MoS2 Nanosheets Sensitized with Quantum Dots for Room-Temperature Gas Sensors
Corresponding Author: Huan Liu
Nano-Micro Letters,
Vol. 12 (2020), Article Number: 59
Abstract
The Internet of things for environment monitoring requires high performance with low power-consumption gas sensors which could be easily integrated into large-scale sensor network. While semiconductor gas sensors have many advantages such as excellent sensitivity and low cost, their application is limited by their high operating temperature. Two-dimensional (2D) layered materials, typically molybdenum disulfide (MoS2) nanosheets, are emerging as promising gas-sensing materials candidates owing to their abundant edge sites and high in-plane carrier mobility. This work aims to overcome the sluggish and weak response as well as incomplete recovery of MoS2 gas sensors at room temperature by sensitizing MoS2 nanosheets with PbS quantum dots (QDs). The huge amount of surface dangling bonds of QDs enables them to be ideal receptors for gas molecules. The sensitized MoS2 gas sensor exhibited fast and recoverable response when operated at room temperature, and the limit of NO2 detection was estimated to be 94 ppb. The strategy of sensitizing 2D nanosheets with sensitive QD receptors may enhance receptor and transducer functions as well as the utility factor that determine the sensor performance, offering a powerful new degree of freedom to the surface and interface engineering of semiconductor gas sensors.
Highlights:
1 Highly sensitive and selective room-temperature NO2 gas sensors by sensitizing MoS2 nanosheets with PbS quantum dots were demonstrated. In this device architecture, the receptor and transduction function as well as the utility factor of semiconductor gas sensors could be enhanced simultaneously.
2 The strategy of sensitizing 2D semiconductors with quantum dots as sensitive and selective receptors for gas molecules may offer a powerful new degree of freedom to the surface and interface engineering of semiconductor gas sensors.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Environmental Protection Agency (EPA). https://www.epa.gov/learn-issues/learn-about-air/ for “Air Pollution, 2013” (2013)
- F. Xian, B. Zong, S. Mao, Metal-organic framework-based sensors for environmental contaminant sensing. Nano-Micro Lett. 10, 64 (2018). https://doi.org/10.1007/s40820-018-0218-0
- T. Xu, Y. Pei, Y. Liu, D. Wu, Z. Shi, J. Xu, Y. Tian, X. Li, High-response NO2 resistive gas sensor based on bilayer MOS2 grown by a new two-step chemical vapor deposition method. J. Alloys Compd. 725, 253–259 (2017). https://doi.org/10.1016/j.jallcom.2017.06.105
- I. Lee, S.J. Choi, K.M. Park, S.S. Lee, S. Choi, I.D. Kim, C.O. Park, The stability, sensitivity and response transients of ZnO, SnO2 and WO3 sensors under acetone, toluene and H2S environments. Sens. Actuators. B 197, 300–307 (2014). https://doi.org/10.1016/j.snb.2014.02.043
- Z. Yuan, J. Zhang, F. Meng, Y. Li, R. Li et al., Highly sensitive ammonia sensors based on Ag-decorated WO3 nanorods. IEEE Trans. Nanotechnol. 17(6), 1252–1258 (2018). https://doi.org/10.1109/TNANO.2018.2871675
- S. Zhang, C. Wang, F. Qu, S. Liu, C.T. Lin et al., ZnO nanoflowers modified with RuO2 for enhancing acetone sensing performance. Nanotechnology 31(11), 115502 (2019). https://doi.org/10.1088/1361-6528/ab5cd9
- F. Qu, H. Jiang, M. Yang, Designed formation through a metal organic framework route of ZnO/ZnCo2O4 hollow core-shell nanocages with enhanced gas sensing properties. Nanoscale 8(36), 16349–16356 (2016). https://doi.org/10.1039/C6NR05187A
- Y. Wang, G. Duan, Y. Zhu, H. Zhang, Z. Xu, Z. Dai, W. Cai, Room temperature H2S gas sensing properties of In2O3 micro/nanostructured porous thin film and hydrolyzation-induced enhanced sensing mechanism. Sens. Actuatators B 228, 74–84 (2016). https://doi.org/10.1016/j.snb.2016.01.002
- F. Meng, H. Zeng, Y. Sun, M. Li, J. Liu, Trimethylamine sensors based on Au-modified hierarchical porous single-crystalline ZnO nanosheets. Sensors 17, 1478 (2017). https://doi.org/10.3390/s17071478
- Z. Yuan, J. Zhao, F. Meng, W. Qin, Y. Chen, M. Yang, M. Ibrahimc, Y. Zhao, Sandwich-like composites of double-layer Co3O4 and reduced graphene oxide and their sensing properties to volatile organic compounds. J. Alloys Compd. 793, 24–30 (2019). https://doi.org/10.1016/j.jallcom.2019.03.386
- Q. He, Z. Zeng, Z. Yin, H. Li, S. Wu, X. Huang, H. Zhang, Fabrication of flexible MOS2 thin-film transistor arrays for practical gas-sensing applications. Small 8(19), 2994–2999 (2012). https://doi.org/10.1002/smll.201201224
- D.J. Late, Y.K. Huang, B. Liu, J. Acharya, S.N. Shirodkar et al., Sensing behavior of atomically thin-layered MoS2 transistors. ACS Nano 7(6), 4879–4891 (2013). https://doi.org/10.1021/nn400026u
- B. Liu, L. Chen, G. Liu, A.N. Abbas, M. Fathi, C. Zhou, High-performance chemical sensing using Schottky-contacted chemical vapor deposition grown monolayer MoS2 transistors. ACS Nano 8(5), 5304–5314 (2014). https://doi.org/10.1021/nn5015215
- Y. Kim, S.K. Kang, N.C. Oh, H.D. Lee, S.M. Lee, J. Park, H. Kim, Improved sensitivity in schottky contacted two-dimensional MoS2 gas sensor. ACS Appl. Mater. Interfaces 11(42), 38902–38909 (2019). https://doi.org/10.1021/acsami.9b10861
- B. Cho, A.R. Kim, Y. Park, J. Yoon, Y.J. Lee et al., Bifunctional sensing characteristics of chemical vapor deposition synthesized atomic-layered MOS2. ACS Appl. Mater. Interfaces 7(4), 2952–2959 (2015). https://doi.org/10.1021/am508535x
- S.Y. Cho, Y. Lee, H.J. Koh, H. Jung, J.S. Kim, H.W. Yoo, J. Kim, H.T. Jung, Superior chemical sensing performance of black phosphorus: comparison with MOS2 and graphene. Adv. Mater. 28(32), 7020–7028 (2016). https://doi.org/10.1002/adma.201601167
- R. Kumar, N. Goel, M. Kumar, High performance NO2 sensor using MOS2 nanowires network. Appl. Phys. Lett. 112(5), 053502 (2018). https://doi.org/10.1063/1.5019296
- T. Pham, G. Li, E. Bekyarova, M.E. Itkis, A. Mulchandani, MoS2-based optoelectronic gas sensor with sub-parts-per-billion limit of NO2 gas detection. ACS Nano 13(3), 3196–3205 (2019). https://doi.org/10.1021/acsnano.8b08778
- H. Im, A. Almutairi, S. Kim, M. Sritharan, S. Kim, Y. Yoon, On MoS2 thin-film transistor design consideration for a NO2 gas sensor. ACS Sens. 4(11), 2930–2936 (2019). https://doi.org/10.1021/acssensors.9b01307
- Y. Kang, S. Pyo, E. Jo, J. Kim, Light-assisted recovery of reacted MoS2 for reversible NO2 sensing at room temperature. Nanotechnology 30(35), 355504 (2019). https://doi.org/10.1088/1361-6528/ab2277
- A.V. Agrawal, R. Kumar, S. Venkatesan, A. Zakhidov, G. Yang, J. Bao, M. Kumar, M. Kumar, Photoactivated mixed in-plane and edge-enriched p-type MoS2 flake-based NO2 sensor working at room temperature. ACS Sens. 3(5), 998–1004 (2018). https://doi.org/10.1021/acssensors.8b00146
- S. Cui, Z. Wen, X. Huang, J. Chang, J. Chen, Stabilizing MOS2 nanosheets through SnO2 nanocrystal decoration for high-performance gas sensing in air. Small 11(19), 2305–2313 (2015). https://doi.org/10.1002/smll.201402923
- Y. Han, D. Huang, Y. Ma, G. He, J. Hu et al., Design of hetero-nanostructures on MOS2 nanosheets to boost NO2 room-temperature sensing. ACS Appl. Mater. Interfaces 10(26), 22640–22649 (2018). https://doi.org/10.1021/acsami.8b05811
- B. Cho, J. Yoon, S.K. Lim, A.R. Kim, D.H. Kim et al., Chemical sensing of 2D graphene/MOS2 heterostructure device. ACS Appl. Mater. Interfaces 7(30), 16775–16780 (2015). https://doi.org/10.1021/acsami.5b04541
- Z. Wang, T. Zhang, C. Zhao, T. Han, T. Fei, S. Liu, G. Lu, Rational synthesis of molybdenum disulfide nanoparticles decorated reduced graphene oxide hybrids and their application for high-performance NO2 sensing. Sens. Actuators B 260, 508–518 (2018). https://doi.org/10.1016/j.snb.2017.12.181
- M. Ikram, L. Liu, Y. Liu, L. Ma, H. Lv et al., Fabrication and characterization of a high-surface area MoS2@WS2 heterojunction for the ultra-sensitive NO2 detection at room temperature. J. Mater. Chem. A 7(24), 14602–14612 (2019). https://doi.org/10.1039/C9TA03452H
- H.S. Hong, N.H. Phuong, N.T. Huong, N.H. Nam, N.T. Hue, Highly sensitive and low detection limit of resistive NO2 gas sensor based on a MoS2/graphene two-dimensional heterostructures. Appl. Surf. Sci. 492, 449–454 (2019). https://doi.org/10.1016/j.apsusc.2019.06.230
- T. Chen, W. Yan, J. Xu, J. Li, G. Zhang, D. Ho, Highly sensitive and selective NO2 sensor based on 3D MoS2/rGO composites prepared by a low temperature self-assembly method. J. Alloys Compd. 793, 541–551 (2019). https://doi.org/10.1016/j.jallcom.2019.04.126
- M. Yuan, M. Liu, E.H. Sargent, Colloidal quantum dot solids for solution-processed solar cells. Nat. Energy 1(3), 16016 (2016). https://doi.org/10.1038/nenergy.2016.16
- V. Sukhovatkin, S. Hinds, L. Brzozowski, E.H. Sargent, Colloidal quantum-dot photodetectors exploiting multiexciton generation. Science 324(5934), 1542–1544 (2009). https://doi.org/10.1126/science.1173812
- X. Dai, Z. Zhang, Y. Jin, Y. Niu, H. Cao et al., Solution-processed, high-performance light-emitting diodes based on quantum dots. Nature 515(7525), 96–99 (2014). https://doi.org/10.1038/nature13829
- H. Liu, M. Li, O. Voznyy, L. Hu, Q. Fu et al., Physically flexible, rapid-response gas sensor based on colloidal quantum dot solids. Adv. Mater. 26(17), 2718–2724 (2014). https://doi.org/10.1002/adma.201304366
- H. Liu, S. Xu, M. Li, G. Shao, H. Song et al., Chemiresistive gas sensors employing solution-processed metal oxide quantum dot films. Appl. Phys. Lett. 105(16), 163104 (2014). https://doi.org/10.1063/1.4900405
- M. Li, W. Zhang, G. Shao, H. Kan, Z. Song et al., Sensitive NO2 gas sensors employing spray-coated colloidal quantum dots. Thin Solid Films 618, 271–276 (2016). https://doi.org/10.1016/j.tsf.2016.08.023
- Z. Song, Z. Huang, J. Liu, Z. Hu, J. Zhang et al., Fully stretchable and humidity-resistant quantum dot gas sensors. ACS Sens. 3(5), 1048–1055 (2018). https://doi.org/10.1021/acssensors.8b00263
- J. Xie, H. Zhang, S. Li, R. Wang, X. Sun et al., Defect-rich MoS2 ultrathin nanosheets with additional active edge sites for enhanced electrocatalytic hydrogen evolution. Adv. Mater. 25(40), 5807–5813 (2013). https://doi.org/10.1002/adma.201302685
- C.B. Murray, D.J. Norris, M.G. Bawendi, Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J. Am. Chem. Soc. 115(19), 8706–8715 (1993). https://doi.org/10.1021/ja00072a025
- S.G. Kwon, Y. Piao, J. Park, S. Angappane, Y. Jo, N.-M. Hwang, J.-G. Park, T. Hyeon, Kinetics of monodisperse iron oxide nanocrystal formation by “heating-up” process. J. Am. Chem. Soc. 129(41), 12571–12584 (2007). https://doi.org/10.1021/ja074633q
- J. Zhang, J. Gao, E.M. Miller, J.M. Luther, M.C. Beard, Diffusion-controlled synthesis of Pbs and PbSe quantum dots with in situ halide passivation for quantum dot solar cells. ACS Nano 8(1), 614–622 (2013). https://doi.org/10.1021/nn405236k
- X. Xin, Y. Zhang, X. Guan, J. Cao, W. Li, X. Long, X. Tan, Enhanced performances of PbS quantum-dots-modified MoS2 composite for NO2 detection at room temperature. ACS Appl. Mater. Interfaces 11(9), 9438–9447 (2019). https://doi.org/10.1021/acsami.8b20984
- D. Wang, J.K. Baral, H. Zhao, B.A. Gonfa, V.-V. Truong, M.A. El Khakani, R. Izquierdo, D. Ma, Controlled fabrication of PbS quantum-dot/carbon-nanotube nanoarchitecture and its significant contribution to near-infrared photon-to-current conversion. Adv. Funct. Mater. 21(21), 4010–4018 (2011). https://doi.org/10.1002/adfm.201100824
- R.J. Chen, S. Bangsaruntip, K.A. Drouvalakis, N.W. Kam, M. Shim et al., Noncovalent functionalization of carbon nanotubes for highly specific electronic biosensors. Proc. Natl. Acad. Sci. U.S.A. 100(9), 4984–4989 (2003). https://doi.org/10.1073/pnas.0837064100
- H. Nan, Z. Wang, W. Wang, Z. Liang, Y. Lu et al., Strong photoluminescence enhancement of MoS2 through defect engineering and oxygen bonding. ACS Nano 8(6), 5738–5745 (2014). https://doi.org/10.1021/nn500532f
- N. Barsan, U. Weimar, Conduction model of metal oxide gas sensors. J. Electroceram. 7(3), 143–167 (2011). https://doi.org/10.1023/A:1014405811371
- H. Kan, M. Li, Z. Song, S. Liu, B. Zhang et al., Highly sensitive response of solution-processed bismuth sulfide nanobelts for room-temperature nitrogen dioxide detection. J. Colloid Interfaces Sci. 506, 102–110 (2017). https://doi.org/10.1016/j.jcis.2017.07.012
- J. Wu, S. Feng, X. Wei, J. Shen, W. Lu et al., Facile synthesis of 3D graphene flowers for ultrasensitive and highly reversible gas sensing. Adv. Funct. Mater. 26(41), 7462–7469 (2016). https://doi.org/10.1002/adfm.201603598
- M. Ridene, I. Iezhokin, P. Offermansand, C.F.J. Flipse, Enhanced sensitivity of epitaxial graphene to NO2 by water coadsorption. J. Phys. Chem. C 120(34), 19107–19112 (2016). https://doi.org/10.1021/acs.jpcc.6b03495
- R. Kumar, N. Goel, M. Kumar, UV-activated MOS2 based fast and reversible NO2 sensor at room temperature. ACS Sens. 2(11), 1744–1752 (2017). https://doi.org/10.1021/acssensors.7b00731
- N. Yamazoe, Toward innovations of gas sensor technology. Sens. Actuatators B 108, 2–14 (2005). https://doi.org/10.1016/j.snb.2004.12.075
- H. Long, A.H. Trochimczyk, T. Pham, Z. Tang, T. Shi et al., High surface area MoS2/graphene hybrid aerogel for ultrasensitive NO2 detection. Adv. Funct. Mater. 26(28), 5158–5165 (2016). https://doi.org/10.1002/adfm.201601562
- N. Yamazoe, New approaches for improving semiconductor gas sensors. Sens. Actuatators B 128, 566–573 (1991). https://doi.org/10.1016/0925-4005(91)80213-4
- X. Zhang, L. Yu, X. Wu, W. Hu, Experimental sensing and density functional theory study of H2S and SOF2 adsorption on Au-modified graphene. Adv. Sci. 2(11), 1500101 (2015). https://doi.org/10.1002/advs.201500101
- J. Embden, K. Latham, N.W. Duffy, Y. Tachibana, Near-infrared absorbing Cu12Sb4S13 and Cu3SbS4 nanocrystals: synthesis, characterization, and photoelectrochemistry. J. Am. Chem. Soc. 135(31), 11562–11571 (2013). https://doi.org/10.1021/ja402702x
- K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill et al., Ultrafast saturable absorption of two-dimensional MoS2 nanosheets. ACS Nano 7(10), 9260–9267 (2013). https://doi.org/10.1021/nn403886t
- F.W. Wise, Lead salt quantum dots: the limit of strong quantum confinement. Acc. Chem. Res. 33(11), 773–780 (2000). https://doi.org/10.1021/ar970220q
- N. Yamazoe, K. Shimanoe, Basic approach to the transducer function of oxide semiconductor gas sensors. Sens. Actuatators B 160, 1352–1362 (2011). https://doi.org/10.1016/j.snb.2011.09.075
References
Environmental Protection Agency (EPA). https://www.epa.gov/learn-issues/learn-about-air/ for “Air Pollution, 2013” (2013)
F. Xian, B. Zong, S. Mao, Metal-organic framework-based sensors for environmental contaminant sensing. Nano-Micro Lett. 10, 64 (2018). https://doi.org/10.1007/s40820-018-0218-0
T. Xu, Y. Pei, Y. Liu, D. Wu, Z. Shi, J. Xu, Y. Tian, X. Li, High-response NO2 resistive gas sensor based on bilayer MOS2 grown by a new two-step chemical vapor deposition method. J. Alloys Compd. 725, 253–259 (2017). https://doi.org/10.1016/j.jallcom.2017.06.105
I. Lee, S.J. Choi, K.M. Park, S.S. Lee, S. Choi, I.D. Kim, C.O. Park, The stability, sensitivity and response transients of ZnO, SnO2 and WO3 sensors under acetone, toluene and H2S environments. Sens. Actuators. B 197, 300–307 (2014). https://doi.org/10.1016/j.snb.2014.02.043
Z. Yuan, J. Zhang, F. Meng, Y. Li, R. Li et al., Highly sensitive ammonia sensors based on Ag-decorated WO3 nanorods. IEEE Trans. Nanotechnol. 17(6), 1252–1258 (2018). https://doi.org/10.1109/TNANO.2018.2871675
S. Zhang, C. Wang, F. Qu, S. Liu, C.T. Lin et al., ZnO nanoflowers modified with RuO2 for enhancing acetone sensing performance. Nanotechnology 31(11), 115502 (2019). https://doi.org/10.1088/1361-6528/ab5cd9
F. Qu, H. Jiang, M. Yang, Designed formation through a metal organic framework route of ZnO/ZnCo2O4 hollow core-shell nanocages with enhanced gas sensing properties. Nanoscale 8(36), 16349–16356 (2016). https://doi.org/10.1039/C6NR05187A
Y. Wang, G. Duan, Y. Zhu, H. Zhang, Z. Xu, Z. Dai, W. Cai, Room temperature H2S gas sensing properties of In2O3 micro/nanostructured porous thin film and hydrolyzation-induced enhanced sensing mechanism. Sens. Actuatators B 228, 74–84 (2016). https://doi.org/10.1016/j.snb.2016.01.002
F. Meng, H. Zeng, Y. Sun, M. Li, J. Liu, Trimethylamine sensors based on Au-modified hierarchical porous single-crystalline ZnO nanosheets. Sensors 17, 1478 (2017). https://doi.org/10.3390/s17071478
Z. Yuan, J. Zhao, F. Meng, W. Qin, Y. Chen, M. Yang, M. Ibrahimc, Y. Zhao, Sandwich-like composites of double-layer Co3O4 and reduced graphene oxide and their sensing properties to volatile organic compounds. J. Alloys Compd. 793, 24–30 (2019). https://doi.org/10.1016/j.jallcom.2019.03.386
Q. He, Z. Zeng, Z. Yin, H. Li, S. Wu, X. Huang, H. Zhang, Fabrication of flexible MOS2 thin-film transistor arrays for practical gas-sensing applications. Small 8(19), 2994–2999 (2012). https://doi.org/10.1002/smll.201201224
D.J. Late, Y.K. Huang, B. Liu, J. Acharya, S.N. Shirodkar et al., Sensing behavior of atomically thin-layered MoS2 transistors. ACS Nano 7(6), 4879–4891 (2013). https://doi.org/10.1021/nn400026u
B. Liu, L. Chen, G. Liu, A.N. Abbas, M. Fathi, C. Zhou, High-performance chemical sensing using Schottky-contacted chemical vapor deposition grown monolayer MoS2 transistors. ACS Nano 8(5), 5304–5314 (2014). https://doi.org/10.1021/nn5015215
Y. Kim, S.K. Kang, N.C. Oh, H.D. Lee, S.M. Lee, J. Park, H. Kim, Improved sensitivity in schottky contacted two-dimensional MoS2 gas sensor. ACS Appl. Mater. Interfaces 11(42), 38902–38909 (2019). https://doi.org/10.1021/acsami.9b10861
B. Cho, A.R. Kim, Y. Park, J. Yoon, Y.J. Lee et al., Bifunctional sensing characteristics of chemical vapor deposition synthesized atomic-layered MOS2. ACS Appl. Mater. Interfaces 7(4), 2952–2959 (2015). https://doi.org/10.1021/am508535x
S.Y. Cho, Y. Lee, H.J. Koh, H. Jung, J.S. Kim, H.W. Yoo, J. Kim, H.T. Jung, Superior chemical sensing performance of black phosphorus: comparison with MOS2 and graphene. Adv. Mater. 28(32), 7020–7028 (2016). https://doi.org/10.1002/adma.201601167
R. Kumar, N. Goel, M. Kumar, High performance NO2 sensor using MOS2 nanowires network. Appl. Phys. Lett. 112(5), 053502 (2018). https://doi.org/10.1063/1.5019296
T. Pham, G. Li, E. Bekyarova, M.E. Itkis, A. Mulchandani, MoS2-based optoelectronic gas sensor with sub-parts-per-billion limit of NO2 gas detection. ACS Nano 13(3), 3196–3205 (2019). https://doi.org/10.1021/acsnano.8b08778
H. Im, A. Almutairi, S. Kim, M. Sritharan, S. Kim, Y. Yoon, On MoS2 thin-film transistor design consideration for a NO2 gas sensor. ACS Sens. 4(11), 2930–2936 (2019). https://doi.org/10.1021/acssensors.9b01307
Y. Kang, S. Pyo, E. Jo, J. Kim, Light-assisted recovery of reacted MoS2 for reversible NO2 sensing at room temperature. Nanotechnology 30(35), 355504 (2019). https://doi.org/10.1088/1361-6528/ab2277
A.V. Agrawal, R. Kumar, S. Venkatesan, A. Zakhidov, G. Yang, J. Bao, M. Kumar, M. Kumar, Photoactivated mixed in-plane and edge-enriched p-type MoS2 flake-based NO2 sensor working at room temperature. ACS Sens. 3(5), 998–1004 (2018). https://doi.org/10.1021/acssensors.8b00146
S. Cui, Z. Wen, X. Huang, J. Chang, J. Chen, Stabilizing MOS2 nanosheets through SnO2 nanocrystal decoration for high-performance gas sensing in air. Small 11(19), 2305–2313 (2015). https://doi.org/10.1002/smll.201402923
Y. Han, D. Huang, Y. Ma, G. He, J. Hu et al., Design of hetero-nanostructures on MOS2 nanosheets to boost NO2 room-temperature sensing. ACS Appl. Mater. Interfaces 10(26), 22640–22649 (2018). https://doi.org/10.1021/acsami.8b05811
B. Cho, J. Yoon, S.K. Lim, A.R. Kim, D.H. Kim et al., Chemical sensing of 2D graphene/MOS2 heterostructure device. ACS Appl. Mater. Interfaces 7(30), 16775–16780 (2015). https://doi.org/10.1021/acsami.5b04541
Z. Wang, T. Zhang, C. Zhao, T. Han, T. Fei, S. Liu, G. Lu, Rational synthesis of molybdenum disulfide nanoparticles decorated reduced graphene oxide hybrids and their application for high-performance NO2 sensing. Sens. Actuators B 260, 508–518 (2018). https://doi.org/10.1016/j.snb.2017.12.181
M. Ikram, L. Liu, Y. Liu, L. Ma, H. Lv et al., Fabrication and characterization of a high-surface area MoS2@WS2 heterojunction for the ultra-sensitive NO2 detection at room temperature. J. Mater. Chem. A 7(24), 14602–14612 (2019). https://doi.org/10.1039/C9TA03452H
H.S. Hong, N.H. Phuong, N.T. Huong, N.H. Nam, N.T. Hue, Highly sensitive and low detection limit of resistive NO2 gas sensor based on a MoS2/graphene two-dimensional heterostructures. Appl. Surf. Sci. 492, 449–454 (2019). https://doi.org/10.1016/j.apsusc.2019.06.230
T. Chen, W. Yan, J. Xu, J. Li, G. Zhang, D. Ho, Highly sensitive and selective NO2 sensor based on 3D MoS2/rGO composites prepared by a low temperature self-assembly method. J. Alloys Compd. 793, 541–551 (2019). https://doi.org/10.1016/j.jallcom.2019.04.126
M. Yuan, M. Liu, E.H. Sargent, Colloidal quantum dot solids for solution-processed solar cells. Nat. Energy 1(3), 16016 (2016). https://doi.org/10.1038/nenergy.2016.16
V. Sukhovatkin, S. Hinds, L. Brzozowski, E.H. Sargent, Colloidal quantum-dot photodetectors exploiting multiexciton generation. Science 324(5934), 1542–1544 (2009). https://doi.org/10.1126/science.1173812
X. Dai, Z. Zhang, Y. Jin, Y. Niu, H. Cao et al., Solution-processed, high-performance light-emitting diodes based on quantum dots. Nature 515(7525), 96–99 (2014). https://doi.org/10.1038/nature13829
H. Liu, M. Li, O. Voznyy, L. Hu, Q. Fu et al., Physically flexible, rapid-response gas sensor based on colloidal quantum dot solids. Adv. Mater. 26(17), 2718–2724 (2014). https://doi.org/10.1002/adma.201304366
H. Liu, S. Xu, M. Li, G. Shao, H. Song et al., Chemiresistive gas sensors employing solution-processed metal oxide quantum dot films. Appl. Phys. Lett. 105(16), 163104 (2014). https://doi.org/10.1063/1.4900405
M. Li, W. Zhang, G. Shao, H. Kan, Z. Song et al., Sensitive NO2 gas sensors employing spray-coated colloidal quantum dots. Thin Solid Films 618, 271–276 (2016). https://doi.org/10.1016/j.tsf.2016.08.023
Z. Song, Z. Huang, J. Liu, Z. Hu, J. Zhang et al., Fully stretchable and humidity-resistant quantum dot gas sensors. ACS Sens. 3(5), 1048–1055 (2018). https://doi.org/10.1021/acssensors.8b00263
J. Xie, H. Zhang, S. Li, R. Wang, X. Sun et al., Defect-rich MoS2 ultrathin nanosheets with additional active edge sites for enhanced electrocatalytic hydrogen evolution. Adv. Mater. 25(40), 5807–5813 (2013). https://doi.org/10.1002/adma.201302685
C.B. Murray, D.J. Norris, M.G. Bawendi, Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J. Am. Chem. Soc. 115(19), 8706–8715 (1993). https://doi.org/10.1021/ja00072a025
S.G. Kwon, Y. Piao, J. Park, S. Angappane, Y. Jo, N.-M. Hwang, J.-G. Park, T. Hyeon, Kinetics of monodisperse iron oxide nanocrystal formation by “heating-up” process. J. Am. Chem. Soc. 129(41), 12571–12584 (2007). https://doi.org/10.1021/ja074633q
J. Zhang, J. Gao, E.M. Miller, J.M. Luther, M.C. Beard, Diffusion-controlled synthesis of Pbs and PbSe quantum dots with in situ halide passivation for quantum dot solar cells. ACS Nano 8(1), 614–622 (2013). https://doi.org/10.1021/nn405236k
X. Xin, Y. Zhang, X. Guan, J. Cao, W. Li, X. Long, X. Tan, Enhanced performances of PbS quantum-dots-modified MoS2 composite for NO2 detection at room temperature. ACS Appl. Mater. Interfaces 11(9), 9438–9447 (2019). https://doi.org/10.1021/acsami.8b20984
D. Wang, J.K. Baral, H. Zhao, B.A. Gonfa, V.-V. Truong, M.A. El Khakani, R. Izquierdo, D. Ma, Controlled fabrication of PbS quantum-dot/carbon-nanotube nanoarchitecture and its significant contribution to near-infrared photon-to-current conversion. Adv. Funct. Mater. 21(21), 4010–4018 (2011). https://doi.org/10.1002/adfm.201100824
R.J. Chen, S. Bangsaruntip, K.A. Drouvalakis, N.W. Kam, M. Shim et al., Noncovalent functionalization of carbon nanotubes for highly specific electronic biosensors. Proc. Natl. Acad. Sci. U.S.A. 100(9), 4984–4989 (2003). https://doi.org/10.1073/pnas.0837064100
H. Nan, Z. Wang, W. Wang, Z. Liang, Y. Lu et al., Strong photoluminescence enhancement of MoS2 through defect engineering and oxygen bonding. ACS Nano 8(6), 5738–5745 (2014). https://doi.org/10.1021/nn500532f
N. Barsan, U. Weimar, Conduction model of metal oxide gas sensors. J. Electroceram. 7(3), 143–167 (2011). https://doi.org/10.1023/A:1014405811371
H. Kan, M. Li, Z. Song, S. Liu, B. Zhang et al., Highly sensitive response of solution-processed bismuth sulfide nanobelts for room-temperature nitrogen dioxide detection. J. Colloid Interfaces Sci. 506, 102–110 (2017). https://doi.org/10.1016/j.jcis.2017.07.012
J. Wu, S. Feng, X. Wei, J. Shen, W. Lu et al., Facile synthesis of 3D graphene flowers for ultrasensitive and highly reversible gas sensing. Adv. Funct. Mater. 26(41), 7462–7469 (2016). https://doi.org/10.1002/adfm.201603598
M. Ridene, I. Iezhokin, P. Offermansand, C.F.J. Flipse, Enhanced sensitivity of epitaxial graphene to NO2 by water coadsorption. J. Phys. Chem. C 120(34), 19107–19112 (2016). https://doi.org/10.1021/acs.jpcc.6b03495
R. Kumar, N. Goel, M. Kumar, UV-activated MOS2 based fast and reversible NO2 sensor at room temperature. ACS Sens. 2(11), 1744–1752 (2017). https://doi.org/10.1021/acssensors.7b00731
N. Yamazoe, Toward innovations of gas sensor technology. Sens. Actuatators B 108, 2–14 (2005). https://doi.org/10.1016/j.snb.2004.12.075
H. Long, A.H. Trochimczyk, T. Pham, Z. Tang, T. Shi et al., High surface area MoS2/graphene hybrid aerogel for ultrasensitive NO2 detection. Adv. Funct. Mater. 26(28), 5158–5165 (2016). https://doi.org/10.1002/adfm.201601562
N. Yamazoe, New approaches for improving semiconductor gas sensors. Sens. Actuatators B 128, 566–573 (1991). https://doi.org/10.1016/0925-4005(91)80213-4
X. Zhang, L. Yu, X. Wu, W. Hu, Experimental sensing and density functional theory study of H2S and SOF2 adsorption on Au-modified graphene. Adv. Sci. 2(11), 1500101 (2015). https://doi.org/10.1002/advs.201500101
J. Embden, K. Latham, N.W. Duffy, Y. Tachibana, Near-infrared absorbing Cu12Sb4S13 and Cu3SbS4 nanocrystals: synthesis, characterization, and photoelectrochemistry. J. Am. Chem. Soc. 135(31), 11562–11571 (2013). https://doi.org/10.1021/ja402702x
K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill et al., Ultrafast saturable absorption of two-dimensional MoS2 nanosheets. ACS Nano 7(10), 9260–9267 (2013). https://doi.org/10.1021/nn403886t
F.W. Wise, Lead salt quantum dots: the limit of strong quantum confinement. Acc. Chem. Res. 33(11), 773–780 (2000). https://doi.org/10.1021/ar970220q
N. Yamazoe, K. Shimanoe, Basic approach to the transducer function of oxide semiconductor gas sensors. Sens. Actuatators B 160, 1352–1362 (2011). https://doi.org/10.1016/j.snb.2011.09.075