Low-Dimensional Halide Perovskites and Their Advanced Optoelectronic Applications
Corresponding Author: Haisheng Song
Nano-Micro Letters,
Vol. 9 No. 3 (2017), Article Number: 36
Abstract
Metal halide perovskites are crystalline materials originally developed out of scientific curiosity. They have shown great potential as active materials in optoelectronic applications. In the last 6 years, their certified photovoltaic efficiencies have reached 22.1%. Compared to bulk halide perovskites, low-dimensional ones exhibited novel physical properties. The photoluminescence quantum yields of perovskite quantum dots are close to 100%. The external quantum efficiencies and current efficiencies of perovskite quantum dot light-emitting diodes have reached 8% and 43 cd A−1, respectively, and their nanowire lasers show ultralow-threshold room-temperature lasing with emission tunability and ease of synthesis. Perovskite nanowire photodetectors reached a responsivity of 10 A W−1 and a specific normalized detectivity of the order of 1012 Jones. Different from most reported reviews focusing on photovoltaic applications, we summarize the rapid progress in the study of low-dimensional perovskite materials, as well as their promising applications in optoelectronic devices. In particular, we review the wide tunability of fabrication methods and the state-of-the-art research outputs of low-dimensional perovskite optoelectronic devices. Finally, the anticipated challenges and potential for this exciting research are proposed.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A. Rogach, Quantum dots still shining strong 30 years on. ACS Nano 8(7), 6511–6512 (2014). doi:10.1021/nn5036922
- A.L. Rogach, Semiconductor nanocrystal quantum dots. Wien-New York: Springer (2008).
- S. González-Carrero, R.E. Galian, J. Pérez-Prieto, Organometal halide perovskites: bulk low-dimension materials and nanoparticles. Part. Part. Syst. Charact. 32(7), 709–720 (2015). doi:10.1002/ppsc.201400214
- J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M.K. Nazeeruddin, M. Grätzel, Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499(7458), 316–319 (2013). doi:10.1038/nature12340
- H.-S. Kim, C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl et al., Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep. 2(8), 591 (2012). doi:10.1038/srep00591
- www.nrel.gov/ncpv/images/efficiency_chart.jpg
- C. Zhang, Y. Luo, X. Chen, Y. Chen, Z. Sun, S. Huang, Effective improvement of the photovoltaic performance of carbon-based perovskite solar cells by additional solvents. Nano-Micro Lett. 8(4), 347–357 (2016). doi:10.1007/s40820-016-0094-4
- M. Pena, J. Fierro, Chemical structures and performance of perovskite oxides. Chem. Rev. 101(7), 1981–2018 (2001). doi:10.1021/cr980129f
- M. García-Hernández, G. Chadeyron, D. Boyer, A. García-Murillo, F. Carrillo-Romo, R. Mahiou, Hydrothermal synthesis and characterization of Europium-doped barium titanate nanocrystallites. Nano-Micro Lett. 5(1), 57–65 (2013). doi:10.1007/BF03353732
- Q. Chen, N. De Marco, Y.M. Yang, T.-B. Song, C.-C. Chen, H. Zhao, Z. Hong, H. Zhou, Y. Yang, Under the spotlight: the organic–inorganic hybrid halide perovskite for optoelectronic applications. Nano Today 10(3), 355–396 (2015). doi:10.1016/j.nantod.2015.04.009
- D.B. Mitzi, Synthesis, structure, and properties of organic–inorganic perovskites and related materials. Prog. Inorg. Chem. 48, 1–121 (2007). doi:10.1002/9780470166499.ch1
- M.A. Green, A. Ho-Baillie, H.J. Snaith, The emergence of perovskite solar cells. Nat. Photonics 8(7), 506–514 (2014). doi:10.1038/nphoton.2014.134
- A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131(17), 6050–6051 (2009). doi:10.1021/ja809598r
- J.-H. Im, C.-R. Lee, J.-W. Lee, S.-W. Park, N.-G. Park, 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale 3(10), 4088–4093 (2011). doi:10.1039/C1NR10867K
- M.M. Lee, J. Teuscher, T. Miyasaka, T.N. Murakami, H.J. Snaith, Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338(6107), 643–647 (2012). doi:10.1126/science.1228604
- M. Liu, M.B. Johnston, H.J. Snaith, Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501(7467), 395–398 (2013). doi:10.1038/nature12509
- J.Y. Jeng, Y.F. Chiang, M.H. Lee, S.R. Peng, T.F. Guo, P. Chen, T.C. Wen, CH3NH3PbI3 perovskite/fullerene planar-heterojunction hybrid solar cells. Adv. Mater. 25(27), 3727–3732 (2013). doi:10.1002/adma.201301327
- Q. Chen, H. Zhou, Z. Hong, S. Luo, H.-S. Duan, H.-H. Wang, Y. Liu, G. Li, Y. Yang, Planar heterojunction perovskite solar cells via vapor-assisted solution process. J. Am. Chem. Soc. 136(2), 622–625 (2013). doi:10.1021/ja411509g
- V.M. Goldschmidt, Die gesetze der krystallochemie. Naturwissenschaften 14(21), 477–485 (1926). doi:10.1007/BF01507527
- C. Li, X. Lu, W. Ding, L. Feng, Y. Gao, Z. Guo, Formability of ABX3 (X = F, Cl, Br, I) halide perovskites. Acta Crystallogr. Sect. B: Struct. Sci. 64(6), 702–707 (2008). doi:10.1107/S0108768108032734
- G. Kieslich, S. Sun, A.K. Cheetham, Solid-state principles applied to organic–inorganic perovskites: new tricks for an old dog. Chem. Sci. 5(12), 4712–4715 (2014). doi:10.1039/c4sc02211d
- D.B. Mitzi, Templating and structural engineering in organic–inorganic perovskites. J. Chem. Soc., Dalton Trans. (1), 1–12 (2001). doi:10.1039/b007070j
- M.I. Saidaminov, A.L. Abdelhady, B. Murali, E. Alarousu, V.M. Burlakov et al., High-quality bulk hybrid perovskite single crystals within minutes by inverse temperature crystallization. Nat. Commun. 6, 7586 (2015). doi:10.1038/ncomms8586
- Q. Zhang, S.T. Ha, X. Liu, T.C. Sum, Q. Xiong, Room-temperature near-infrared high-Q perovskite whispering-gallery planar nanolasers. Nano Lett. 14(10), 5995–6001 (2014). doi:10.1021/nl503057g
- S. Gonzalez-Carrero, R.E. Galian, J. Pérez-Prieto, Maximizing the emissive properties of CH3NH3PbBr 3 perovskite nanoparticles. J. Mater. Chem. A 3(17), 9187–9193 (2015). doi:10.1039/c4ta05878j
- H. Huang, A.S. Susha, S.V. Kershaw, T.F. Hung, A.L. Rogach, Control of emission color of high quantum yield CH3NH3PbBr3 perovskite quantum dots by precipitation temperature. Adv. Sci. 2(9), 581–583 (2015). doi:10.1002/advs.201500194
- H.Z. Feng Zhang, C. Chen, X. Wu, X. Hu, H. Huang, J. Han, B. Zou, Y. Dong, Brightly luminescent and color-tunable colloidal CH3NH3PbX3 (X = Br, I, Cl) quantum dots: potential alternatives for display technology. ACS Nano 9(4), 4533–4542 (2015). doi:10.1021/acsnano.5b01154
- L.C. Schmidt, A. Pertegás, S. González-Carrero, O. Malinkiewicz, S. Agouram et al., Nontemplate synthesis of CH3NH3PbBr3 perovskite nanoparticles. J. Am. Chem. Soc. 136(3), 850–853 (2014). doi:10.1021/ja4109209
- P. Tyagi, S.M. Arveson, W.A. Tisdale, Colloidal organohalide perovskite nanoplatelets exhibiting quantum confinement. J. Phys. Chem. Lett. 6(10), 1911–1916 (2015). doi:10.1021/acs.jpclett.5b00664
- A.B. Wong, M. Lai, S.W. Eaton, Y. Yu, E. Lin, L. Dou, A. Fu, P. Yang, Growth and anion exchange conversion of CH3NH3PbX3 nanorod arrays for light-emitting diodes. Nano Lett. 15(8), 5519–5524 (2015). doi:10.1021/acs.nanolett.5b02082
- J. Xing, X.F. Liu, Q. Zhang, S.T. Ha, Y.W. Yuan, C. Shen, T.C. Sum, Q. Xiong, Vapor phase synthesis of organometal halide perovskite nanowires for tunable room-temperature nanolasers. Nano Lett. 15(7), 4571–4577 (2015). doi:10.1021/acs.nanolett.5b01166
- J.A. Sichert, Y. Tong, N. Mutz, M. Vollmer, S. Fischer et al., Quantum size effect in organometal halide perovskite nanoplatelets. Nano Lett. 15(10), 6521–6527 (2015). doi:10.1021/acs.nanolett.5b02985
- X. Peng, L. Manna, W. Yang, J. Wickham, E. Scher, A. Kadavanich, A.P. Alivisatos, Shape control of CdSe nanocrystals. Nature 404(6773), 59–61 (2000). doi:10.1038/35003535
- L. Peng, A. Tang, C. Yang, F. Teng, Size-controlled synthesis of highly luminescent organometal halide perovskite quantum dots. J. Alloys Compd. 687, 506–513 (2016). doi:10.1016/j.jallcom.2016.06.162
- S. Pathak, N. Sakai, F. Wisnivesky Rocca Rivarola, S.D. Stranks, J. Liu et al., Perovskite crystals for tunable white light emission. Chem. Mater. 27(23), 8066–8075 (2015). doi:10.1021/acs.chemmater.5b03769
- A. Sadhanala, S. Ahmad, B. Zhao, N. Giesbrecht, P.M. Pearce et al., Blue-green color tunable solution processable organolead chloride–bromide mixed halide perovskites for optoelectronic applications. Nano Lett. 15(9), 6095–6101 (2015). doi:10.1021/acs.nanolett.5b02369
- L. Protesescu, S. Yakunin, M.I. Bodnarchuk, F. Krieg, R. Caputo et al., Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 15(6), 3692–3696 (2015). doi:10.1021/nl5048779
- Q.A. Akkerman, V. D’Innocenzo, S. Accornero, A. Scarpellini, A. Petrozza, M. Prato, L. Manna, Tuning the optical properties of cesium lead halide perovskite nanocrystals by anion exchange reactions. J. Am. Chem. Soc. 137(32), 10276–10281 (2015). doi:10.1021/jacs.5b05602
- G. Nedelcu, L. Protesescu, S. Yakunin, M.I. Bodnarchuk, M.J. Grotevent, M.V. Kovalenko, Fast anion-exchange in highly luminescent nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, I). Nano Lett. 15(8), 5635–5640 (2015). doi:10.1021/acs.nanolett.5b02404
- A. Swarnkar, R. Chulliyil, V.K. Ravi, M. Irfanullah, A. Chowdhury, A. Nag, Colloidal CsPbBr3 perovskite nanocrystals: luminescence beyond traditional quantum dots. Angew. Chem. 127(51), 15644–15648 (2015). doi:10.1002/anie.201508276
- Y. Yin, A.P. Alivisatos, Colloidal nanocrystal synthesis and the organic–inorganic interface. Nature 437(7059), 664–670 (2005). doi:10.1038/nature04165
- B. Luo, Y.-C. Pu, Y. Yang, S.A. Lindley, G. Abdelmageed, H. Ashry, Y. Li, X. Li, J.Z. Zhang, Synthesis, optical properties, and exciton dynamics of organolead bromide perovskite nanocrystals. J. Phys. Chem. C 119(47), 26672–26682 (2015). doi:10.1021/acs.jpcc.5b08537
- N. Pradhan, D. Reifsnyder, R. Xie, J. Aldana, X. Peng, Surface ligand dynamics in growth of nanocrystals. J. Am. Chem. Soc. 129(30), 9500–9509 (2007). doi:10.1021/ja0725089
- M.C. Weidman, M. Seitz, S.D. Stranks, W.A. Tisdale, Highly tunable colloidal perovskite nanoplatelets through variable cation, metal, and halide composition. ACS Nano 10(8), 7830–7839 (2016). doi:10.1021/acsnano.6b03496
- D.N. Dirin, S. Dreyfuss, M.I. Bodnarchuk, G. Nedelcu, P. Papagiorgis, G. Itskos, M.V. Kovalenko, Lead halide perovskites and other metal halide complexes as inorganic capping ligands for colloidal nanocrystals. J. Am. Chem. Soc. 136(18), 6550–6553 (2014). doi:10.1021/ja5006288
- Z. Ning, X. Gong, R. Comin, G. Walters, F. Fan et al., Quantum-dot-in-perovskite solids. Nature 523(7560), 324–328 (2015). doi:10.1038/nature14563
- R.S. Sanchez, M.S. de la Fuente, I. Suarez, G. Muñoz-Matutano, J.P. Martinez-Pastor, I. Mora-Sero, Tunable light emission by exciplex state formation between hybrid halide perovskite and core/shell quantum dots: implications in advanced LEDs and photovoltaics. Sci. Adv. 2(1), e1501104 (2016). doi:10.1126/sciadv.1501104
- K. Wu, G. Liang, Q. Shang, Y. Ren, D. Kong, T. Lian, Ultrafast interfacial electron and hole transfeR from CsPbBr3 perovskite quantum dots. J. Am. Chem. Soc. 137(40), 12792–12795 (2015). doi:10.1021/jacs.5b08520
- E. Horvath, M. Spina, Z. Szekrenyes, K. Kamaras, R. Gaal, D. Gachet, L. Forro, Nanowires of methylammonium lead iodide (CH3NH3PbI3) prepared by low temperature solution-mediated crystallization. Nano Lett. 14(12), 6761–6766 (2014). doi:10.1021/nl5020684
- E. Mosconi, A. Amat, M.K. Nazeeruddin, M. Grätzel, F. De Angelis, First-principles modeling of mixed halide organometal perovskites for photovoltaic applications. J. Phys. Chem. C 117(27), 13902–13913 (2013). doi:10.1021/jp4048659
- M. Xiao, F. Huang, W. Huang, Y. Dkhissi, Y. Zhu et al., A fast deposition-crystallization procedure for highly efficient lead iodide perovskite thin-film solar cells. Angew. Chem. 53(37), 9898–9903 (2014). doi:10.1002/ange.201405334
- H. Deng, D. Dong, K. Qiao, L. Bu, B. Li et al., Growth, patterning and alignment of organolead iodide perovskite nanowires for optoelectronic devices. Nanoscale 7(9), 4163–4170 (2015). doi:10.1039/c4nr06982j
- T. Limongi, L. Tirinato, F. Pagliari, A. Giugni, M. Allione, G. Perozziello, P. Candeloro, E. Di Fabrizio, Fabrication and applications of micro/nanostructured devices for tissue engineering. Nano-Micro Lett. 9, 1 (2017). doi:10.1007/s40820-016-0103-7
- Y. Tidhar, E. Edri, H. Weissman, D. Zohar, G. Hodes, D. Cahen, B. Rybtchinski, S. Kirmayer, Crystallization of methyl ammonium lead halide perovskites: implications for photovoltaic applications. J. Am. Chem. Soc. 136(38), 13249–13256 (2014). doi:10.1021/ja505556s
- T. Baikie, Y. Fang, J.M. Kadro, M. Schreyer, F. Wei et al., Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3)PbI3 for solid-state sensitised solar cell applications. J. Mater. Chem. A 1(18), 5628–5641 (2013). doi:10.1039/C3TA10518K
- C.C. Stoumpos, C.D. Malliakas, M.G. Kanatzidis, Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorg. Chem. 52(15), 9019–9038 (2013). doi:10.1021/ic401215x
- Q. Hu, H. Wu, J. Sun, D. Yan, Y. Gao, J. Yang, Large-area perovskite nanowire arrays fabricated by large-scale roll-to-roll micro-gravure printing and doctor blading. Nanoscale 8(9), 5350–5357 (2016). doi:10.1039/c5nr08277c
- H. Deng, X. Yang, D. Dong, B. Li, D. Yang et al., Flexible and semitransparent organolead triiodide perovskite network photodetector arrays with high stability. Nano Lett. 15(12), 7963–7969 (2015). doi:10.1021/acs.nanolett.5b03061
- D. Zhang, S.W. Eaton, Y. Yu, L. Dou, P. Yang, Solution-phase synthesis of cesium lead halide perovskite nanowires. J. Am. Chem. Soc. 137(29), 9230–9233 (2015). doi:10.1021/jacs.5b05404
- W. Deng, X. Zhang, L. Huang, X. Xu, L. Wang, J. Wang, Q. Shang, S.T. Lee, J. Jie, Aligned single-crystalline perovskite microwire arrays for high-performance flexible image sensors with long-term stability. Adv. Mater. 28(11), 2201–2208 (2016). doi:10.1002/adma.201505126
- W. Sun, Y. Li, S. Ye, H. Rao, W. Yan et al., High-performance inverted planar heterojunction perovskite solar cells based on a solution-processed CuO x hole transport layer. Nanoscale 8(20), 10806–10813 (2016). doi:10.1039/c6nr01927g
- J. Hu, T.W. Odom, C.M. Lieber, Chemistry and physics in one dimension: synthesis and properties of nanowires and nanotubes. Acc. Chem. Res. 32(5), 435–445 (1999). doi:10.1021/ar9700365
- J.H. Im, J. Luo, M. Franckevicius, N. Pellet, P. Gao et al., Nanowire perovskite solar cell. Nano Lett. 15(3), 2120–2126 (2015). doi:10.1021/acs.nanolett.5b00046
- E. Edri, S. Kirmayer, M. Kulbak, G. Hodes, D. Cahen, Chloride inclusion and hole transport material doping to improve methyl ammonium lead bromide perovskite-based high open-circuit voltage solar cells. J. Phys. Chem. Lett. 5(3), 429–433 (2014). doi:10.1021/jz402706q
- K. Gesi, Effect of hydrostatic pressure on the structural phase transitions in CH3NH3PbX3 (X = Cl, Br, I). Ferroelectrics 203(1), 249–268 (1997). doi:10.1080/00150199708012851
- K. Park, J.W. Lee, J.D. Kim, N.S. Han, D.M. Jang, S. Jeong, J. Park, J.K. Song, Light-matter interactions in cesium lead halide perovskite nanowire lasers. J. Phys. Chem. Lett. 7(18), 3703–3710 (2016). doi:10.1021/acs.jpclett.6b01821
- Z. Wang, J. Liu, Z.Q. Xu, Y. Xue, L. Jiang et al., Wavelength-tunable waveguides based on polycrystalline organic–inorganic perovskite microwires. Nanoscale 8(12), 6258–6264 (2016). doi:10.1039/c5nr06262d
- S. Zhuo, J. Zhang, Y. Shi, Y. Huang, B. Zhang, Self-template-directed synthesis of porous perovskite nanowires at room temperature for high-performance visible-light photodetectors. Angew. Chem. 127(19), 5785–5788 (2015). doi:10.1002/anie.201411956
- X.F. Shen, X.P. Yan, Facile shape-controlled synthesis of well-aligned nanowire architectures in binary aqueous solution. Angew. Chem. Int. Ed. 46(40), 7659–7663 (2007). doi:10.1002/anie.200702451
- M.J. Ashley, M.N. O’Brien, K.R. Hedderick, J.A. Mason, M.B. Ross, C.A. Mirkin, Templated synthesis of uniform perovskite nanowire arrays. J. Am. Chem. Soc. 138(32), 10096–10099 (2016). doi:10.1021/jacs.6b05901
- M. Spina, E. Bonvin, A. Sienkiewicz, B. Nafradi, L. Forro, E. Horvath, Controlled growth of CH3NH3PbI3 nanowires in arrays of open nanofluidic channels. Sci. Rep. 6, 19834 (2016). doi:10.1038/srep19834
- C.R. Martin, Nanomaterials-a membrane-based synthetic approach. DTIC Document (1994)
- D. Routkevitch, T. Bigioni, M. Moskovits, J.M. Xu, Electrochemical fabrication of CdS nanowire arrays in porous anodic aluminum oxide templates. J. Phys. Chem. 100(33), 14037–14047 (1996). doi:10.1021/jp952910m
- C.R. Martin, Nanomaterials: a membrane-based synthetic approach. Science 266(5193), 1961–1966 (1994). doi:10.1126/science.266.5193.1961
- Y. Bekenstein, B.A. Koscher, S.W. Eaton, P. Yang, A.P. Alivisatos, Highly luminescent colloidal nanoplates of perovskite cesium lead halide and their oriented assemblies. J. Am. Chem. Soc. 137(51), 16008–16011 (2015). doi:10.1021/jacs.5b11199
- Y. Ling, Z. Yuan, Y. Tian, X. Wang, J.C. Wang, Y. Xin, K. Hanson, B. Ma, H. Gao, Bright light-emitting diodes based on organometal halide perovskite nanoplatelets. Adv. Mater. 28(2), 305–311 (2016). doi:10.1002/adma.201503954
- Z. Yuan, Y. Shu, Y. Tian, Y. Xin, B. Ma, A facile one-pot synthesis of deep blue luminescent lead bromide perovskite microdisks. Chem. Commun. 51(91), 16385–16388 (2015). doi:10.1039/c5cc06750b
- W. Tian, C. Zhao, J. Leng, R. Cui, S. Jin, Visualizing carrier diffusion in individual single-crystal organolead halide perovskite nanowires and nanoplates. J. Am. Chem. Soc. 137(39), 12458–12461 (2015). doi:10.1021/jacs.5b08045
- Y. Zhao, K. Zhu, Efficient planar perovskite solar cells based on 1.8 eV band gap CH3NH3PbI2Br nanosheets via thermal decomposition. J. Am. Chem. Soc. 136(35), 12241–12244 (2014). doi:10.1021/ja5071398
- S.T. Ha, X. Liu, Q. Zhang, D. Giovanni, T.C. Sum, Q. Xiong, Synthesis of organic–inorganic lead halide perovskite nanoplatelets: towards high-performance perovskite solar cells and optoelectronic devices. Adv. Opt. Mater. 2(9), 838–844 (2014). doi:10.1002/adom.201400106
- Q. Liao, K. Hu, H. Zhang, X. Wang, J. Yao, H. Fu, Perovskite microdisk microlasers self-assembled from solution. Adv. Mater. 27(22), 3405–3410 (2015). doi:10.1002/adma.201500449
- D. Shi, V. Adinolfi, R. Comin, M. Yuan, E. Alarousu et al., Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science 347(6221), 519–522 (2015). doi:10.1126/science.aaa2725
- Q.A. Akkerman, S.G. Motti, A.R. Srimath Kandada, E. Mosconi, V. D’Innocenzo et al., Solution synthesis approach to colloidal cesium lead halide perovskite nanoplatelets with monolayer-level thickness control. J. Am. Chem. Soc. 138(3), 1010–1016 (2016). doi:10.1021/jacs.5b12124
- K.H. Wang, L. Wu, L. Li, H.B. Yao, H.S. Qian, S.H. Yu, Large-scale synthesis of highly luminescent perovskite-related CsPb2Br5 nanoplatelets and their fast anion exchange. Angew. Chem. Int. Ed. 55(29), 8328–8332 (2016). doi:10.1002/anie.201602787
- G. Li, H. Wang, Z. Zhu, Y. Chang, T. Zhang, Z. Song, Y. Jiang, Shape and phase evolution from CsPbBr3 perovskite nanocubes to tetragonal CsPb2Br5 nanosheets with an indirect bandgap. Chem. Commun. 52(75), 11296–11299 (2016). doi:10.1039/c6cc05877a
- D.M. Jang, K. Park, D.H. Kim, J. Park, F. Shojaei, H.S. Kang, J.P. Ahn, J.W. Lee, J.K. Song, Reversible halide exchange reaction of organometal trihalide perovskite colloidal nanocrystals for full-range band gap tuning. Nano Lett. 15(8), 5191–5199 (2015). doi:10.1021/acs.nanolett.5b01430
- L. Dou, A.B. Wong, Y. Yu, M. Lai et al., Atomically thin two-dimensional organic–inorganic hybrid perovskites. Science 349(6255), 1518–1521 (2015). doi:10.1126/science.aac7660
- R. Naphade, S. Nagane, G.S. Shanker, R. Fernandes, D. Kothari, Y. Zhou, N.P. Padture, S. Ogale, Hybrid perovskite quantum nanostructures synthesized by electrospray antisolvent-solvent extraction and intercalation. ACS Appl. Mater. Interfaces 8(1), 854–861 (2016). doi:10.1021/acsami.5b10208
- Y. Fu, F. Meng, M.B. Rowley, B.J. Thompson, M.J. Shearer, D. Ma, R.J. Hamers, J.C. Wright, S. Jin, Solution growth of single crystal methylammonium lead halide perovskite nanostructures for optoelectronic and photovoltaic applications. J. Am. Chem. Soc. 137(17), 5810–5818 (2015). doi:10.1021/jacs.5b02651
- J. Song, J. Li, X. Li, L. Xu, Y. Dong, H. Zeng, Quantum dot light-emitting diodes based on inorganic perovskite cesium lead halides (CsPbX3). Adv. Mater. 27(44), 7162–7167 (2015). doi:10.1002/adma.201502567
- D.H. Cao, C.C. Stoumpos, O.K. Farha, J.T. Hupp, M.G. Kanatzidis, 2D homologous perovskites as light-absorbing materials for solar cell applications. J. Am. Chem. Soc. 137(24), 7843–7850 (2015). doi:10.1021/jacs.5b03796
- E.R. Dohner, E.T. Hoke, H.I. Karunadasa, Self-assembly of broadband white-light emitters. J. Am. Chem. Soc. 136(5), 1718–1721 (2014). doi:10.1021/ja411045r
- E.R. Dohner, A. Jaffe, L.R. Bradshaw, H.I. Karunadasa, Intrinsic white-light emission from layered hybrid perovskites. J. Am. Chem. Soc. 136(38), 13154–13157 (2014). doi:10.1021/ja507086b
- M. Kulbak, D. Cahen, G. Hodes, How important is the organic part of lead halide perovskite photovoltaic cells? Efficient CsPbBr3 cells. J. Phys. Chem. Lett. 6(13), 2452–2456 (2015). doi:10.1021/acs.jpclett.5b00968
- H. Cho, S.-H. Jeong, M.-H. Park, Y.-H. Kim, C. Wolf et al., Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes. Science 350(6265), 1222–1225 (2015). doi:10.1126/science.aad1818
- Z.K. Tan, R.S. Moghaddam, M.L. Lai, P. Docampo, R. Higler et al., Bright light-emitting diodes based on organometal halide perovskite. Nat. Nanotechnol. 9(9), 687–692 (2014). doi:10.1038/nnano.2014.149
- P. Gao, M. Grätzel, M.K. Nazeeruddin, Organohalide lead perovskites for photovoltaic applications. Energy Environ. Sci. 7(8), 2448 (2014). doi:10.1039/c4ee00942h
- A. Kojima, K. Teshima, T. Miyasaka, Y. Shirai, In novel photoelectrochemical cell with mesoscopic electrodes sensitized by lead-halide compounds (2), Meeting Abstracts, 2006; The Electrochemical Society: pp 397–397. http://ecsdl.org/site/terms_use
- I. Chung, B. Lee, J. He, R.P. Chang, M.G. Kanatzidis, All-solid-state dye-sensitized solar cells with high efficiency. Nature 485(7399), 486–489 (2012). doi:10.1038/nature11067
- J.H. Heo, S.H. Im, J.H. Noh, T.N. Mandal, C.-S. Lim et al., Efficient inorganic–organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors. Nat. Photonics 7(6), 486–491 (2013). doi:10.1038/nphoton.2013.80
- W.S. Yang, J.H. Noh, N.J. Jeon, Y.C. Kim, S. Ryu, J. Seo, S.I. Seok, High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science 348(6240), 1234–1237 (2015). doi:10.1126/science.aaa9272
- N.J. Jeon, J.H. Noh, W.S. Yang, Y.C. Kim, S. Ryu, J. Seo, S.I. Seok, Compositional engineering of perovskite materials for high-performance solar cells. Nature 517(7535), 476–480 (2015). doi:10.1038/nature14133
- A. Swarnkar, A.R. Marshall, E.M. Sanehira, B.D. Chernomordik, D.T. Moore, J.A. Christians, T. Chakrabarti, J.M. Luther, Quantum dot: induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics. Science 354(6308), 92–95 (2016). doi:10.1126/science.aag2700
- G.E. Eperon, V.M. Burlakov, P. Docampo, A. Goriely, H.J. Snaith, Morphological control for high performance, solution-processed planar heterojunction perovskite solar cells. Adv. Funct. Mater. 24(1), 151–157 (2014). doi:10.1002/adfm.201302090
- C.W. Chen, H.W. Kang, S.Y. Hsiao, P.F. Yang, K.M. Chiang, H.W. Lin, Efficient and uniform planar-type perovskite solar cells by simple sequential vacuum deposition. Adv. Mater. 26(38), 6647–6652 (2014). doi:10.1002/adma.201402461
- D.T. Moore, H. Sai, K.W. Tan, L.A. Estroff, U. Wiesner, Impact of the organic halide salt on final perovskite composition for photovoltaic applications. APL Mater. 2(8), 081802 (2014). doi:10.1063/1.4886275
- B.-E. Cohen, S. Gamliel, L. Etgar, Parameters influencing the deposition of methylammonium lead halide iodide in hole conductor free perovskite-based solar cells. APL Mater. 2(8), 081502 (2014). doi:10.1063/1.4885548
- Z. Yu, S. Fan, Complete optical isolation created by indirect interband photonic transitions. Nat. Photonics 3(2), 91–94 (2009). doi:10.1364/FIO.2008.FMG2
- X. Gao, Y. Cui, R.M. Levenson, L.W. Chung, S. Nie, In vivo cancer targeting and imaging with semiconductor quantum dots. Nat. Biotechnol. 22(8), 969–976 (2004). doi:10.1038/nbt994
- G. Konstantatos, E.H. Sargent, Nanostructured materials for photon detection. Nat. Nanotechnol. 5(6), 391–400 (2010). doi:10.1038/nnano.2010.78
- J. He, K. Qiao, L. Gao, H. Song, L. Hu, S. Jiang, J. Zhong, J. Tang, Synergetic effect of silver nanocrystals applied in PbS colloidal quantum dots for high-performance infrared photodetectors. ACS Photonics 1(10), 936–943 (2014). doi:10.1021/ph500227u
- B. Zu, B. Lu, Y. Guo, T. Xu, X. Dou, Simple metal/SiO2/Si planar photodetector utilizing leakage current flows through a SiO2 layer. J. Mater. Chem. C 2(11), 2045–2050 (2014). doi:10.1039/C3TC32242D
- R. Yu, C. Pan, Y. Hu, L. Li, H. Liu, W. Liu, S. Chua, D. Chi, Z.L. Wang, Enhanced performance of GaN nanobelt-based photodetectors by means of piezotronic effects. Nano Res. 6(10), 758–766 (2013). doi:10.1007/s12274-013-0354-2
- H. Zhu, X. Chen, J. Cai, Z. Wu, 4H–SiC ultraviolet avalanche photodetectors with low breakdown voltage and high gain. Solid State Electron. 53(1), 7–10 (2009). doi:10.1016/j.sse.2008.09.002
- F. Xia, T. Mueller, Y.-M. Lin, A. Valdes-Garcia, P. Avouris, Ultrafast graphene photodetector. Nat. Nanotechnol. 4(12), 839–843 (2009). doi:10.1038/nnano.2009.292
- S. Wu, Z. Zeng, Q. He, Z. Wang, S.J. Wang, Y. Du, Z. Yin, X. Sun, W. Chen, H. Zhang, Electrochemically reduced single-layer MoS2 nanosheets: characterization, properties, and sensing applications. Small 8(14), 2264–2270 (2012). doi:10.1002/smll.201200044
- W. Jin, Z. Gao, Y. Zhou, B. Yu, H. Zhang, H. Peng, Z. Liu, L. Dai, Novel graphene–oxide–semiconductor nanowire phototransistors. J. Mater. Chem. C 2(9), 1592–1596 (2014). doi:10.1039/c3tc32123a
- G. Konstantatos, M. Badioli, L. Gaudreau, J. Osmond, M. Bernechea, F.P.G. de Arquer, F. Gatti, F.H. Koppens, Hybrid graphene-quantum dot phototransistors with ultrahigh gain. Nat. Nanotechnol. 7(6), 363–368 (2012). doi:10.1038/nnano.2012.60
- S.W. Eaton, M. Lai, N.A. Gibson, A.B. Wong, L. Dou et al., Lasing in robust cesium lead halide perovskite nanowires. Proc. Natl. Acad. Sci. U.S.A. 113(8), 1993–1998 (2016). doi:10.1073/pnas.1600789113
- R. Yan, D. Gargas, P. Yang, Nanowire photonics. Nat. Photonics 3(10), 569–576 (2009). doi:10.1038/nphoton.2009.184
- H. Zhou, Q. Chen, G. Li, S. Luo, T.-B. Song et al., Interface engineering of highly efficient perovskite solar cells. Science 345(6196), 542–546 (2014). doi:10.1126/science.1254050
- S.D. Stranks, G.E. Eperon, G. Grancini, C. Menelaou, M.J. Alcocer et al., Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342(6156), 341–344 (2013). doi:10.1126/science.1243982
- G. Xing, N. Mathews, S. Sun, S.S. Lim, Y.M. Lam, M. Grätzel, S. Mhaisalkar, T.C. Sum, Long-range balanced electron-and hole-transport lengths in organic–inorganic CH3NH3PbI3. Science 342(6156), 344–347 (2013). doi:10.1126/science.1243167
- F. Deschler, M. Price, S. Pathak, L.E. Klintberg, D.-D. Jarausch et al., High photoluminescence efficiency and optically pumped lasing in solution-processed mixed halide perovskite semiconductors. J. Phys. Chem. Lett. 5(8), 1421–1426 (2014). doi:10.1021/jz5005285
- G. Xing, N. Mathews, S.S. Lim, N. Yantara, X. Liu, D. Sabba, M. Grätzel, S. Mhaisalkar, T.C. Sum, Low-temperature solution-processed wavelength-tunable perovskites for lasing. Nat. Mater. 13(5), 476–480 (2014). doi:10.1038/nmat3911
- L.K. Van Vugt, S. Rühle, D. Vanmaekelbergh, Phase-correlated nondirectional laser emission from the end facets of a ZnO nanowire. Nano Lett. 6(12), 2707–2711 (2006). doi:10.1021/nl0616227
- B. Mayer, D. Rudolph, J. Schnell, S. Morkötter, J. Winnerl et al., Lasing from individual GaAs–AlGaAs core-shell nanowires up to room temperature. Nat. Commun. 4(1), 2931 (2013). doi:10.1038/ncomms3931
- H. Zhu, Y. Fu, F. Meng, X. Wu, Z. Gong et al., Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors. Nat. Mater. 14(6), 636–642 (2015). doi:10.1038/nmat4271
- Y. Fu, H. Zhu, A.W. Schrader, D. Liang, Q. Ding et al., Nanowire lasers of formamidinium lead halide perovskites and their stabilized alloys with improved stability. Nano Lett. 16(2), 1000–1008 (2016). doi:10.1021/acs.nanolett.5b04053
- H. Huang, B. Chen, Z. Wang, T.F. Hung, A.S. Susha, H. Zhong, A.L. Rogach, Water resistant CsPbX3 nanocrystals coated with polyhedral oligomeric silsesquioxane and their use as solid state luminophores in all-perovskite white light-emitting devices. Chem. Sci. 7(9), 5699–5703 (2016). doi:10.1039/c6sc01758d
- F. Palazon, Q.A. Akkerman, M. Prato, L. Manna, X-ray lithography on perovskite nanocrystals films: from patterning with anion-exchange reactions to enhanced stability in air and water. ACS Nano 10(1), 1224–1230 (2015). doi:10.1021/acsnano.5b06536
- V.C. Nair, C. Muthu, A.L. Rogach, R. Kohara, V. Biju, Channeling exciton migration into electron transfer in formamidinium lead bromide perovskite nanocrystal/fullerene composites. Angew. Chem. 56(5), 1214–1218 (2016). doi:10.1002/ange.201610070
- M. Meyns, M. Perálvarez, A. Heuer-Jungemann, W. Hertog, M. Ibáñez et al., Polymer-enhanced stability of inorganic perovskite nanocrystals and their application in color conversion LEDs. ACS Appl. Mater. Interfaces 8(30), 19579–19586 (2016). doi:10.1021/acsami.6b02529
- C. Sun, Y. Zhang, C. Ruan, C. Yin, X. Wang, Y. Wang, W.W. Yu, Efficient and stable white LEDs with silica-coated inorganic perovskite quantum dots. Adv. Mater. 28(45), 10088–10094 (2016). doi:10.1002/adma.201603081
- F. Palazon, F. Di Stasio, Q.A. Akkerman, R. Krahne, M. Prato, L. Manna, Polymer-free films of inorganic halide perovskite nanocrystals as UV-to-white color-conversion layers in LEDs. Chem. Mater. 28(9), 2902–2906 (2016). doi:10.1021/acs.chemmater.6b00954
- L. Protesescu, S. Yakunin, M.I. Bodnarchuk, F. Bertolotti, N. Masciocchi, A. Guagliardi, M.V. Kovalenko, Monodisperse formamidinium lead bromide nanocrystals with bright and stable green photoluminescence. J. Am. Chem. Soc. 138(43), 14202–14205 (2016). doi:10.1021/jacs.6b08900
References
A. Rogach, Quantum dots still shining strong 30 years on. ACS Nano 8(7), 6511–6512 (2014). doi:10.1021/nn5036922
A.L. Rogach, Semiconductor nanocrystal quantum dots. Wien-New York: Springer (2008).
S. González-Carrero, R.E. Galian, J. Pérez-Prieto, Organometal halide perovskites: bulk low-dimension materials and nanoparticles. Part. Part. Syst. Charact. 32(7), 709–720 (2015). doi:10.1002/ppsc.201400214
J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M.K. Nazeeruddin, M. Grätzel, Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499(7458), 316–319 (2013). doi:10.1038/nature12340
H.-S. Kim, C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl et al., Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep. 2(8), 591 (2012). doi:10.1038/srep00591
www.nrel.gov/ncpv/images/efficiency_chart.jpg
C. Zhang, Y. Luo, X. Chen, Y. Chen, Z. Sun, S. Huang, Effective improvement of the photovoltaic performance of carbon-based perovskite solar cells by additional solvents. Nano-Micro Lett. 8(4), 347–357 (2016). doi:10.1007/s40820-016-0094-4
M. Pena, J. Fierro, Chemical structures and performance of perovskite oxides. Chem. Rev. 101(7), 1981–2018 (2001). doi:10.1021/cr980129f
M. García-Hernández, G. Chadeyron, D. Boyer, A. García-Murillo, F. Carrillo-Romo, R. Mahiou, Hydrothermal synthesis and characterization of Europium-doped barium titanate nanocrystallites. Nano-Micro Lett. 5(1), 57–65 (2013). doi:10.1007/BF03353732
Q. Chen, N. De Marco, Y.M. Yang, T.-B. Song, C.-C. Chen, H. Zhao, Z. Hong, H. Zhou, Y. Yang, Under the spotlight: the organic–inorganic hybrid halide perovskite for optoelectronic applications. Nano Today 10(3), 355–396 (2015). doi:10.1016/j.nantod.2015.04.009
D.B. Mitzi, Synthesis, structure, and properties of organic–inorganic perovskites and related materials. Prog. Inorg. Chem. 48, 1–121 (2007). doi:10.1002/9780470166499.ch1
M.A. Green, A. Ho-Baillie, H.J. Snaith, The emergence of perovskite solar cells. Nat. Photonics 8(7), 506–514 (2014). doi:10.1038/nphoton.2014.134
A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131(17), 6050–6051 (2009). doi:10.1021/ja809598r
J.-H. Im, C.-R. Lee, J.-W. Lee, S.-W. Park, N.-G. Park, 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale 3(10), 4088–4093 (2011). doi:10.1039/C1NR10867K
M.M. Lee, J. Teuscher, T. Miyasaka, T.N. Murakami, H.J. Snaith, Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338(6107), 643–647 (2012). doi:10.1126/science.1228604
M. Liu, M.B. Johnston, H.J. Snaith, Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501(7467), 395–398 (2013). doi:10.1038/nature12509
J.Y. Jeng, Y.F. Chiang, M.H. Lee, S.R. Peng, T.F. Guo, P. Chen, T.C. Wen, CH3NH3PbI3 perovskite/fullerene planar-heterojunction hybrid solar cells. Adv. Mater. 25(27), 3727–3732 (2013). doi:10.1002/adma.201301327
Q. Chen, H. Zhou, Z. Hong, S. Luo, H.-S. Duan, H.-H. Wang, Y. Liu, G. Li, Y. Yang, Planar heterojunction perovskite solar cells via vapor-assisted solution process. J. Am. Chem. Soc. 136(2), 622–625 (2013). doi:10.1021/ja411509g
V.M. Goldschmidt, Die gesetze der krystallochemie. Naturwissenschaften 14(21), 477–485 (1926). doi:10.1007/BF01507527
C. Li, X. Lu, W. Ding, L. Feng, Y. Gao, Z. Guo, Formability of ABX3 (X = F, Cl, Br, I) halide perovskites. Acta Crystallogr. Sect. B: Struct. Sci. 64(6), 702–707 (2008). doi:10.1107/S0108768108032734
G. Kieslich, S. Sun, A.K. Cheetham, Solid-state principles applied to organic–inorganic perovskites: new tricks for an old dog. Chem. Sci. 5(12), 4712–4715 (2014). doi:10.1039/c4sc02211d
D.B. Mitzi, Templating and structural engineering in organic–inorganic perovskites. J. Chem. Soc., Dalton Trans. (1), 1–12 (2001). doi:10.1039/b007070j
M.I. Saidaminov, A.L. Abdelhady, B. Murali, E. Alarousu, V.M. Burlakov et al., High-quality bulk hybrid perovskite single crystals within minutes by inverse temperature crystallization. Nat. Commun. 6, 7586 (2015). doi:10.1038/ncomms8586
Q. Zhang, S.T. Ha, X. Liu, T.C. Sum, Q. Xiong, Room-temperature near-infrared high-Q perovskite whispering-gallery planar nanolasers. Nano Lett. 14(10), 5995–6001 (2014). doi:10.1021/nl503057g
S. Gonzalez-Carrero, R.E. Galian, J. Pérez-Prieto, Maximizing the emissive properties of CH3NH3PbBr 3 perovskite nanoparticles. J. Mater. Chem. A 3(17), 9187–9193 (2015). doi:10.1039/c4ta05878j
H. Huang, A.S. Susha, S.V. Kershaw, T.F. Hung, A.L. Rogach, Control of emission color of high quantum yield CH3NH3PbBr3 perovskite quantum dots by precipitation temperature. Adv. Sci. 2(9), 581–583 (2015). doi:10.1002/advs.201500194
H.Z. Feng Zhang, C. Chen, X. Wu, X. Hu, H. Huang, J. Han, B. Zou, Y. Dong, Brightly luminescent and color-tunable colloidal CH3NH3PbX3 (X = Br, I, Cl) quantum dots: potential alternatives for display technology. ACS Nano 9(4), 4533–4542 (2015). doi:10.1021/acsnano.5b01154
L.C. Schmidt, A. Pertegás, S. González-Carrero, O. Malinkiewicz, S. Agouram et al., Nontemplate synthesis of CH3NH3PbBr3 perovskite nanoparticles. J. Am. Chem. Soc. 136(3), 850–853 (2014). doi:10.1021/ja4109209
P. Tyagi, S.M. Arveson, W.A. Tisdale, Colloidal organohalide perovskite nanoplatelets exhibiting quantum confinement. J. Phys. Chem. Lett. 6(10), 1911–1916 (2015). doi:10.1021/acs.jpclett.5b00664
A.B. Wong, M. Lai, S.W. Eaton, Y. Yu, E. Lin, L. Dou, A. Fu, P. Yang, Growth and anion exchange conversion of CH3NH3PbX3 nanorod arrays for light-emitting diodes. Nano Lett. 15(8), 5519–5524 (2015). doi:10.1021/acs.nanolett.5b02082
J. Xing, X.F. Liu, Q. Zhang, S.T. Ha, Y.W. Yuan, C. Shen, T.C. Sum, Q. Xiong, Vapor phase synthesis of organometal halide perovskite nanowires for tunable room-temperature nanolasers. Nano Lett. 15(7), 4571–4577 (2015). doi:10.1021/acs.nanolett.5b01166
J.A. Sichert, Y. Tong, N. Mutz, M. Vollmer, S. Fischer et al., Quantum size effect in organometal halide perovskite nanoplatelets. Nano Lett. 15(10), 6521–6527 (2015). doi:10.1021/acs.nanolett.5b02985
X. Peng, L. Manna, W. Yang, J. Wickham, E. Scher, A. Kadavanich, A.P. Alivisatos, Shape control of CdSe nanocrystals. Nature 404(6773), 59–61 (2000). doi:10.1038/35003535
L. Peng, A. Tang, C. Yang, F. Teng, Size-controlled synthesis of highly luminescent organometal halide perovskite quantum dots. J. Alloys Compd. 687, 506–513 (2016). doi:10.1016/j.jallcom.2016.06.162
S. Pathak, N. Sakai, F. Wisnivesky Rocca Rivarola, S.D. Stranks, J. Liu et al., Perovskite crystals for tunable white light emission. Chem. Mater. 27(23), 8066–8075 (2015). doi:10.1021/acs.chemmater.5b03769
A. Sadhanala, S. Ahmad, B. Zhao, N. Giesbrecht, P.M. Pearce et al., Blue-green color tunable solution processable organolead chloride–bromide mixed halide perovskites for optoelectronic applications. Nano Lett. 15(9), 6095–6101 (2015). doi:10.1021/acs.nanolett.5b02369
L. Protesescu, S. Yakunin, M.I. Bodnarchuk, F. Krieg, R. Caputo et al., Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 15(6), 3692–3696 (2015). doi:10.1021/nl5048779
Q.A. Akkerman, V. D’Innocenzo, S. Accornero, A. Scarpellini, A. Petrozza, M. Prato, L. Manna, Tuning the optical properties of cesium lead halide perovskite nanocrystals by anion exchange reactions. J. Am. Chem. Soc. 137(32), 10276–10281 (2015). doi:10.1021/jacs.5b05602
G. Nedelcu, L. Protesescu, S. Yakunin, M.I. Bodnarchuk, M.J. Grotevent, M.V. Kovalenko, Fast anion-exchange in highly luminescent nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, I). Nano Lett. 15(8), 5635–5640 (2015). doi:10.1021/acs.nanolett.5b02404
A. Swarnkar, R. Chulliyil, V.K. Ravi, M. Irfanullah, A. Chowdhury, A. Nag, Colloidal CsPbBr3 perovskite nanocrystals: luminescence beyond traditional quantum dots. Angew. Chem. 127(51), 15644–15648 (2015). doi:10.1002/anie.201508276
Y. Yin, A.P. Alivisatos, Colloidal nanocrystal synthesis and the organic–inorganic interface. Nature 437(7059), 664–670 (2005). doi:10.1038/nature04165
B. Luo, Y.-C. Pu, Y. Yang, S.A. Lindley, G. Abdelmageed, H. Ashry, Y. Li, X. Li, J.Z. Zhang, Synthesis, optical properties, and exciton dynamics of organolead bromide perovskite nanocrystals. J. Phys. Chem. C 119(47), 26672–26682 (2015). doi:10.1021/acs.jpcc.5b08537
N. Pradhan, D. Reifsnyder, R. Xie, J. Aldana, X. Peng, Surface ligand dynamics in growth of nanocrystals. J. Am. Chem. Soc. 129(30), 9500–9509 (2007). doi:10.1021/ja0725089
M.C. Weidman, M. Seitz, S.D. Stranks, W.A. Tisdale, Highly tunable colloidal perovskite nanoplatelets through variable cation, metal, and halide composition. ACS Nano 10(8), 7830–7839 (2016). doi:10.1021/acsnano.6b03496
D.N. Dirin, S. Dreyfuss, M.I. Bodnarchuk, G. Nedelcu, P. Papagiorgis, G. Itskos, M.V. Kovalenko, Lead halide perovskites and other metal halide complexes as inorganic capping ligands for colloidal nanocrystals. J. Am. Chem. Soc. 136(18), 6550–6553 (2014). doi:10.1021/ja5006288
Z. Ning, X. Gong, R. Comin, G. Walters, F. Fan et al., Quantum-dot-in-perovskite solids. Nature 523(7560), 324–328 (2015). doi:10.1038/nature14563
R.S. Sanchez, M.S. de la Fuente, I. Suarez, G. Muñoz-Matutano, J.P. Martinez-Pastor, I. Mora-Sero, Tunable light emission by exciplex state formation between hybrid halide perovskite and core/shell quantum dots: implications in advanced LEDs and photovoltaics. Sci. Adv. 2(1), e1501104 (2016). doi:10.1126/sciadv.1501104
K. Wu, G. Liang, Q. Shang, Y. Ren, D. Kong, T. Lian, Ultrafast interfacial electron and hole transfeR from CsPbBr3 perovskite quantum dots. J. Am. Chem. Soc. 137(40), 12792–12795 (2015). doi:10.1021/jacs.5b08520
E. Horvath, M. Spina, Z. Szekrenyes, K. Kamaras, R. Gaal, D. Gachet, L. Forro, Nanowires of methylammonium lead iodide (CH3NH3PbI3) prepared by low temperature solution-mediated crystallization. Nano Lett. 14(12), 6761–6766 (2014). doi:10.1021/nl5020684
E. Mosconi, A. Amat, M.K. Nazeeruddin, M. Grätzel, F. De Angelis, First-principles modeling of mixed halide organometal perovskites for photovoltaic applications. J. Phys. Chem. C 117(27), 13902–13913 (2013). doi:10.1021/jp4048659
M. Xiao, F. Huang, W. Huang, Y. Dkhissi, Y. Zhu et al., A fast deposition-crystallization procedure for highly efficient lead iodide perovskite thin-film solar cells. Angew. Chem. 53(37), 9898–9903 (2014). doi:10.1002/ange.201405334
H. Deng, D. Dong, K. Qiao, L. Bu, B. Li et al., Growth, patterning and alignment of organolead iodide perovskite nanowires for optoelectronic devices. Nanoscale 7(9), 4163–4170 (2015). doi:10.1039/c4nr06982j
T. Limongi, L. Tirinato, F. Pagliari, A. Giugni, M. Allione, G. Perozziello, P. Candeloro, E. Di Fabrizio, Fabrication and applications of micro/nanostructured devices for tissue engineering. Nano-Micro Lett. 9, 1 (2017). doi:10.1007/s40820-016-0103-7
Y. Tidhar, E. Edri, H. Weissman, D. Zohar, G. Hodes, D. Cahen, B. Rybtchinski, S. Kirmayer, Crystallization of methyl ammonium lead halide perovskites: implications for photovoltaic applications. J. Am. Chem. Soc. 136(38), 13249–13256 (2014). doi:10.1021/ja505556s
T. Baikie, Y. Fang, J.M. Kadro, M. Schreyer, F. Wei et al., Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3)PbI3 for solid-state sensitised solar cell applications. J. Mater. Chem. A 1(18), 5628–5641 (2013). doi:10.1039/C3TA10518K
C.C. Stoumpos, C.D. Malliakas, M.G. Kanatzidis, Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorg. Chem. 52(15), 9019–9038 (2013). doi:10.1021/ic401215x
Q. Hu, H. Wu, J. Sun, D. Yan, Y. Gao, J. Yang, Large-area perovskite nanowire arrays fabricated by large-scale roll-to-roll micro-gravure printing and doctor blading. Nanoscale 8(9), 5350–5357 (2016). doi:10.1039/c5nr08277c
H. Deng, X. Yang, D. Dong, B. Li, D. Yang et al., Flexible and semitransparent organolead triiodide perovskite network photodetector arrays with high stability. Nano Lett. 15(12), 7963–7969 (2015). doi:10.1021/acs.nanolett.5b03061
D. Zhang, S.W. Eaton, Y. Yu, L. Dou, P. Yang, Solution-phase synthesis of cesium lead halide perovskite nanowires. J. Am. Chem. Soc. 137(29), 9230–9233 (2015). doi:10.1021/jacs.5b05404
W. Deng, X. Zhang, L. Huang, X. Xu, L. Wang, J. Wang, Q. Shang, S.T. Lee, J. Jie, Aligned single-crystalline perovskite microwire arrays for high-performance flexible image sensors with long-term stability. Adv. Mater. 28(11), 2201–2208 (2016). doi:10.1002/adma.201505126
W. Sun, Y. Li, S. Ye, H. Rao, W. Yan et al., High-performance inverted planar heterojunction perovskite solar cells based on a solution-processed CuO x hole transport layer. Nanoscale 8(20), 10806–10813 (2016). doi:10.1039/c6nr01927g
J. Hu, T.W. Odom, C.M. Lieber, Chemistry and physics in one dimension: synthesis and properties of nanowires and nanotubes. Acc. Chem. Res. 32(5), 435–445 (1999). doi:10.1021/ar9700365
J.H. Im, J. Luo, M. Franckevicius, N. Pellet, P. Gao et al., Nanowire perovskite solar cell. Nano Lett. 15(3), 2120–2126 (2015). doi:10.1021/acs.nanolett.5b00046
E. Edri, S. Kirmayer, M. Kulbak, G. Hodes, D. Cahen, Chloride inclusion and hole transport material doping to improve methyl ammonium lead bromide perovskite-based high open-circuit voltage solar cells. J. Phys. Chem. Lett. 5(3), 429–433 (2014). doi:10.1021/jz402706q
K. Gesi, Effect of hydrostatic pressure on the structural phase transitions in CH3NH3PbX3 (X = Cl, Br, I). Ferroelectrics 203(1), 249–268 (1997). doi:10.1080/00150199708012851
K. Park, J.W. Lee, J.D. Kim, N.S. Han, D.M. Jang, S. Jeong, J. Park, J.K. Song, Light-matter interactions in cesium lead halide perovskite nanowire lasers. J. Phys. Chem. Lett. 7(18), 3703–3710 (2016). doi:10.1021/acs.jpclett.6b01821
Z. Wang, J. Liu, Z.Q. Xu, Y. Xue, L. Jiang et al., Wavelength-tunable waveguides based on polycrystalline organic–inorganic perovskite microwires. Nanoscale 8(12), 6258–6264 (2016). doi:10.1039/c5nr06262d
S. Zhuo, J. Zhang, Y. Shi, Y. Huang, B. Zhang, Self-template-directed synthesis of porous perovskite nanowires at room temperature for high-performance visible-light photodetectors. Angew. Chem. 127(19), 5785–5788 (2015). doi:10.1002/anie.201411956
X.F. Shen, X.P. Yan, Facile shape-controlled synthesis of well-aligned nanowire architectures in binary aqueous solution. Angew. Chem. Int. Ed. 46(40), 7659–7663 (2007). doi:10.1002/anie.200702451
M.J. Ashley, M.N. O’Brien, K.R. Hedderick, J.A. Mason, M.B. Ross, C.A. Mirkin, Templated synthesis of uniform perovskite nanowire arrays. J. Am. Chem. Soc. 138(32), 10096–10099 (2016). doi:10.1021/jacs.6b05901
M. Spina, E. Bonvin, A. Sienkiewicz, B. Nafradi, L. Forro, E. Horvath, Controlled growth of CH3NH3PbI3 nanowires in arrays of open nanofluidic channels. Sci. Rep. 6, 19834 (2016). doi:10.1038/srep19834
C.R. Martin, Nanomaterials-a membrane-based synthetic approach. DTIC Document (1994)
D. Routkevitch, T. Bigioni, M. Moskovits, J.M. Xu, Electrochemical fabrication of CdS nanowire arrays in porous anodic aluminum oxide templates. J. Phys. Chem. 100(33), 14037–14047 (1996). doi:10.1021/jp952910m
C.R. Martin, Nanomaterials: a membrane-based synthetic approach. Science 266(5193), 1961–1966 (1994). doi:10.1126/science.266.5193.1961
Y. Bekenstein, B.A. Koscher, S.W. Eaton, P. Yang, A.P. Alivisatos, Highly luminescent colloidal nanoplates of perovskite cesium lead halide and their oriented assemblies. J. Am. Chem. Soc. 137(51), 16008–16011 (2015). doi:10.1021/jacs.5b11199
Y. Ling, Z. Yuan, Y. Tian, X. Wang, J.C. Wang, Y. Xin, K. Hanson, B. Ma, H. Gao, Bright light-emitting diodes based on organometal halide perovskite nanoplatelets. Adv. Mater. 28(2), 305–311 (2016). doi:10.1002/adma.201503954
Z. Yuan, Y. Shu, Y. Tian, Y. Xin, B. Ma, A facile one-pot synthesis of deep blue luminescent lead bromide perovskite microdisks. Chem. Commun. 51(91), 16385–16388 (2015). doi:10.1039/c5cc06750b
W. Tian, C. Zhao, J. Leng, R. Cui, S. Jin, Visualizing carrier diffusion in individual single-crystal organolead halide perovskite nanowires and nanoplates. J. Am. Chem. Soc. 137(39), 12458–12461 (2015). doi:10.1021/jacs.5b08045
Y. Zhao, K. Zhu, Efficient planar perovskite solar cells based on 1.8 eV band gap CH3NH3PbI2Br nanosheets via thermal decomposition. J. Am. Chem. Soc. 136(35), 12241–12244 (2014). doi:10.1021/ja5071398
S.T. Ha, X. Liu, Q. Zhang, D. Giovanni, T.C. Sum, Q. Xiong, Synthesis of organic–inorganic lead halide perovskite nanoplatelets: towards high-performance perovskite solar cells and optoelectronic devices. Adv. Opt. Mater. 2(9), 838–844 (2014). doi:10.1002/adom.201400106
Q. Liao, K. Hu, H. Zhang, X. Wang, J. Yao, H. Fu, Perovskite microdisk microlasers self-assembled from solution. Adv. Mater. 27(22), 3405–3410 (2015). doi:10.1002/adma.201500449
D. Shi, V. Adinolfi, R. Comin, M. Yuan, E. Alarousu et al., Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science 347(6221), 519–522 (2015). doi:10.1126/science.aaa2725
Q.A. Akkerman, S.G. Motti, A.R. Srimath Kandada, E. Mosconi, V. D’Innocenzo et al., Solution synthesis approach to colloidal cesium lead halide perovskite nanoplatelets with monolayer-level thickness control. J. Am. Chem. Soc. 138(3), 1010–1016 (2016). doi:10.1021/jacs.5b12124
K.H. Wang, L. Wu, L. Li, H.B. Yao, H.S. Qian, S.H. Yu, Large-scale synthesis of highly luminescent perovskite-related CsPb2Br5 nanoplatelets and their fast anion exchange. Angew. Chem. Int. Ed. 55(29), 8328–8332 (2016). doi:10.1002/anie.201602787
G. Li, H. Wang, Z. Zhu, Y. Chang, T. Zhang, Z. Song, Y. Jiang, Shape and phase evolution from CsPbBr3 perovskite nanocubes to tetragonal CsPb2Br5 nanosheets with an indirect bandgap. Chem. Commun. 52(75), 11296–11299 (2016). doi:10.1039/c6cc05877a
D.M. Jang, K. Park, D.H. Kim, J. Park, F. Shojaei, H.S. Kang, J.P. Ahn, J.W. Lee, J.K. Song, Reversible halide exchange reaction of organometal trihalide perovskite colloidal nanocrystals for full-range band gap tuning. Nano Lett. 15(8), 5191–5199 (2015). doi:10.1021/acs.nanolett.5b01430
L. Dou, A.B. Wong, Y. Yu, M. Lai et al., Atomically thin two-dimensional organic–inorganic hybrid perovskites. Science 349(6255), 1518–1521 (2015). doi:10.1126/science.aac7660
R. Naphade, S. Nagane, G.S. Shanker, R. Fernandes, D. Kothari, Y. Zhou, N.P. Padture, S. Ogale, Hybrid perovskite quantum nanostructures synthesized by electrospray antisolvent-solvent extraction and intercalation. ACS Appl. Mater. Interfaces 8(1), 854–861 (2016). doi:10.1021/acsami.5b10208
Y. Fu, F. Meng, M.B. Rowley, B.J. Thompson, M.J. Shearer, D. Ma, R.J. Hamers, J.C. Wright, S. Jin, Solution growth of single crystal methylammonium lead halide perovskite nanostructures for optoelectronic and photovoltaic applications. J. Am. Chem. Soc. 137(17), 5810–5818 (2015). doi:10.1021/jacs.5b02651
J. Song, J. Li, X. Li, L. Xu, Y. Dong, H. Zeng, Quantum dot light-emitting diodes based on inorganic perovskite cesium lead halides (CsPbX3). Adv. Mater. 27(44), 7162–7167 (2015). doi:10.1002/adma.201502567
D.H. Cao, C.C. Stoumpos, O.K. Farha, J.T. Hupp, M.G. Kanatzidis, 2D homologous perovskites as light-absorbing materials for solar cell applications. J. Am. Chem. Soc. 137(24), 7843–7850 (2015). doi:10.1021/jacs.5b03796
E.R. Dohner, E.T. Hoke, H.I. Karunadasa, Self-assembly of broadband white-light emitters. J. Am. Chem. Soc. 136(5), 1718–1721 (2014). doi:10.1021/ja411045r
E.R. Dohner, A. Jaffe, L.R. Bradshaw, H.I. Karunadasa, Intrinsic white-light emission from layered hybrid perovskites. J. Am. Chem. Soc. 136(38), 13154–13157 (2014). doi:10.1021/ja507086b
M. Kulbak, D. Cahen, G. Hodes, How important is the organic part of lead halide perovskite photovoltaic cells? Efficient CsPbBr3 cells. J. Phys. Chem. Lett. 6(13), 2452–2456 (2015). doi:10.1021/acs.jpclett.5b00968
H. Cho, S.-H. Jeong, M.-H. Park, Y.-H. Kim, C. Wolf et al., Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes. Science 350(6265), 1222–1225 (2015). doi:10.1126/science.aad1818
Z.K. Tan, R.S. Moghaddam, M.L. Lai, P. Docampo, R. Higler et al., Bright light-emitting diodes based on organometal halide perovskite. Nat. Nanotechnol. 9(9), 687–692 (2014). doi:10.1038/nnano.2014.149
P. Gao, M. Grätzel, M.K. Nazeeruddin, Organohalide lead perovskites for photovoltaic applications. Energy Environ. Sci. 7(8), 2448 (2014). doi:10.1039/c4ee00942h
A. Kojima, K. Teshima, T. Miyasaka, Y. Shirai, In novel photoelectrochemical cell with mesoscopic electrodes sensitized by lead-halide compounds (2), Meeting Abstracts, 2006; The Electrochemical Society: pp 397–397. http://ecsdl.org/site/terms_use
I. Chung, B. Lee, J. He, R.P. Chang, M.G. Kanatzidis, All-solid-state dye-sensitized solar cells with high efficiency. Nature 485(7399), 486–489 (2012). doi:10.1038/nature11067
J.H. Heo, S.H. Im, J.H. Noh, T.N. Mandal, C.-S. Lim et al., Efficient inorganic–organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors. Nat. Photonics 7(6), 486–491 (2013). doi:10.1038/nphoton.2013.80
W.S. Yang, J.H. Noh, N.J. Jeon, Y.C. Kim, S. Ryu, J. Seo, S.I. Seok, High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science 348(6240), 1234–1237 (2015). doi:10.1126/science.aaa9272
N.J. Jeon, J.H. Noh, W.S. Yang, Y.C. Kim, S. Ryu, J. Seo, S.I. Seok, Compositional engineering of perovskite materials for high-performance solar cells. Nature 517(7535), 476–480 (2015). doi:10.1038/nature14133
A. Swarnkar, A.R. Marshall, E.M. Sanehira, B.D. Chernomordik, D.T. Moore, J.A. Christians, T. Chakrabarti, J.M. Luther, Quantum dot: induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics. Science 354(6308), 92–95 (2016). doi:10.1126/science.aag2700
G.E. Eperon, V.M. Burlakov, P. Docampo, A. Goriely, H.J. Snaith, Morphological control for high performance, solution-processed planar heterojunction perovskite solar cells. Adv. Funct. Mater. 24(1), 151–157 (2014). doi:10.1002/adfm.201302090
C.W. Chen, H.W. Kang, S.Y. Hsiao, P.F. Yang, K.M. Chiang, H.W. Lin, Efficient and uniform planar-type perovskite solar cells by simple sequential vacuum deposition. Adv. Mater. 26(38), 6647–6652 (2014). doi:10.1002/adma.201402461
D.T. Moore, H. Sai, K.W. Tan, L.A. Estroff, U. Wiesner, Impact of the organic halide salt on final perovskite composition for photovoltaic applications. APL Mater. 2(8), 081802 (2014). doi:10.1063/1.4886275
B.-E. Cohen, S. Gamliel, L. Etgar, Parameters influencing the deposition of methylammonium lead halide iodide in hole conductor free perovskite-based solar cells. APL Mater. 2(8), 081502 (2014). doi:10.1063/1.4885548
Z. Yu, S. Fan, Complete optical isolation created by indirect interband photonic transitions. Nat. Photonics 3(2), 91–94 (2009). doi:10.1364/FIO.2008.FMG2
X. Gao, Y. Cui, R.M. Levenson, L.W. Chung, S. Nie, In vivo cancer targeting and imaging with semiconductor quantum dots. Nat. Biotechnol. 22(8), 969–976 (2004). doi:10.1038/nbt994
G. Konstantatos, E.H. Sargent, Nanostructured materials for photon detection. Nat. Nanotechnol. 5(6), 391–400 (2010). doi:10.1038/nnano.2010.78
J. He, K. Qiao, L. Gao, H. Song, L. Hu, S. Jiang, J. Zhong, J. Tang, Synergetic effect of silver nanocrystals applied in PbS colloidal quantum dots for high-performance infrared photodetectors. ACS Photonics 1(10), 936–943 (2014). doi:10.1021/ph500227u
B. Zu, B. Lu, Y. Guo, T. Xu, X. Dou, Simple metal/SiO2/Si planar photodetector utilizing leakage current flows through a SiO2 layer. J. Mater. Chem. C 2(11), 2045–2050 (2014). doi:10.1039/C3TC32242D
R. Yu, C. Pan, Y. Hu, L. Li, H. Liu, W. Liu, S. Chua, D. Chi, Z.L. Wang, Enhanced performance of GaN nanobelt-based photodetectors by means of piezotronic effects. Nano Res. 6(10), 758–766 (2013). doi:10.1007/s12274-013-0354-2
H. Zhu, X. Chen, J. Cai, Z. Wu, 4H–SiC ultraviolet avalanche photodetectors with low breakdown voltage and high gain. Solid State Electron. 53(1), 7–10 (2009). doi:10.1016/j.sse.2008.09.002
F. Xia, T. Mueller, Y.-M. Lin, A. Valdes-Garcia, P. Avouris, Ultrafast graphene photodetector. Nat. Nanotechnol. 4(12), 839–843 (2009). doi:10.1038/nnano.2009.292
S. Wu, Z. Zeng, Q. He, Z. Wang, S.J. Wang, Y. Du, Z. Yin, X. Sun, W. Chen, H. Zhang, Electrochemically reduced single-layer MoS2 nanosheets: characterization, properties, and sensing applications. Small 8(14), 2264–2270 (2012). doi:10.1002/smll.201200044
W. Jin, Z. Gao, Y. Zhou, B. Yu, H. Zhang, H. Peng, Z. Liu, L. Dai, Novel graphene–oxide–semiconductor nanowire phototransistors. J. Mater. Chem. C 2(9), 1592–1596 (2014). doi:10.1039/c3tc32123a
G. Konstantatos, M. Badioli, L. Gaudreau, J. Osmond, M. Bernechea, F.P.G. de Arquer, F. Gatti, F.H. Koppens, Hybrid graphene-quantum dot phototransistors with ultrahigh gain. Nat. Nanotechnol. 7(6), 363–368 (2012). doi:10.1038/nnano.2012.60
S.W. Eaton, M. Lai, N.A. Gibson, A.B. Wong, L. Dou et al., Lasing in robust cesium lead halide perovskite nanowires. Proc. Natl. Acad. Sci. U.S.A. 113(8), 1993–1998 (2016). doi:10.1073/pnas.1600789113
R. Yan, D. Gargas, P. Yang, Nanowire photonics. Nat. Photonics 3(10), 569–576 (2009). doi:10.1038/nphoton.2009.184
H. Zhou, Q. Chen, G. Li, S. Luo, T.-B. Song et al., Interface engineering of highly efficient perovskite solar cells. Science 345(6196), 542–546 (2014). doi:10.1126/science.1254050
S.D. Stranks, G.E. Eperon, G. Grancini, C. Menelaou, M.J. Alcocer et al., Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342(6156), 341–344 (2013). doi:10.1126/science.1243982
G. Xing, N. Mathews, S. Sun, S.S. Lim, Y.M. Lam, M. Grätzel, S. Mhaisalkar, T.C. Sum, Long-range balanced electron-and hole-transport lengths in organic–inorganic CH3NH3PbI3. Science 342(6156), 344–347 (2013). doi:10.1126/science.1243167
F. Deschler, M. Price, S. Pathak, L.E. Klintberg, D.-D. Jarausch et al., High photoluminescence efficiency and optically pumped lasing in solution-processed mixed halide perovskite semiconductors. J. Phys. Chem. Lett. 5(8), 1421–1426 (2014). doi:10.1021/jz5005285
G. Xing, N. Mathews, S.S. Lim, N. Yantara, X. Liu, D. Sabba, M. Grätzel, S. Mhaisalkar, T.C. Sum, Low-temperature solution-processed wavelength-tunable perovskites for lasing. Nat. Mater. 13(5), 476–480 (2014). doi:10.1038/nmat3911
L.K. Van Vugt, S. Rühle, D. Vanmaekelbergh, Phase-correlated nondirectional laser emission from the end facets of a ZnO nanowire. Nano Lett. 6(12), 2707–2711 (2006). doi:10.1021/nl0616227
B. Mayer, D. Rudolph, J. Schnell, S. Morkötter, J. Winnerl et al., Lasing from individual GaAs–AlGaAs core-shell nanowires up to room temperature. Nat. Commun. 4(1), 2931 (2013). doi:10.1038/ncomms3931
H. Zhu, Y. Fu, F. Meng, X. Wu, Z. Gong et al., Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors. Nat. Mater. 14(6), 636–642 (2015). doi:10.1038/nmat4271
Y. Fu, H. Zhu, A.W. Schrader, D. Liang, Q. Ding et al., Nanowire lasers of formamidinium lead halide perovskites and their stabilized alloys with improved stability. Nano Lett. 16(2), 1000–1008 (2016). doi:10.1021/acs.nanolett.5b04053
H. Huang, B. Chen, Z. Wang, T.F. Hung, A.S. Susha, H. Zhong, A.L. Rogach, Water resistant CsPbX3 nanocrystals coated with polyhedral oligomeric silsesquioxane and their use as solid state luminophores in all-perovskite white light-emitting devices. Chem. Sci. 7(9), 5699–5703 (2016). doi:10.1039/c6sc01758d
F. Palazon, Q.A. Akkerman, M. Prato, L. Manna, X-ray lithography on perovskite nanocrystals films: from patterning with anion-exchange reactions to enhanced stability in air and water. ACS Nano 10(1), 1224–1230 (2015). doi:10.1021/acsnano.5b06536
V.C. Nair, C. Muthu, A.L. Rogach, R. Kohara, V. Biju, Channeling exciton migration into electron transfer in formamidinium lead bromide perovskite nanocrystal/fullerene composites. Angew. Chem. 56(5), 1214–1218 (2016). doi:10.1002/ange.201610070
M. Meyns, M. Perálvarez, A. Heuer-Jungemann, W. Hertog, M. Ibáñez et al., Polymer-enhanced stability of inorganic perovskite nanocrystals and their application in color conversion LEDs. ACS Appl. Mater. Interfaces 8(30), 19579–19586 (2016). doi:10.1021/acsami.6b02529
C. Sun, Y. Zhang, C. Ruan, C. Yin, X. Wang, Y. Wang, W.W. Yu, Efficient and stable white LEDs with silica-coated inorganic perovskite quantum dots. Adv. Mater. 28(45), 10088–10094 (2016). doi:10.1002/adma.201603081
F. Palazon, F. Di Stasio, Q.A. Akkerman, R. Krahne, M. Prato, L. Manna, Polymer-free films of inorganic halide perovskite nanocrystals as UV-to-white color-conversion layers in LEDs. Chem. Mater. 28(9), 2902–2906 (2016). doi:10.1021/acs.chemmater.6b00954
L. Protesescu, S. Yakunin, M.I. Bodnarchuk, F. Bertolotti, N. Masciocchi, A. Guagliardi, M.V. Kovalenko, Monodisperse formamidinium lead bromide nanocrystals with bright and stable green photoluminescence. J. Am. Chem. Soc. 138(43), 14202–14205 (2016). doi:10.1021/jacs.6b08900