Electrostatic Self-assembly of 0D–2D SnO2 Quantum Dots/Ti3C2Tx MXene Hybrids as Anode for Lithium-Ion Batteries
Corresponding Author: Renjie Chen
Nano-Micro Letters,
Vol. 11 (2019), Article Number: 65
Abstract
MXenes, a new family of two-dimensional (2D) materials with excellent electronic conductivity and hydrophilicity, have shown distinctive advantages as a highly conductive matrix material for lithium-ion battery anodes. Herein, a facile electrostatic self-assembly of SnO2 quantum dots (QDs) on Ti3C2Tx MXene sheets is proposed. The as-prepared SnO2/MXene hybrids have a unique 0D–2D structure, in which the 0D SnO2 QDs (~ 4.7 nm) are uniformly distributed over 2D Ti3C2Tx MXene sheets with controllable loading amount. The SnO2 QDs serve as a high capacity provider and the “spacer” to prevent the MXene sheets from restacking; the highly conductive Ti3C2Tx MXene can not only provide efficient pathways for fast transport of electrons and Li ions, but also buffer the volume change of SnO2 during lithiation/delithiation by confining SnO2 QDs between the MXene nanosheets. Therefore, the 0D–2D SnO2 QDs/MXene hybrids deliver superior lithium storage properties with high capacity (887.4 mAh g−1 at 50 mA g−1), stable cycle performance (659.8 mAh g−1 at 100 mA g−1 after 100 cycles with a capacity retention of 91%) and excellent rate performance (364 mAh g−1 at 3 A g−1), making it a promising anode material for lithium-ion batteries.
Highlights:
1 0D–2D SnO2 quantum dots/MXene (SnO2 QDs/MXene) hybrids were synthesized by electrostatic self-assembly.
2 MXene not only provides efficient pathways for fast transport of electrons and Li ions, but also buffers the volume change of SnO2 during charge/discharge process.
3 The 0D–2D SnO2 QDs/MXene hybrids deliver high capacity, excellent cycle and rate performances as anode of lithium-ion batteries.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M. Li, J. Lu, Z. Chen, K. Amine, 30 years of lithium-ion batteries. Adv. Mater. 30(33), 1800561 (2018). https://doi.org/10.1002/adma.201800561
- X. Zuo, J. Zhu, P. Müller-Buschbaum, Y.-J. Cheng, Silicon based lithium-ion battery anodes: a chronicle perspective review. Nano Energy 31, 113–143 (2017). https://doi.org/10.1016/j.nanoen.2016.11.013
- H. Liu, M. Jia, Q. Zhu, B. Cao, R. Chen, Y. Wang, F. Wu, B. Xu, 3D–0D graphene-Fe3O4 quantum dot hybrids as high-performance anode materials for sodium-ion batteries. ACS Appl. Mater. Interfaces 8(40), 26878–26885 (2016). https://doi.org/10.1021/acsami.6b09496
- Y. Zhao, X. Li, B. Yan, D. Xiong, D. Li, S. Lawes, X. Sun, Recent developments and understanding of novel mixed transition-metal oxides as anodes in lithium ion batteries. Adv. Energy Mater. 6(8), 1502175 (2016). https://doi.org/10.1002/aenm.201502175
- P. Lian, J. Wang, D. Cai, G. Liu, Y. Wang, H. Wang, Design and synthesis of porous nano-sized Sn@C/graphene electrode material with 3D carbon network for high-performance lithium-ion batteries. J. Alloys Compd. 604, 188–195 (2014). https://doi.org/10.1016/j.jallcom.2014.03.116
- J. Mao, T. Zhou, Y. Zheng, H. Gao, H.K. Liu, Z. Guo, Two-dimensional nanostructures for sodium-ion battery anodes. J. Mater. Chem. A 6(8), 3284–3303 (2018). https://doi.org/10.1039/c7ta10500b
- L. Fei, Y. Jiang, Y. Xu, G. Chen, Y. Li, X. Xu, S. Deng, H. Luo, A novel solvent-free thermal reaction of ferrocene and sulfur for one-step synthesis of iron sulfide and carbon nanocomposites and their electrochemical performance. J. Power Sources 265, 1–5 (2014). https://doi.org/10.1016/j.jpowsour.2014.04.110
- T. Zhou, W.K. Pang, C. Zhang, J. Yang, Z. Chen, H.K. Liu, Z. Guo, Enhanced sodium-ion battery performance by structural phase transition from two-dimensional hexagonal-SnS2 to orthorhombic-SnS. ACS Nano 8(8), 8323–8333 (2014). https://doi.org/10.1021/nn503582c
- S.L. Zhang, B.Y. Guan, H.B. Wu, X.W.D. Lou, Metal-organic framework-assisted synthesis of compact Fe2O3 nanotubes in Co3O4 host with enhanced lithium storage properties. Nano Micro Lett. 10(3), 44 (2018). https://doi.org/10.1007/s40820-018-0197-1
- A. Bai, L. Wang, J. Li, X. He, J. Wang, J. Wang, Composite of graphite/phosphorus as anode for lithium-ion batteries. J. Power Sources 289, 100–104 (2015). https://doi.org/10.1016/j.jpowsour.2015.04.168
- X. Yu, H.J. Kim, J.-Y. Hong, Y.M. Jung, K.D. Kwon, J. Kong, H.S. Park, Elucidating surface redox charge storage of phosphorus-incorporated graphenes with hierarchical architectures. Nano Energy 15, 576–586 (2015). https://doi.org/10.1016/j.nanoen.2015.05.010
- W. Zhang, W.K. Pang, V. Sencadas, Z. Guo, Understanding high-energy-density Sn4P3 anodes for potassium-ion batteries. Joule 2(8), 1534–1547 (2018). https://doi.org/10.1016/j.joule.2018.04.022
- L. Pan, Y. Zhang, F. Lu, Y. Du, Z. Lu et al., Exposed facet engineering design of graphene-SnO2 nanorods for ultrastable Li-ion batteries. Energy Storage Mater. (2018). https://doi.org/10.1016/j.ensm.2018.10.007
- H. Wang, X. Jiang, Y. Chai, X. Yang, R. Yuan, Sandwich-like C@SnO2/Sn/void@C hollow spheres as improved anode materials for lithium ion batteries. J. Power Sources 379, 191–196 (2018). https://doi.org/10.1016/j.jpowsour.2018.01.054
- B. Zhao, Z. Wang, S. Wang, J. Jiang, J. Si, S. Huang, Z. Chen, W. Li, Y. Jiang, Sandwiched spherical tin dioxide/graphene with a three-dimensional interconnected closed pore structure for lithium storage. Nanoscale 10(34), 16116–16126 (2018). https://doi.org/10.1039/c8nr03776k
- P. Deng, J. Yang, S. Li, T.-E. Fan, H.-H. Wu et al., High initial reversible capacity and long life of ternary SnO2-Co-carbon nanocomposite anodes for lithium-ion batteries. Nano Micro Lett. 11, 18 (2019). https://doi.org/10.1007/s40820-019-0246-4
- J. Liang, C. Yuan, H. Li, K. Fan, Z. Wei, H. Sun, J. Ma, Growth of SnO2 nanoflowers on N-doped carbon nanofibers as anode for Li- and Na-ion batteries. Nano Micro Lett. 10(2), 21 (2018). https://doi.org/10.1007/s40820-017-0172-2
- H. Li, Q. Su, J. Kang, M. Huang, M. Feng, H. Feng, P. Huang, G. Du, Porous SnO2 hollow microspheres as anodes for high-performance lithium ion battery. Mater. Lett. 217, 276–280 (2018). https://doi.org/10.1016/j.matlet.2018.01.015
- Y.T. Liu, P. Zhang, N. Sun, B. Anasori, Q.Z. Zhu, H. Liu, Y. Gogotsi, B. Xu, Self-assembly of transition metal oxide nanostructures on MXene nanosheets for fast and stable lithium storage. Adv. Mater. 30(23), 1707334 (2018). https://doi.org/10.1002/adma.201707334
- S. Abouali, M. Akbari Garakani, J.-K. Kim, Ultrafine SnO2 nanoparticles encapsulated in ordered mesoporous carbon framework for Li-ion battery anodes. Electrochim. Acta 284, 436–443 (2018). https://doi.org/10.1016/j.electacta.2018.07.162
- N. Hu, X. Lv, Y. Dai, L. Fan, D. Xiong, X. Li, SnO2/reduced graphene oxide interlayer mitigating the shuttle effect of Li-S batteries. ACS Appl. Mater. Interfaces 10(22), 18665–18674 (2018). https://doi.org/10.1021/acsami.8b03255
- J. Abe, K. Takahashi, K. Kawase, Y. Kobayashi, S. Shiratori, Self-standing carbon nanofiber and SnO2 nanorod composite as a high-capacity and high-rate-capability anode for lithium-ion batteries. ACS Appl. Nano Mater. 1(6), 2982–2989 (2018). https://doi.org/10.1021/acsanm.8b00586
- D. Ma, Y. Li, H. Mi, S. Luo, P. Zhang, Z. Lin, J. Li, H. Zhang, Robust SnO2−x nanoparticle-impregnated carbon nanofibers with outstanding electrochemical performance for advanced sodium-ion batteries. Angew. Chem. Int. Ed. 57(29), 8901–8905 (2018). https://doi.org/10.1002/anie.201802672
- R. Jia, J. Yue, Q. Xia, J. Xu, X. Zhu, S. Sun, T. Zhai, H. Xia, Carbon shelled porous SnO2−δ nanosheet arrays as advanced anodes for lithium-ion batteries. Energy Storage Mater. 13, 303–311 (2018). https://doi.org/10.1016/j.ensm.2018.02.009
- Y. Cheng, J. Huang, H. Qi, L. Cao, J. Yang, Q. Xi, X. Luo, K. Yanagisawa, J. Li, Adjusting the chemical bonding of SnO2@CNT composite for enhanced conversion reaction kinetics. Small 13(31), 1700656 (2017). https://doi.org/10.1002/smll.201700656
- Y. Cheng, J. Huang, H. Qi, L. Cao, X. Luo, J. Li, Z. Xu, J. Yang, Controlling the Sn-C bonds content in SnO2@CNTs composite to form in situ pulverized structure for enhanced electrochemical kinetics. Nanoscale 9(47), 18681–18689 (2017). https://doi.org/10.1039/c7nr05556k
- P. Simon, Two-dimensional MXene with controlled interlayer spacing for electrochemical energy storage. ACS Nano 11(3), 2393–2396 (2017). https://doi.org/10.1021/acsnano.7b01108
- L. Yu, L. Hu, B. Anasori, Y.-T. Liu, Q. Zhu, P. Zhang, Y. Gogotsi, B. Xu, MXene-bonded activated carbon as a flexible electrode for high-performance supercapacitors. ACS Energy Lett. 3(7), 1597–1603 (2018). https://doi.org/10.1021/acsenergylett.8b00718
- C.J. Zhang, S.J. Kim, M. Ghidiu, M.-Q. Zhao, M.W. Barsoum, V. Nicolosi, Y. Gogotsi, Layered orthorhombic Nb2O5@Nb4C3Tx and TiO2@Ti3C2Tx hierarchical composites for high performance Li-ion batteries. Adv. Funct. Mater. 26(23), 4143–4151 (2016). https://doi.org/10.1002/adfm.201600682
- C. Zhang, M. Beidaghi, M. Naguib, M.R. Lukatskaya, M.-Q. Zhao et al., Synthesis and charge storage properties of hierarchical niobium pentoxide/carbon/niobium carbide (MXene) hybrid materials. Chem. Mater. 28(11), 3937–3943 (2016). https://doi.org/10.1021/acs.chemmater.6b01244
- C.J. Zhang, S. Pinilla, N. McEvoy, C.P. Cullen, B. Anasori et al., Oxidation stability of colloidal two-dimensional titanium carbides (MXenes). Chem. Mater. 29(11), 4848–4856 (2017). https://doi.org/10.1021/acs.chemmater.7b00745
- M.Q. Zhao, C.E. Ren, Z. Ling, M.R. Lukatskaya, C. Zhang et al., Flexible MXene/carbon nanotube composite paper with high volumetric capacitance. Adv. Mater. 27(2), 339–345 (2015). https://doi.org/10.1002/adma.201404140
- X. Xie, S. Wang, K. Kretschmer, G. Wang, Two-dimensional layered compound based anode materials for lithium-ion batteries and sodium-ion batteries. J. Colloid Interface Sci. 499, 17–32 (2017). https://doi.org/10.1016/j.jcis.2017.03.077
- X. Xie, M.-Q. Zhao, B. Anasori, K. Maleski, C.E. Ren et al., Porous heterostructured MXene/carbon nanotube composite paper with high volumetric capacity for sodium-based energy storage devices. Nano Energy 26, 513–523 (2016). https://doi.org/10.1016/j.nanoen.2016.06.005
- C.J. Zhang, S.H. Park, A. Seral-Ascaso, S. Barwich, N. McEvoy et al., High capacity silicon anodes enabled by MXene viscous aqueous ink. Nat. Commun. 10(1), 849 (2019). https://doi.org/10.1038/s41467-019-08383-y
- G. Zou, Z. Zhang, J. Guo, B. Liu, Q. Zhang, C. Fernandez, Q. Peng, Synthesis of MXene/Ag composites for extraordinary long cycle lifetime lithium storage at high rates. ACS Appl. Mater. Interfaces 8(34), 22280–22286 (2016). https://doi.org/10.1021/acsami.6b08089
- A. Ali, K. Hantanasirisakul, A. Abdala, P. Urbankowski, M.Q. Zhao, B. Anasori, Y. Gogotsi, B. Aissa, K.A. Mahmoud, Effect of synthesis on performance of MXene/iron oxide anode material for lithium-ion batteries. Langmuir 34(38), 11325–11334 (2018). https://doi.org/10.1021/acs.langmuir.8b01953
- M.-Q. Zhao, M. Torelli, C.E. Ren, M. Ghidiu, Z. Ling, B. Anasori, M.W. Barsoum, Y. Gogotsi, 2D titanium carbide and transition metal oxides hybrid electrodes for Li-ion storage. Nano Energy 30, 603–613 (2016). https://doi.org/10.1016/j.nanoen.2016.10.062
- C. Chen, X. Xie, B. Anasori, A. Sarycheva, T. Makaryan et al., MoS2-on-MXene heterostructures as highly reversible anode materials for lithium-ion batteries. Angew. Chem. Int. Ed. 57(7), 1846–1850 (2018). https://doi.org/10.1002/anie.201710616
- J. Xiong, L. Pan, H. Wang, F. Du, Y. Chen, J. Yang, C. Zhang, Synergistically enhanced lithium storage performance based on titanium carbide nanosheets (MXene) backbone and SnO2 quantum dots. Electrochim. Acta 268, 503–511 (2018). https://doi.org/10.1016/j.electacta.2018.02.090
- M. Boota, B. Anasori, C. Voigt, M.Q. Zhao, M.W. Barsoum, Y. Gogotsi, Pseudocapacitive electrodes produced by oxidant-free polymerization of pyrrole between the layers of 2D titanium carbide (MXene). Adv. Mater. 28(7), 1517–1522 (2016). https://doi.org/10.1002/adma.201504705
- X. Lu, H. Wang, Z. Wang, Y. Jiang, D. Cao, G. Yang, Room-temperature synthesis of colloidal SnO2 quantum dot solution and ex situ deposition on carbon nanotubes as anode materials for lithium ion batteries. J. Alloys Compd. 680, 109–115 (2016). https://doi.org/10.1016/j.jallcom.2016.04.128
- J. Yan, C.E. Ren, K. Maleski, C.B. Hatter, B. Anasori, P. Urbankowski, A. Sarycheva, Y. Gogotsi, Flexible MXene/graphene films for ultrafast supercapacitors with outstanding volumetric capacitance. Adv. Funct. Mater. 27(30), 1701264 (2017). https://doi.org/10.1002/adfm.201701264
- X. Li, J. Zhu, Y. Fang, W. Lv, F. Wang, Y. Liu, H. Liu, Hydrothermal preparation of CoO/Ti3C2 composite material for lithium-ion batteries with enhanced electrochemical performance. J. Electroanal. Chem. 817, 1–8 (2018). https://doi.org/10.1016/j.jelechem.2018.03.031
- H. Zhang, P. Zhang, W. Zheng, W. Tian, J. Chen, Y. Zhang, Z. Sun, 3D d-Ti3C2 xerogel framework decorated with core-shell SnO2@C for high-performance lithium-ion batteries. Electrochim. Acta 285, 94–102 (2018). https://doi.org/10.1016/j.electacta.2018.07.198
- M. Sahoo, S. Ramaprabhu, One-pot environment-friendly synthesis of boron doped graphene-SnO2 for anodic performance in Li ion battery. Carbon 127, 627–635 (2018). https://doi.org/10.1016/j.carbon.2017.11.056
- Z. Ma, X. Zhou, W. Deng, D. Lei, Z. Liu, 3D porous MXene (Ti3C2)/reduced graphene oxide hybrid films for advanced lithium storage. ACS Appl. Mater. Interfaces 10(4), 3634–3643 (2018). https://doi.org/10.1021/acsami.7b17386
- W. Bao, X. Xie, J. Xu, X. Guo, J. Song, W. Wu, D. Su, G. Wang, Confined sulfur in 3D MXene/reduced graphene oxide hybrid nanosheets for lithium-sulfur battery. Chemistry 23(51), 12613–12619 (2017). https://doi.org/10.1002/chem.201702387
- J. Zhu, Y. Tang, C. Yang, F. Wang, M. Cao, Composites of TiO2 nanoparticles deposited on Ti3C2 MXene nanosheets with enhanced electrochemical performance. J. Electrochem. Soc. 163(5), A785–A791 (2016). https://doi.org/10.1149/2.0981605jes
- Y. Wang, Y. Li, Z. Qiu, X. Wu, P. Zhou et al., Fe3O4@Ti3C2 MXene hybrids with ultrahigh volumetric capacity as an anode material for lithium-ion batteries. J. Mater. Chem. A 6(24), 11189–11197 (2018). https://doi.org/10.1039/c8ta00122g
- X. Ao, J. Jiang, Y. Ruan, Z. Li, Y. Zhang, J. Sun, C. Wang, Honeycomb-inspired design of ultrafine SnO2@C nanospheres embedded in carbon film as anode materials for high performance lithium- and sodium-ion battery. J. Power Sources 359, 340–348 (2017). https://doi.org/10.1016/j.jpowsour.2017.05.064
- D. Cui, Z. Zheng, X. Peng, T. Li, T. Sun, L. Yuan, Fluorine-doped SnO2 nanoparticles anchored on reduced graphene oxide as a high-performance lithium ion battery anode. J. Power Sources 362, 20–26 (2017). https://doi.org/10.1016/j.jpowsour.2017.07.024
- X. Wang, X. Zhou, K. Yao, J. Zhang, Z. Liu, A SnO2/graphene composite as a high stability electrode for lithium ion batteries. Carbon 49(1), 133–139 (2011). https://doi.org/10.1016/j.carbon.2010.08.052
- X. Sun, Y. Liu, J. Zhang, L. Hou, J. Sun, C. Yuan, Facile construction of ultrathin snox nanosheets decorated MXene (Ti3C2) nanocomposite towards Li-ion batteries as high performance anode materials. Electrochim. Acta 295, 237–245 (2019). https://doi.org/10.1016/j.electacta.2018.10.152
- W. Lv, J. Zhu, F. Wang, Y. Fang, Facile synthesis and electrochemical performance of TiO2 nanowires/Ti3C2 composite. J. Mater. Sci. 29(6), 4881–4887 (2018). https://doi.org/10.1007/s10854-017-8446-5
- M. Zheng, R. Guo, Z. Liu, B. Wang, L. Meng, F. Li, T. Li, Y. Luo, MoS2 intercalated p-Ti3C2 anode materials with sandwich-like three dimensional conductive networks for lithium-ion batteries. J. Alloys Compd. 735, 1262–1270 (2018). https://doi.org/10.1016/j.jallcom.2017.11.250
- F. Kong, X. He, Q. Liu, X. Qi, D. Sun, Y. Zheng, R. Wang, Y. Bai, Enhanced reversible Li-ion storage in Si@Ti3C2 MXene nanocomposite. Electrochem. Commun. 97, 16–21 (2018). https://doi.org/10.1016/j.elecom.2018.10.003
- B. Cao, Q. Zhang, H. Liu, B. Xu, S. Zhang et al., Graphitic carbon nanocage as a stable and high power anode for potassium-ion batteries. Adv. Energy Mater. 8(25), 1801149 (2018). https://doi.org/10.1002/aenm.201801149
References
M. Li, J. Lu, Z. Chen, K. Amine, 30 years of lithium-ion batteries. Adv. Mater. 30(33), 1800561 (2018). https://doi.org/10.1002/adma.201800561
X. Zuo, J. Zhu, P. Müller-Buschbaum, Y.-J. Cheng, Silicon based lithium-ion battery anodes: a chronicle perspective review. Nano Energy 31, 113–143 (2017). https://doi.org/10.1016/j.nanoen.2016.11.013
H. Liu, M. Jia, Q. Zhu, B. Cao, R. Chen, Y. Wang, F. Wu, B. Xu, 3D–0D graphene-Fe3O4 quantum dot hybrids as high-performance anode materials for sodium-ion batteries. ACS Appl. Mater. Interfaces 8(40), 26878–26885 (2016). https://doi.org/10.1021/acsami.6b09496
Y. Zhao, X. Li, B. Yan, D. Xiong, D. Li, S. Lawes, X. Sun, Recent developments and understanding of novel mixed transition-metal oxides as anodes in lithium ion batteries. Adv. Energy Mater. 6(8), 1502175 (2016). https://doi.org/10.1002/aenm.201502175
P. Lian, J. Wang, D. Cai, G. Liu, Y. Wang, H. Wang, Design and synthesis of porous nano-sized Sn@C/graphene electrode material with 3D carbon network for high-performance lithium-ion batteries. J. Alloys Compd. 604, 188–195 (2014). https://doi.org/10.1016/j.jallcom.2014.03.116
J. Mao, T. Zhou, Y. Zheng, H. Gao, H.K. Liu, Z. Guo, Two-dimensional nanostructures for sodium-ion battery anodes. J. Mater. Chem. A 6(8), 3284–3303 (2018). https://doi.org/10.1039/c7ta10500b
L. Fei, Y. Jiang, Y. Xu, G. Chen, Y. Li, X. Xu, S. Deng, H. Luo, A novel solvent-free thermal reaction of ferrocene and sulfur for one-step synthesis of iron sulfide and carbon nanocomposites and their electrochemical performance. J. Power Sources 265, 1–5 (2014). https://doi.org/10.1016/j.jpowsour.2014.04.110
T. Zhou, W.K. Pang, C. Zhang, J. Yang, Z. Chen, H.K. Liu, Z. Guo, Enhanced sodium-ion battery performance by structural phase transition from two-dimensional hexagonal-SnS2 to orthorhombic-SnS. ACS Nano 8(8), 8323–8333 (2014). https://doi.org/10.1021/nn503582c
S.L. Zhang, B.Y. Guan, H.B. Wu, X.W.D. Lou, Metal-organic framework-assisted synthesis of compact Fe2O3 nanotubes in Co3O4 host with enhanced lithium storage properties. Nano Micro Lett. 10(3), 44 (2018). https://doi.org/10.1007/s40820-018-0197-1
A. Bai, L. Wang, J. Li, X. He, J. Wang, J. Wang, Composite of graphite/phosphorus as anode for lithium-ion batteries. J. Power Sources 289, 100–104 (2015). https://doi.org/10.1016/j.jpowsour.2015.04.168
X. Yu, H.J. Kim, J.-Y. Hong, Y.M. Jung, K.D. Kwon, J. Kong, H.S. Park, Elucidating surface redox charge storage of phosphorus-incorporated graphenes with hierarchical architectures. Nano Energy 15, 576–586 (2015). https://doi.org/10.1016/j.nanoen.2015.05.010
W. Zhang, W.K. Pang, V. Sencadas, Z. Guo, Understanding high-energy-density Sn4P3 anodes for potassium-ion batteries. Joule 2(8), 1534–1547 (2018). https://doi.org/10.1016/j.joule.2018.04.022
L. Pan, Y. Zhang, F. Lu, Y. Du, Z. Lu et al., Exposed facet engineering design of graphene-SnO2 nanorods for ultrastable Li-ion batteries. Energy Storage Mater. (2018). https://doi.org/10.1016/j.ensm.2018.10.007
H. Wang, X. Jiang, Y. Chai, X. Yang, R. Yuan, Sandwich-like C@SnO2/Sn/void@C hollow spheres as improved anode materials for lithium ion batteries. J. Power Sources 379, 191–196 (2018). https://doi.org/10.1016/j.jpowsour.2018.01.054
B. Zhao, Z. Wang, S. Wang, J. Jiang, J. Si, S. Huang, Z. Chen, W. Li, Y. Jiang, Sandwiched spherical tin dioxide/graphene with a three-dimensional interconnected closed pore structure for lithium storage. Nanoscale 10(34), 16116–16126 (2018). https://doi.org/10.1039/c8nr03776k
P. Deng, J. Yang, S. Li, T.-E. Fan, H.-H. Wu et al., High initial reversible capacity and long life of ternary SnO2-Co-carbon nanocomposite anodes for lithium-ion batteries. Nano Micro Lett. 11, 18 (2019). https://doi.org/10.1007/s40820-019-0246-4
J. Liang, C. Yuan, H. Li, K. Fan, Z. Wei, H. Sun, J. Ma, Growth of SnO2 nanoflowers on N-doped carbon nanofibers as anode for Li- and Na-ion batteries. Nano Micro Lett. 10(2), 21 (2018). https://doi.org/10.1007/s40820-017-0172-2
H. Li, Q. Su, J. Kang, M. Huang, M. Feng, H. Feng, P. Huang, G. Du, Porous SnO2 hollow microspheres as anodes for high-performance lithium ion battery. Mater. Lett. 217, 276–280 (2018). https://doi.org/10.1016/j.matlet.2018.01.015
Y.T. Liu, P. Zhang, N. Sun, B. Anasori, Q.Z. Zhu, H. Liu, Y. Gogotsi, B. Xu, Self-assembly of transition metal oxide nanostructures on MXene nanosheets for fast and stable lithium storage. Adv. Mater. 30(23), 1707334 (2018). https://doi.org/10.1002/adma.201707334
S. Abouali, M. Akbari Garakani, J.-K. Kim, Ultrafine SnO2 nanoparticles encapsulated in ordered mesoporous carbon framework for Li-ion battery anodes. Electrochim. Acta 284, 436–443 (2018). https://doi.org/10.1016/j.electacta.2018.07.162
N. Hu, X. Lv, Y. Dai, L. Fan, D. Xiong, X. Li, SnO2/reduced graphene oxide interlayer mitigating the shuttle effect of Li-S batteries. ACS Appl. Mater. Interfaces 10(22), 18665–18674 (2018). https://doi.org/10.1021/acsami.8b03255
J. Abe, K. Takahashi, K. Kawase, Y. Kobayashi, S. Shiratori, Self-standing carbon nanofiber and SnO2 nanorod composite as a high-capacity and high-rate-capability anode for lithium-ion batteries. ACS Appl. Nano Mater. 1(6), 2982–2989 (2018). https://doi.org/10.1021/acsanm.8b00586
D. Ma, Y. Li, H. Mi, S. Luo, P. Zhang, Z. Lin, J. Li, H. Zhang, Robust SnO2−x nanoparticle-impregnated carbon nanofibers with outstanding electrochemical performance for advanced sodium-ion batteries. Angew. Chem. Int. Ed. 57(29), 8901–8905 (2018). https://doi.org/10.1002/anie.201802672
R. Jia, J. Yue, Q. Xia, J. Xu, X. Zhu, S. Sun, T. Zhai, H. Xia, Carbon shelled porous SnO2−δ nanosheet arrays as advanced anodes for lithium-ion batteries. Energy Storage Mater. 13, 303–311 (2018). https://doi.org/10.1016/j.ensm.2018.02.009
Y. Cheng, J. Huang, H. Qi, L. Cao, J. Yang, Q. Xi, X. Luo, K. Yanagisawa, J. Li, Adjusting the chemical bonding of SnO2@CNT composite for enhanced conversion reaction kinetics. Small 13(31), 1700656 (2017). https://doi.org/10.1002/smll.201700656
Y. Cheng, J. Huang, H. Qi, L. Cao, X. Luo, J. Li, Z. Xu, J. Yang, Controlling the Sn-C bonds content in SnO2@CNTs composite to form in situ pulverized structure for enhanced electrochemical kinetics. Nanoscale 9(47), 18681–18689 (2017). https://doi.org/10.1039/c7nr05556k
P. Simon, Two-dimensional MXene with controlled interlayer spacing for electrochemical energy storage. ACS Nano 11(3), 2393–2396 (2017). https://doi.org/10.1021/acsnano.7b01108
L. Yu, L. Hu, B. Anasori, Y.-T. Liu, Q. Zhu, P. Zhang, Y. Gogotsi, B. Xu, MXene-bonded activated carbon as a flexible electrode for high-performance supercapacitors. ACS Energy Lett. 3(7), 1597–1603 (2018). https://doi.org/10.1021/acsenergylett.8b00718
C.J. Zhang, S.J. Kim, M. Ghidiu, M.-Q. Zhao, M.W. Barsoum, V. Nicolosi, Y. Gogotsi, Layered orthorhombic Nb2O5@Nb4C3Tx and TiO2@Ti3C2Tx hierarchical composites for high performance Li-ion batteries. Adv. Funct. Mater. 26(23), 4143–4151 (2016). https://doi.org/10.1002/adfm.201600682
C. Zhang, M. Beidaghi, M. Naguib, M.R. Lukatskaya, M.-Q. Zhao et al., Synthesis and charge storage properties of hierarchical niobium pentoxide/carbon/niobium carbide (MXene) hybrid materials. Chem. Mater. 28(11), 3937–3943 (2016). https://doi.org/10.1021/acs.chemmater.6b01244
C.J. Zhang, S. Pinilla, N. McEvoy, C.P. Cullen, B. Anasori et al., Oxidation stability of colloidal two-dimensional titanium carbides (MXenes). Chem. Mater. 29(11), 4848–4856 (2017). https://doi.org/10.1021/acs.chemmater.7b00745
M.Q. Zhao, C.E. Ren, Z. Ling, M.R. Lukatskaya, C. Zhang et al., Flexible MXene/carbon nanotube composite paper with high volumetric capacitance. Adv. Mater. 27(2), 339–345 (2015). https://doi.org/10.1002/adma.201404140
X. Xie, S. Wang, K. Kretschmer, G. Wang, Two-dimensional layered compound based anode materials for lithium-ion batteries and sodium-ion batteries. J. Colloid Interface Sci. 499, 17–32 (2017). https://doi.org/10.1016/j.jcis.2017.03.077
X. Xie, M.-Q. Zhao, B. Anasori, K. Maleski, C.E. Ren et al., Porous heterostructured MXene/carbon nanotube composite paper with high volumetric capacity for sodium-based energy storage devices. Nano Energy 26, 513–523 (2016). https://doi.org/10.1016/j.nanoen.2016.06.005
C.J. Zhang, S.H. Park, A. Seral-Ascaso, S. Barwich, N. McEvoy et al., High capacity silicon anodes enabled by MXene viscous aqueous ink. Nat. Commun. 10(1), 849 (2019). https://doi.org/10.1038/s41467-019-08383-y
G. Zou, Z. Zhang, J. Guo, B. Liu, Q. Zhang, C. Fernandez, Q. Peng, Synthesis of MXene/Ag composites for extraordinary long cycle lifetime lithium storage at high rates. ACS Appl. Mater. Interfaces 8(34), 22280–22286 (2016). https://doi.org/10.1021/acsami.6b08089
A. Ali, K. Hantanasirisakul, A. Abdala, P. Urbankowski, M.Q. Zhao, B. Anasori, Y. Gogotsi, B. Aissa, K.A. Mahmoud, Effect of synthesis on performance of MXene/iron oxide anode material for lithium-ion batteries. Langmuir 34(38), 11325–11334 (2018). https://doi.org/10.1021/acs.langmuir.8b01953
M.-Q. Zhao, M. Torelli, C.E. Ren, M. Ghidiu, Z. Ling, B. Anasori, M.W. Barsoum, Y. Gogotsi, 2D titanium carbide and transition metal oxides hybrid electrodes for Li-ion storage. Nano Energy 30, 603–613 (2016). https://doi.org/10.1016/j.nanoen.2016.10.062
C. Chen, X. Xie, B. Anasori, A. Sarycheva, T. Makaryan et al., MoS2-on-MXene heterostructures as highly reversible anode materials for lithium-ion batteries. Angew. Chem. Int. Ed. 57(7), 1846–1850 (2018). https://doi.org/10.1002/anie.201710616
J. Xiong, L. Pan, H. Wang, F. Du, Y. Chen, J. Yang, C. Zhang, Synergistically enhanced lithium storage performance based on titanium carbide nanosheets (MXene) backbone and SnO2 quantum dots. Electrochim. Acta 268, 503–511 (2018). https://doi.org/10.1016/j.electacta.2018.02.090
M. Boota, B. Anasori, C. Voigt, M.Q. Zhao, M.W. Barsoum, Y. Gogotsi, Pseudocapacitive electrodes produced by oxidant-free polymerization of pyrrole between the layers of 2D titanium carbide (MXene). Adv. Mater. 28(7), 1517–1522 (2016). https://doi.org/10.1002/adma.201504705
X. Lu, H. Wang, Z. Wang, Y. Jiang, D. Cao, G. Yang, Room-temperature synthesis of colloidal SnO2 quantum dot solution and ex situ deposition on carbon nanotubes as anode materials for lithium ion batteries. J. Alloys Compd. 680, 109–115 (2016). https://doi.org/10.1016/j.jallcom.2016.04.128
J. Yan, C.E. Ren, K. Maleski, C.B. Hatter, B. Anasori, P. Urbankowski, A. Sarycheva, Y. Gogotsi, Flexible MXene/graphene films for ultrafast supercapacitors with outstanding volumetric capacitance. Adv. Funct. Mater. 27(30), 1701264 (2017). https://doi.org/10.1002/adfm.201701264
X. Li, J. Zhu, Y. Fang, W. Lv, F. Wang, Y. Liu, H. Liu, Hydrothermal preparation of CoO/Ti3C2 composite material for lithium-ion batteries with enhanced electrochemical performance. J. Electroanal. Chem. 817, 1–8 (2018). https://doi.org/10.1016/j.jelechem.2018.03.031
H. Zhang, P. Zhang, W. Zheng, W. Tian, J. Chen, Y. Zhang, Z. Sun, 3D d-Ti3C2 xerogel framework decorated with core-shell SnO2@C for high-performance lithium-ion batteries. Electrochim. Acta 285, 94–102 (2018). https://doi.org/10.1016/j.electacta.2018.07.198
M. Sahoo, S. Ramaprabhu, One-pot environment-friendly synthesis of boron doped graphene-SnO2 for anodic performance in Li ion battery. Carbon 127, 627–635 (2018). https://doi.org/10.1016/j.carbon.2017.11.056
Z. Ma, X. Zhou, W. Deng, D. Lei, Z. Liu, 3D porous MXene (Ti3C2)/reduced graphene oxide hybrid films for advanced lithium storage. ACS Appl. Mater. Interfaces 10(4), 3634–3643 (2018). https://doi.org/10.1021/acsami.7b17386
W. Bao, X. Xie, J. Xu, X. Guo, J. Song, W. Wu, D. Su, G. Wang, Confined sulfur in 3D MXene/reduced graphene oxide hybrid nanosheets for lithium-sulfur battery. Chemistry 23(51), 12613–12619 (2017). https://doi.org/10.1002/chem.201702387
J. Zhu, Y. Tang, C. Yang, F. Wang, M. Cao, Composites of TiO2 nanoparticles deposited on Ti3C2 MXene nanosheets with enhanced electrochemical performance. J. Electrochem. Soc. 163(5), A785–A791 (2016). https://doi.org/10.1149/2.0981605jes
Y. Wang, Y. Li, Z. Qiu, X. Wu, P. Zhou et al., Fe3O4@Ti3C2 MXene hybrids with ultrahigh volumetric capacity as an anode material for lithium-ion batteries. J. Mater. Chem. A 6(24), 11189–11197 (2018). https://doi.org/10.1039/c8ta00122g
X. Ao, J. Jiang, Y. Ruan, Z. Li, Y. Zhang, J. Sun, C. Wang, Honeycomb-inspired design of ultrafine SnO2@C nanospheres embedded in carbon film as anode materials for high performance lithium- and sodium-ion battery. J. Power Sources 359, 340–348 (2017). https://doi.org/10.1016/j.jpowsour.2017.05.064
D. Cui, Z. Zheng, X. Peng, T. Li, T. Sun, L. Yuan, Fluorine-doped SnO2 nanoparticles anchored on reduced graphene oxide as a high-performance lithium ion battery anode. J. Power Sources 362, 20–26 (2017). https://doi.org/10.1016/j.jpowsour.2017.07.024
X. Wang, X. Zhou, K. Yao, J. Zhang, Z. Liu, A SnO2/graphene composite as a high stability electrode for lithium ion batteries. Carbon 49(1), 133–139 (2011). https://doi.org/10.1016/j.carbon.2010.08.052
X. Sun, Y. Liu, J. Zhang, L. Hou, J. Sun, C. Yuan, Facile construction of ultrathin snox nanosheets decorated MXene (Ti3C2) nanocomposite towards Li-ion batteries as high performance anode materials. Electrochim. Acta 295, 237–245 (2019). https://doi.org/10.1016/j.electacta.2018.10.152
W. Lv, J. Zhu, F. Wang, Y. Fang, Facile synthesis and electrochemical performance of TiO2 nanowires/Ti3C2 composite. J. Mater. Sci. 29(6), 4881–4887 (2018). https://doi.org/10.1007/s10854-017-8446-5
M. Zheng, R. Guo, Z. Liu, B. Wang, L. Meng, F. Li, T. Li, Y. Luo, MoS2 intercalated p-Ti3C2 anode materials with sandwich-like three dimensional conductive networks for lithium-ion batteries. J. Alloys Compd. 735, 1262–1270 (2018). https://doi.org/10.1016/j.jallcom.2017.11.250
F. Kong, X. He, Q. Liu, X. Qi, D. Sun, Y. Zheng, R. Wang, Y. Bai, Enhanced reversible Li-ion storage in Si@Ti3C2 MXene nanocomposite. Electrochem. Commun. 97, 16–21 (2018). https://doi.org/10.1016/j.elecom.2018.10.003
B. Cao, Q. Zhang, H. Liu, B. Xu, S. Zhang et al., Graphitic carbon nanocage as a stable and high power anode for potassium-ion batteries. Adv. Energy Mater. 8(25), 1801149 (2018). https://doi.org/10.1002/aenm.201801149