and systems. iScience 24(1), 101936 (2021). https://doi.org/10.1016/j.isci.2020.101936
Y. Guan, D. Chaffart, G. Liu, Z. Tan, D. Zhang et al., Machine learning in solid heterogeneous catalysis: recent developments, challenges and perspectives. Chem. Eng. Sci. 248, 117224 (2022). https://doi.org/10.1016/j.ces.2021.117224
P.S. Rice, Z.P. Liu, P. Hu, Hydrogen coupling on platinum using artificial neural network potentials and DFT. J. Phys. Chem. Lett. 12(43), 10637–10645 (2021). https://doi.org/10.1021/acs.jpclett.1c02998
H.-H. Wu, L.-S. Dong, S.-Z. Wang, G.-L. Wu, J.-H. Gao et al., Local chemical ordering coordinated thermal stability of nanograined high-entropy alloys. Rare Met. 42(5), 1645–1655 (2022). https://doi.org/10.1007/s12598-022-02194-9
F. Wang, H.-H. Wu, L. Dong, G. Pan, X. Zhou et al., Atomic-scale simulations in multi-component alloys and compounds: a review on advances in interatomic potential. J. Mater. Sci. Technol. 165, 49–65 (2023). https://doi.org/10.1016/j.jmst.2023.05.010
S. Mehrabi-Kalajahi, A.O. Moghaddam, F. Hadavimoghaddam, M.A. Varfolomeev, A.L. Zinnatullin et al., Entropy-stabilized metal oxide nanops supported on reduced graphene oxide as a highly active heterogeneous catalyst for selective and solvent-free oxidation of toluene: a combined experimental and numerical investigation. J. Mater. Chem. A 10(27), 14488–14500 (2022). https://doi.org/10.1039/d2ta02027k
Y. Zhang, T.C. Peck, G.K. Reddy, D. Banerjee, H. Jia et al., Descriptor-free design of multicomponent catalysts. ACS Catal. 12(17), 10562–10571 (2022). https://doi.org/10.1021/acscatal.2c02807
K.E. McCullough, D.S. King, S.P. Chheda, M.S. Ferrandon, T.A. Goetjen et al., High-throughput experimentation, theoretical modeling, and human intuition: lessons learned in metal-organic-framework-supported catalyst design. ACS Cent. Sci. 9(2), 266–276 (2023). https://doi.org/10.1021/acscentsci.2c01422
A. Chen, J. Cai, Z. Wang, Y. Han, S. Ye et al., An ensemble learning classifier to discover arsenene catalysts with implanted heteroatoms for hydrogen evolution reaction. J. Energy Chem. 78, 268–276 (2023). https://doi.org/10.1016/j.jechem.2022.11.035
Z. Yang, W. Gao, Applications of machine learning in alloy catalysts: rational selection and future development of descriptors. Adv. Sci. 9(12), 2106043 (2022). https://doi.org/10.1002/advs.202106043
Z. Xiong, Y. Cui, Z. Liu, Y. Zhao, M. Hu et al., Evaluating explorative prediction power of machine learning algorithms for materials discovery using k-fold forward cross-validation. Comput. Mater. Sci. 171, 109203 (2020). https://doi.org/10.1016/j.commatsci.2019.109203
D. Perez-Guaita, G. Quintas, J. Kuligowski, Discriminant analysis and feature selection in mass spectrometry imaging using constrained repeated random sampling-cross validation (corrs-cv). Anal. Chim. Acta 1097, 30–36 (2020). https://doi.org/10.1016/j.aca.2019.10.039
S.Y. Ho, K. Phua, L. Wong, W.W. Bin Goh, Extensions of the external validation for checking learned model interpretability and generalizability. Patterns 1(8), 100129 (2020). https://doi.org/10.1016/j.patter.2020.100129
N.O. Dogan, U. Bozuyuk, P. Erkoc, A.C. Karacakol, A. Cingoz et al., Parameters influencing gene delivery efficiency of pegylated chitosan nanops: experimental and modeling approach. Adv. NanoBiomed Res. 2(1), 2100033 (2021). https://doi.org/10.1002/anbr.202100033
M. Karthikeyan, D.M. Mahapatra, A.S.A. Razak, A.A.M. Abahussain, B. Ethiraj et al., Machine learning aided synthesis and screening of HER catalyst: present developments and prospects. Catal. Rev. (2022). https://doi.org/10.1080/01614940.2022.2103980
D. Sui, M. Yao, L. Si, K. Yan, J. Shi et al., Biomass-derived carbon coated SiO2 nanotubes as superior anode for lithium-ion batteries. Carbon 205, 510–518 (2023). https://doi.org/10.1016/j.carbon.2023.01.039
G. Liu, T. Zhang, X. Li, J. Li, N. Wu et al., MoS2@C with S vacancies vertically anchored onV2C-MXene for efficient lithium and sodium storage. Inorg. Chem. Front. 10(5), 1587–1602 (2023). https://doi.org/10.1039/d2qi02389j
Y. Liu, P. Vijayakumar, Q. Liu, T. Sakthivel, F. Chen et al., Shining light on anion-mixed nanocatalysts for efficient water electrolysis: fundamentals, progress, and perspectives. Nano-Micro Lett. 14(1), 43 (2022). https://doi.org/10.1007/s40820-021-00785-2
C. Wang, X. Wei, D. Ren, X. Wang, W. Xu, High-throughput map design of creep life in low-alloy steels by integrating machine learning with a genetic algorithm. Mater. Design 213, 110326 (2022). https://doi.org/10.1016/j.matdes.2021.110326
Z. Liu, S. Ha, Y. Liu, F. Wang, F. Tao et al., Application of Ag-based materials in high-performance lithium metal anode: a review. J. Mater. Sci. Technol. 133, 165–182 (2023). https://doi.org/10.1016/j.jmst.2022.06.015
X. Zhao, H. Qiu, Y. Shao, P. Wang, S. Yu et al., Silver nanop-modified 2D MOF nanosheets for photothermally enhanced silver ion release antibacterial treatment. Acta Phys-Chim. Sin. 1, 2211043 (2023). https://doi.org/10.3866/pku.whxb202211043
L. Wu, T. Guo, T. Li, Machine learning-accelerated prediction of overpotential of oxygen evolution reaction of single-atom catalysts. iScience 24(5), 102398 (2021). https://doi.org/10.1016/j.isci.2021.102398
M. Kim, M.Y. Ha, W.B. Jung, J. Yoon, E. Shin et al., Searching for an optimal multi-metallic alloy catalyst by active learning combined with experiments. Adv. Mater. 34(19), 2108900 (2022). https://doi.org/10.1002/adma.202108900
Y.L. Wu, X. Li, Y.S. Wei, Z. Fu, W. Wei et al., Ordered macroporous superstructure of nitrogen-doped nanoporous carbon implanted with ultrafine Ru nanoclusters for efficient pH-universal hydrogen evolution reaction. Adv. Mater. 33(12), 2006965 (2021). https://doi.org/10.1002/adma.202006965
Y. Xu, R. Wang, J. Wang, J. Li, T. Jiao et al., Facile fabrication of molybdenum compounds (Mo2C, MoP and MoS2) nanoclusters supported on N-doped reduced graphene oxide for highly efficient hydrogen evolution reaction over broad pH range. Chem. Eng. J. 417, 129233 (2021). https://doi.org/10.1016/j.cej.2021.129233
Y. Li, Y. Luo, Z. Zhang, Q. Yu, C. Li et al., Implanting Ru nanoclusters into N-doped graphene for efficient alkaline hydrogen evolution. Carbon 183, 362–367 (2021). https://doi.org/10.1016/j.carbon.2021.07.039
C. Li, H. Jang, S. Liu, M.G. Kim, L. Hou et al., P and Mo dual doped Ru ultrasmall nanoclusters embedded in P-doped porous carbon toward efficient hydrogen evolution reaction. Adv. Energy Mater. 12(23), 2200029 (2022). https://doi.org/10.1002/aenm.202200029
M.O.J. Jager, Y.S. Ranawat, F.F. Canova, E.V. Morooka, A.S. Foster, Efficient machine-learning-aided screening of hydrogen adsorption on bimetallic nanoclusters. ACS Comb. Sci. 22(12), 768–781 (2020). https://doi.org/10.1021/acscombsci.0c00102
D.X. Zhu, K.M. Pan, Y. Wu, X.Y. Zhou, X.Y. Li et al., Improved material descriptors for bulk modulus in intermetallic compounds via machine learning. Rare Met. 42, 2396–2405 (2023). https://doi.org/10.1007/s12598-023-02282-4
X. Mao, L. Wang, Y. Xu, P. Wang, Y. Li et al., Computational high-throughput screening of alloy nanoclusters for electrocatalytic hydrogen evolution. npj Comput. Mater. 7(1), 46 (2021). https://doi.org/10.1038/s41524-021-00514-8
Q. Yang, H. Liu, P. Yuan, Y. Jia, L. Zhuang et al., Single carbon vacancy traps atomic platinum for hydrogen evolution catalysis. J. Am. Chem. Soc. 144(5), 2171–2178 (2022). https://doi.org/10.1021/jacs.1c10814
H. Prats, K. Chan, The determination of the HOR/HER reaction mechanism from experimental kinetic data. Phys. Chem. Chem. Phys. 23(48), 27150–27158 (2021). https://doi.org/10.1039/d1cp04134g
A. Gross, S. Sakong, Ab initio simulations of water/metal interfaces. Chem. Rev. 122(12), 10746–10776 (2022). https://doi.org/10.1021/acs.chemrev.1c00679
S.M.N. Jeghan, D. Kim, Y. Lee, M. Kim, G. Lee, Designing a smart heterojunction coupling of cobalt-iron layered double hydroxide on nickel selenide nanosheets for highly efficient overall water splitting kinetics. Appl. Catal. B-Environ. 308, 121221 (2022). https://doi.org/10.1016/j.apcatb.2022.121221
G.H. Gu, J. Lim, C. Wan, T. Cheng, H. Pu et al., Autobifunctional mechanism of jagged Pt nanowires for hydrogen evolution kinetics via end-to-end simulation. J. Am. Chem. Soc. 143(14), 5355–5363 (2021). https://doi.org/10.1021/jacs.0c11261
H. Jin, H. Yu, H. Li, K. Davey, T. Song et al., MXene analogue: a 2D nitridene solid solution for high-rate hydrogen production. Angew. Chem. Int. Ed. 61(27), 2203850 (2022). https://doi.org/10.1002/anie.202203850
R. Kronberg, H. Lappalainen, K. Laasonen, Hydrogen adsorption on defective nitrogen-doped carbon nanotubes explained via machine learning augmented DFT calculations and game-theoretic feature attributions. J. Phys. Chem. C 125(29), 15918–15933 (2021). https://doi.org/10.1021/acs.jpcc.1c03858
J. Mao, J. Miao, Y. Lu, Z. Tong, Machine learning of materials design and state prediction for lithium ion batteries. Chinese J. Chem. Eng. 37, 1–11 (2021). https://doi.org/10.1016/j.cjche.2021.04.009
H. Jin, T. Song, U. Paik, S.-Z. Qiao, Metastable two-dimensional materials for electrocatalytic energy conversions. Accounts Mater. Res. 2(7), 559–573 (2021). https://doi.org/10.1021/accountsmr.1c00115
Y. Ding, M. Zeng, Q. Zheng, J. Zhang, D. Xu et al., Bidirectional and reversible tuning of the interlayer spacing of two-dimensional materials. Nat. Commun. 12(1), 5886 (2021). https://doi.org/10.1038/s41467-021-26139-5
H.S. Kim, Computational design of a switchable heterostructure electrocatalyst based on a two-dimensional ferroelectric In2Se3 material for the hydrogen evolution reaction. J. Mater. Chem. A 9(19), 11553–11562 (2021). https://doi.org/10.1039/d0ta09738a
L. Najafi, R. Oropesa-Nunez, S. Bellani, B. Martin-Garcia, L. Pasquale et al., Topochemical transformation of two-dimensional VSe2 into metallic nonlayered VO2 for water splitting reactions in acidic and alkaline media. ACS Nano 16(1), 351–367 (2021). https://doi.org/10.1021/acsnano.1c06662
Y. Cui, X. Guo, J. Zhang, X. Li, X. Zhu et al., Di-defects synergy boost electrocatalysis hydrogen evolution over two-dimensional heterojunctions. Nano Res. 15(1), 677–684 (2021). https://doi.org/10.1007/s12274-021-3545-2
S. Wu, Z. Wang, H. Zhang, J. Cai, J. Li, Deep learning accelerates the discovery of two-dimensional catalysts for hydrogen evolution reaction. Energy Environ. Mater. 1, 1–7 (2022). https://doi.org/10.1002/eem2.12259
H. He, Y. Chen, C. Yang, L. Yang, Q. Jiang et al., Constructing 3D interweaved mxene/graphitic carbon nitride nanosheets/graphene nanoarchitectures for promoted electrocatalytic hydrogen evolution. J. Energy Chem. 67, 483–491 (2022). https://doi.org/10.1016/j.jechem.2021.10.019
C. Wang, X. Wang, T. Zhang, P. Qian, T. Lookman et al., A descriptor for the design of 2D MXene hydrogen evolution reaction electrocatalysts. J. Mater. Chem. A 10(35), 18195–18205 (2022). https://doi.org/10.1039/d2ta02837a
J. Zheng, X. Sun, C. Qiu, Y. Yan, Z. Yao et al., High-throughput screening of hydrogen evolution reaction catalysts in MXene materials. J. Phys. Chem. C 124(25), 13695–13705 (2020). https://doi.org/10.1021/acs.jpcc.0c02265
X. Sun, J. Zheng, Y. Gao, C. Qiu, Y. Yan et al., Machine-learning-accelerated screening of hydrogen evolution catalysts in Mbenes materials. Appl. Surf. Sci. 526, 146522 (2020). https://doi.org/10.1016/j.apsusc.2020.146522
X. Wang, C. Wang, S. Ci, Y. Ma, T. Liu et al., Accelerating 2D MXene catalyst discovery for the hydrogen evolution reaction by computer-driven workflow and an ensemble learning strategy. J. Mater. Chem. A 8(44), 23488–23497 (2020). https://doi.org/10.1039/d0ta06583h
R. Liu, Z. Gong, J. Liu, J. Dong, J. Liao et al., Design of aligned porous carbon films with single-atom Co-N-C sites for high-current-density hydrogen generation. Adv. Mater. 33(41), 2103533 (2021). https://doi.org/10.1002/adma.202103533
A. Baby, L. Trovato, C. Di Valentin, Single atom catalysts (SAC) trapped in defective and nitrogen-doped graphene supported on metal substrates. Carbon 174, 772–788 (2021). https://doi.org/10.1016/j.carbon.2020.12.045
H. Choi, D.H. Kim, M.H. Han, H.-S. Oh, J. Heo et al., Prediction of the catalytic site of single-atom Ni catalyst using the hydrogen evolution reaction as a model platform. Electrochim. Acta 431, 141138 (2022). https://doi.org/10.1016/j.electacta.2022.141138
C. Rong, X. Shen, Y. Wang, L. Thomsen, T. Zhao et al., Electronic structure engineering of single-atom Ru sites via Co-N4 sites for bifunctional pH-universal water splitting. Adv. Mater. 34(21), 2110103 (2022). https://doi.org/10.1002/adma.202110103
T. Jin, X. Liu, Q. Gao, H. Zhu, C. Lian et al., Pyrolysis-free, facile mechanochemical strategy toward cobalt single-atom/nitrogen-doped carbon for highly efficient water splitting. Chem. Eng. J. 433, 134089 (2022). https://doi.org/10.1016/j.cej.2021.134089
V. Fung, G. Hu, Z. Wu, D.-E. Jiang, Descriptors for hydrogen evolution on single atom catalysts in nitrogen-doped graphene. J. Phys. Chem. C 124(36), 19571–19578 (2020). https://doi.org/10.1021/acs.jpcc.0c04432
S. Lin, H. Xu, Y. Wang, X.C. Zeng, Z. Chen, Directly predicting limiting potentials from easily obtainable physical properties of graphene-supported single-atom electrocatalysts by machine learning. J. Mater. Chem. A 8(11), 5663–5670 (2020). https://doi.org/10.1039/c9ta13404b
M. Sun, A.W. Dougherty, B. Huang, Y. Li, C.H. Yan, Accelerating atomic catalyst discovery by theoretical calculations-machine learning strategy. Adv. Energy Mater. 10(12), 1903949 (2020). https://doi.org/10.1002/aenm.201903949
C. Guo, T. Zhang, X. Lu, C.L. Wu, Rational design and effective control of gold-based bimetallic electrocatalyst for boosting CO2 reduction reaction: a first-principles study. Chemsuschem 14(13), 2731–2739 (2021). https://doi.org/10.1002/cssc.202100785
H. Li, S. Xu, M. Wang, Z. Chen, F. Ji et al., Computational design of (100) alloy surfaces for the hydrogen evolution reaction. J. Mater. Chem. A 8(35), 17987–17997 (2020). https://doi.org/10.1039/d0ta04615a
H. Liu, K. Liu, P. Zhong, J. Qi, J. Bian et al., Ultrathin Pt-Ag alloy nanotubes with regular nanopores for enhanced electrocatalytic activity. Chem. Mater. 30(21), 7744–7751 (2018). https://doi.org/10.1021/acs.chemmater.8b03085
H. Wu, F. Zhuo, H. Qiao, L. Kodumudi Venkataraman, M. Zheng et al., Polymer-/ceramic-based dielectric composites for energy storage and conversion. Energy Environ. Mater. 5(2), 486–514 (2022). https://doi.org/10.1002/eem2.12237
L. Ding, Z. Xie, S. Yu, W. Wang, A.Y. Terekhov et al., Electrochemically grown ultrathin platinum nanosheet electrodes with ultralow loadings for energy-saving and industrial-level hydrogen evolution. Nano-Micro Lett. 15(1), 144 (2023). https://doi.org/10.1007/s40820-023-01117-2
J. Chen, Y. Ha, R. Wang, Y. Liu, H. Xu et al., Inner Co synergizing outer Ru supported on carbon nanotubes for efficient pH-universal hydrogen evolution catalysis. Nano-Micro Lett. 14(1), 186 (2022). https://doi.org/10.1007/s40820-022-00933-2
Z. Wu, T. Liao, S. Wang, J.A. Mudiyanselage, A.S. Micallef et al., Conversion of catalytically inert 2D bismuth oxide nanosheets for effective electrochemical hydrogen evolution reaction catalysis via oxygen vacancy concentration modulation. Nano-Micro Lett. 14(1), 90 (2022). https://doi.org/10.1007/s40820-022-00832-6
Y. Sun, Z. Xue, Q. Liu, Y. Jia, Y. Li et al., Modulating electronic structure of metal-organic frameworks by introducing atomically dispersed Ru for efficient hydrogen evolution. Nat. Commun. 12(1), 1369 (2021). https://doi.org/10.1038/s41467-021-21595-5
Y. Gao, J. Wang, Y. Yang, J. Wang, C. Zhang et al., Engineering spin states of isolated copper species in a metal-organic framework improves urea electrosynthesis. Nano-Micro Lett. 15(1), 158 (2023). https://doi.org/10.1007/s40820-023-01127-0
X. He, Fundamental perspectives on the electrochemical water applications of metal-organic frameworks. Nano-Micro Lett. 15(1), 148 (2023). https://doi.org/10.1007/s40820-023-01124-3