Plate-to-Layer Bi2MoO6/MXene-Heterostructured Anode for Lithium-Ion Batteries
Corresponding Author: Bin Xu
Nano-Micro Letters,
Vol. 11 (2019), Article Number: 81
Abstract
Bi2MoO6 is a potentially promising anode material for lithium-ion batteries (LIBs) on account of its high theoretical capacity coupled with low desertion potential. Due to low conductivity and large volume expansion/contraction during charge/discharge cycling of Bi2MoO6, effective modification is indispensable to address these issues. In this study, a plate-to-layer Bi2MoO6/Ti3C2Tx (MXene) heterostructure is proposed by electrostatic assembling positive-charged Bi2MoO6 nanoplates on negative-charged MXene nanosheets. MXene nanosheets in the heterostructure act as a highly conductive substrate to load and anchor the Bi2MoO6 nanoplates, so as to improve electronic conductivity and structural stability. When the mass ratio of MXene is optimized to 30%, the Bi2MoO6/MXene heterostructure exhibits high specific capacities of 692 mAh g−1 at 100 mA g−1 after 200 cycles and 545.1 mAh g−1 with 99.6% coulombic efficiency at 1 A g−1 after 1000 cycles. The results provide not only a high-performance lithium storage material, but also an effective strategy that could address the intrinsic issues of various transition metal oxides by anchoring them on MXene nanosheets to form heterostructures and use as anode materials for LIBs.
Highlights:
1 The highly conductive Ti3C2Tx (MXene) is introduced as a substrate for loading Bi2MoO6.
2 The Bi2MoO6/MXene heterostructure exhibits ultra-long cycle durability and superior rate capability.
3 Electrochemical kinetic mechanism is analyzed for the as-prepared heterostructure.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S. Niu, Z. Wang, M. Yu, M. Yu, L. Xiu, S. Wang, X. Wu, J. Qiu, MXene-based electrode with enhanced pseudocapacitance and volumetric capacity for power-type and ultra-long life lithium storage. ACS Nano 12, 3928–3937 (2018). https://doi.org/10.1021/acsnano.8b01459
- Y. Zhong, B. Li, S. Li, S. Xu, Z. Pan et al., Bi nanoparticles anchored in N-doped porous carbon as anode of high energy density lithium ion battery. Nano-Micro Lett. 10, 56 (2018). https://doi.org/10.1007/s40820-018-0209-1
- N. Sun, Z. Guan, Y. Liu, Y. Cao, Q. Zhu et al., Extended “adsorption–insertion” model: a new insight into the sodium storage mechanism of hard carbons. Adv. Energy Mater. 9, 1901351 (2019). https://doi.org/10.1002/aenm.201901351
- Y. Huang, H. Yang, Y. Zhang, Y. Zhang, Y. Wu et al., A safe and fast-charging lithium-ion battery anode using MXene supported Li3VO4. J. Mater. Chem. A 7, 11250–11256 (2019). https://doi.org/10.1039/c9ta02037c
- Q. Xu, J.-K. Sun, Y.-X. Yin, Y.-G. Guo, Facile synthesis of blocky SiOx/C with graphite-like structure for high-performance lithium-ion battery anodes. Adv. Funct. Mater. 28, 1705235 (2018). https://doi.org/10.1002/adfm.201705235
- H. Tabassum, R. Zou, A. Mahmood, Z. Liang, Q. Wang et al., A universal strategy for hollow metal oxide nanoparticles encapsulated into B/N Co-doped graphitic nanotubes as high-performance lithium-ion battery anodes. Adv. Mater. 30, 1705441 (2018). https://doi.org/10.1002/adma.201705441
- M. Zheng, H. Tang, L. Li, Q. Hu, L. Zhang, H. Xue, H. Pang, Hierarchically nanostructured transition metal oxides for lithium-ion batteries. Adv. Sci. 5, 1700592 (2018). https://doi.org/10.1002/advs.201700592
- S.H. Yu, S.H. Lee, D.J. Lee, Y.E. Sung, T. Hyeon, Conversion reaction-based oxide nanomaterials for lithium ion battery anodes. Small 12, 2146–2172 (2016). https://doi.org/10.1002/smll.201502299
- J. Zhang, H. Ren, J. Wang, J. Qi, R. Yu, D. Wang, Y. Liu, Engineering of multi-shelled SnO2 hollow microspheres for highly stable lithium-ion batteries. J. Mater. Chem. A 4, 17673–17677 (2016). https://doi.org/10.1039/c6ta07717j
- M.S. Park, G.X. Wang, Y.M. Kang, D. Wexler, S.X. Dou, H.K. Liu, Preparation and electrochemical properties of SnO2 nanowires for application in lithium-ion batteries. Angew. Chem. Int. Ed. 46, 750–753 (2007). https://doi.org/10.1002/anie.200603309
- H. Liu, M. Jia, Q. Zhu, B. Cao, R. Chen et al., 3D-0D graphene-Fe3O4 quantum dot hybrids as high-performance anode materials for sodium-ion batteries. ACS Appl. Mater. Interfaces 8, 26878–26885 (2016). https://doi.org/10.1021/acsami.6b09496
- M. Wang, Y. Huang, N. Zhang, K. Wang, X. Chen, X. Ding, A facile synthesis of controlled Mn3O4 hollow polyhedron for high-performance lithium-ion battery anodes. Chem. Eng. J. 334, 2383–2391 (2018). https://doi.org/10.1016/j.cej.2017.12.017
- M.V. Reddy, G.V. Subba Rao, B.V.R. Chowdari, Metal oxides and oxysalts as anode materials for li ion batteries. Chem. Rev. 113, 5364–5457 (2013). https://doi.org/10.1021/cr3001884
- Y. Lu, L. Yu, X.W. Lou, Nanostructured conversion-type anode materials for advanced lithium-ion batteries. Chem 4, 972–996 (2018). https://doi.org/10.1016/j.chempr.2018.01.003
- W.J. Zhang, A review of the electrochemical performance of alloy anodes for lithium-ion batteries. J. Power Sources 196, 12–24 (2011). https://doi.org/10.1016/j.jpowsour.2010.07.020
- N. Mahmood, T. Tang, Y. Hou, Nanostructured anode materials for lithium ion batteries: progress, challenge and perspective. Adv. Energy Mater. 6, 1600374 (2016). https://doi.org/10.1002/aenm.201600374
- J.S. Chen, X.W. Lou, SnO2-based nanomaterials: synthesis and application in lithium-ion batteries. Small 9, 1877–1893 (2013). https://doi.org/10.1002/smll.201202601
- C. Kim, J.W. Jung, K.R. Yoon, D.Y. Youn, S. Park, I.D. Kim, A high-capacity and long-cycle-life lithium-ion battery anode architecture: silver nanoparticle-decorated SnO2/NiO Nanotubes. ACS Nano 10, 11317–11326 (2016). https://doi.org/10.1021/acsnano.6b06512
- Y. Lu, J. Nai, X.W. Lou, Formation of NiCo2V2O8 yolk–double shell spheres with enhanced lithium storage properties. Angew. Chem. Int. Ed. 57, 2899–2903 (2018). https://doi.org/10.1002/anie.201800363
- Y. Zhang, K. Zhang, S. Ren, K. Jia, Y. Dang et al., 3D nanoflower-like composite anode of α-Fe2O3/coal-based graphene for lithium-ion batteries. J. Alloy Compd. 792, 828–834 (2019). https://doi.org/10.1016/j.jallcom.2019.04.011
- K. Yu, X. Pan, G. Zhang, X. Liao, X. Zhou, M. Yan, L. Xu, L. Mai, Nanowires in energy storage devices: structures, synthesis, and applications. Adv. Energy Mater. 8, 1802369 (2018). https://doi.org/10.1002/aenm.201802369
- L. Yu, H. Hu, H.B. Wu, X.W. Lou, Complex hollow nanostructures: synthesis and energy-related applications. Adv. Mater. 29, 1604563 (2017). https://doi.org/10.1002/adma.201604563
- W. Chen, K. Song, L. Mi, X. Feng, J. Zhang, S. Cui, C. Liu, Synergistic effect induced ultrafine SnO2/graphene nanocomposite as an advanced lithium/sodium-ion batteries anode. J. Mater. Chem. A 5, 10027–10038 (2017). https://doi.org/10.1039/c7ta01634d
- Y.M. Chen, L. Yu, X.W. Lou, Hierarchical tubular structures composed of Co3O4 hollow nanoparticles and carbon nanotubes for lithium storage. Angew. Chem. Int. Ed. 55, 5990–5993 (2016). https://doi.org/10.1002/anie.201600133
- Q. Tian, F. Zhang, L. Yang, Fabricating thin two-dimensional hollow tin dioxide/carbon nanocomposite for high-performance lithium-ion battery anode. Appl. Surf. Sci. 481, 1377–1384 (2019). https://doi.org/10.1016/j.apsusc.2019.03.252
- X. Yang, Y. Xiang, X. Wang, S. Li, H. Chen, X. Ding, Pyrene-based conjugated polymer/Bi2MoO6 Z-scheme hybrids: facile construction and sustainable enhanced photocatalytic performance in ciprofloxacin and Cr(VI) removal under visible light irradiation. Catalysis 8, 185 (2018). https://doi.org/10.3390/catal8050185
- W.-B. Chen, L.-N. Zhang, Z.-J. Ji, Y.-D. Zheng, S. Yuan, Q. Wang, Self-supported Bi2MoO6 nanosheet arrays as advanced integrated electrodes for Li-ion batteries with super high capacity and long cycle life. Nano 13, 1850066 (2018). https://doi.org/10.1142/S1793292018500662
- X. Zhai, J. Gao, R. Xue, X. Xu, L. Xu, L. Wang, Q. Tian, Y. Liu, Facile synthesis of Bi2MoO6/reduced graphene oxide composites as anode materials towards enhanced lithium storage performance. J. Colloid Interface Sci. 518, 242–251 (2018). https://doi.org/10.1016/j.jcis.2018.02.012
- S. Yuan, Y. Zhao, W. Chen, C. Wu, X. Wang, L. Zhang, Q. Wang, Self-assembled 3D hierarchical porous Bi2MoO6 microspheres toward high capacity and ultra-long-life anode material for li-ion batteries. ACS Appl. Mater. Interfaces 9, 21781–21790 (2017). https://doi.org/10.1021/acsami.7b04045
- Y. Zheng, T. Zhou, X. Zhao, W.K. Pang, H. Gao et al., Atomic interface engineering and electric-field effect in ultrathin Bi2MoO6 nanosheets for superior lithium ion storage. Adv. Mater. 29, 1700396 (2017). https://doi.org/10.1002/adma.201700396
- Y. Zhang, G. Zhao, P. Ge, T. Wu, L. Li et al., Bi2MoO6 microsphere with double-polyaniline layers toward ultrastable lithium energy storage by reinforced structure. Inorg. Chem. 58, 6410–6421 (2019). https://doi.org/10.1021/acs.inorgchem.9b00627
- A. Lipatov, M. Alhabeb, M.R. Lukatskaya, A. Boson, Y. Gogotsi, A. Sinitskii, Effect of synthesis on quality, electronic properties and environmental stability of individual monolayer Ti3C2 MXene flakes. Adv. Electron. Mater. 2, 1600255 (2016). https://doi.org/10.1002/aelm.201600255
- B. Anasori, M.R. Lukatskaya, Y. Gogotsi, 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2, 16098 (2017). https://doi.org/10.1038/natrevmats.2016.98
- L. Yu, L. Hu, B. Anasori, Y.-T. Liu, Q. Zhu, P. Zhang, Y. Gogotsi, B. Xu, MXene-bonded activated carbon as a flexible electrode for high-performance supercapacitors. ACS Energy Lett. 3, 1597–1603 (2018). https://doi.org/10.1021/acsenergylett.8b00718
- Y. Tian, Y. An, J. Feng, Flexible and freestanding silicon/MXene composite papers for high-performance lithium-ion batteries. ACS Appl. Mater. Interfaces 11, 10004–10011 (2019). https://doi.org/10.1021/acsami.8b21893
- Z. Lin, D. Sun, Q. Huang, J. Yang, M.W. Barsoum, X. Yan, Carbon nanofiber bridged two-dimensional titanium carbide as a superior anode for lithium-ion batteries. J. Mater. Chem. A 3, 14096–14100 (2015). https://doi.org/10.1039/c5ta01855b
- M. Xu, S. Lei, J. Qi, Q. Dou, L. Liu et al., Opening magnesium storage capability of two-dimensional MXene by intercalation of cationic surfactant. ACS Nano 12, 3733–3740 (2018). https://doi.org/10.1021/acsnano.8b00959
- Q. Tang, Z. Zhou, P. Shen, Are MXenes promising anode materials for Li ion batteries? Computational studies on electronic properties and Li storage capability of Ti3C2 and Ti3C2X2 (X = F, OH) monolayer. J. Am. Chem. Soc. 134, 16909–16916 (2012). https://doi.org/10.1021/ja308463r
- Y. Tian, Y. An, S. Xiong, J. Feng, Y. Qian, A general method for constructing robust, flexible and freestanding MXene@metal anodes for high-performance potassium-ion batteries. J. Mater. Chem. A 7, 9716–9725 (2019). https://doi.org/10.1039/c9ta02233c
- Y.-T. Liu, P. Zhang, N. Sun, B. Anasori, Q.-Z. Zhu, H. Liu, Y. Gogotsi, B. Xu, Self-assembly of transition metal oxide nanostructures on MXene nanosheets for fast and stable lithium storage. Adv. Mater. 30, 1707334 (2018). https://doi.org/10.1002/adma.201707334
- H. Liu, X. Zhang, Y. Zhu, B. Cao, Q. Zhu et al., Electrostatic self-assembly of 0D–2D SnO2 quantum dots/Ti3C2Tx MXene hybrids as anode for lithium-ion batteries. Nano-Micro Lett. 11(65), 65 (2019). https://doi.org/10.1007/s40820-019-0296-7
- Y. Wang, Y. Li, Z. Qiu, X. Wu, P. Zhou et al., Fe3O4@Ti3C2 MXene hybrids with ultrahigh volumetric capacity as an anode material for lithium-ion batteries. J. Mater. Chem. A 6, 11189–11197 (2018). https://doi.org/10.1039/c8ta00122g
- X. Guo, X. Xie, S. Choi, Y. Zhao, H. Liu, C. Wang, S. Chang, G. Wang, Sb2O3/MXene(Ti3C2Tx) hybrid anode materials with enhanced performance for sodium-ion batteries. J. Mater. Chem. A 5, 12445–12452 (2017). https://doi.org/10.1039/c7ta02689g
- C. Wei, H. Fei, Y. An, Y. Zhang, J. Feng, Crumpled Ti3C2Tx (MXene) nanosheet encapsulated LiMn2O4 for high performance lithium-ion batteries. Electrochim. Acta 309, 362–370 (2019). https://doi.org/10.1016/j.electacta.2019.04.094
- M.-Q. Zhao, M. Torelli, C.E. Ren, M. Ghidiu, Z. Ling, B. Anasori, M.W. Barsoum, Y. Gogotsi, 2D titanium carbide and transition metal oxides hybrid electrodes for Li-ion storage. Nano Energy 30, 603–613 (2016). https://doi.org/10.1016/j.nanoen.2016.10.062
- Q. Zhao, Q. Zhu, J. Miao, P. Zhang, B. Xu, 2D MXene nanosheets enable small-sulfur electrodes to be flexible for lithium–sulfur batteries. Nanoscale 11, 8442–8448 (2019). https://doi.org/10.1039/c8nr09653h
- P. Zhang, Q. Zhu, Z. Guan, Q. Zhao, N. Sun, B. Xu, A Flexible Si@C Electrode with excellent stability employing an MXene as a multifunctional binder for lithium-ion batteries. ChemSusChem 12, 1–9 (2019). https://doi.org/10.1002/cssc.201901497
- J. Wu, Y. Sun, C. Gu, T. Wang, Y. Xin, C. Chai, C. Cui, D. Ma, Pt supported and carbon coated Bi2MoO6 composite for enhanced 2,4-dibromophenol degradation under visible–light irradiation: insight into band gap structure and photocatalytic mechanism. Appl. Catal. B: Environ. 237, 622–632 (2018). https://doi.org/10.1016/j.apcatb.2018.06.016
- X. Wang, T.S. Mathis, K. Li, Z. Lin, L. Vlcek et al., Influences from solvents on charge storage in titanium carbide MXenes. Nat. Energy 4, 241–248 (2019). https://doi.org/10.1038/s41560-019-0339-9
- H. Shen, W. Xue, F. Fu, J. Sun, Y. Zhen, D. Wang, B. Shao, J. Tang, Efficient degradation of phenol and 4-nitrophenol by surface oxygen vacancies and plasmonic silver Co-modified Bi2MoO6 photocatalysts. Chem. Eur. J. 24, 18463–18478 (2018). https://doi.org/10.1002/chem.201804267
- L. Guo, Q. Zhao, H. Shen, X. Han, K. Zhang, D. Wang, F. Fu, B. Xu, Ultrafine Au nanoparticles anchored on Bi2MoO6 with abundant surface oxygen vacancies for efficient oxygen molecule activation. Catal. Sci. Technol. 9, 3193–3202 (2019). https://doi.org/10.1039/c9cy00579j
- J. Yan, C.E. Ren, K. Maleski, C.B. Hatter, B. Anasori, P. Urbankowski, A. Sarycheva, Y. Gogotsi, Flexible MXene/graphene films for ultrafast supercapacitors with outstanding volumetric capacitance. Adv. Funct. Mater. 27, 1701264 (2017). https://doi.org/10.1002/adfm.201701264
- L. Shen, X. Zhou, X. Zhang, Y. Zhang, Y. Liu, W. Wang, W. Si, X. Dong, Carbon-intercalated Ti3C2Tx MXene for high-performance electrochemical energy storage. J. Mater. Chem. A 6, 23513–23520 (2018). https://doi.org/10.1039/c8ta09600g
- S. Nie, L. Liu, J. Liu, J. Xie, Y. Zhang et al., Nitrogen-doped TiO2–C composite nanofibers with high-capacity and long-cycle life as anode materials for sodium-ion batteries. Nano-Micro Lett. 10, 71 (2018). https://doi.org/10.1007/s40820-018-0225-1
- N. Sun, H. Liu, Bin Xu, Facile synthesis of high performance hard carbon anode materials for sodium ion batteries. J. Mater. Chem. A 3, 20560–20566 (2015). https://doi.org/10.1039/c5ta05118e
- M.-Q. Zhao, X. Xie, C.E. Ren, T. Makaryan, B. Anasori, G. Wang, Y. Gogotsi, Hollow MXene spheres and 3D macroporous MXene frameworks for Na-ion storage. Adv. Mater. 29, 1702410 (2017). https://doi.org/10.1002/adma.201702410
- H. Sun, G. Xin, T. Hu, M. Yu, D. Shao, X. Sun, J. Lian, High-rate lithiation-induced reactivation of mesoporous hollow spheres for long-lived lithium-ion batteries. Nat. Commun. 5, 4526 (2014). https://doi.org/10.1038/ncomms5526
- B. Cao, Q. Zhang, H. Liu, B. Xu, S. Zhang et al., Graphitic carbon nanocage as a stable and high power anode for potassium-ion batteries. Adv. Energy Mater. 8, 1801149 (2018). https://doi.org/10.1002/aenm.201801149
- H. Liu, S. Zhang, Q. Zhu, B. Cao, P. Zhang et al., Fluffy carbon-coated red phosphorus as a highly stable and high-rate anode for lithium-ion batteries. J. Mater. Chem. A 7, 11205–11213 (2019). https://doi.org/10.1039/c9ta02030f
- R. Meng, J. Huang, Y. Feng, L. Zu, C. Peng et al., Black phosphorus quantum dot/Ti3C2 MXene nanosheet composites for efficient electrochemical lithium/sodium-ion storage. Adv. Energy Mater. 8, 1801514 (2018). https://doi.org/10.1002/aenm.201801514
- X. Guo, J. Zhang, J. Song, W. Wu, H. Liu, G. Wang, MXene encapsulated titanium oxide nanospheres for ultra-stable and fast sodium storage. Energy Storage Mater. 14, 306–313 (2018). https://doi.org/10.1016/j.ensm.2018.05.010
References
S. Niu, Z. Wang, M. Yu, M. Yu, L. Xiu, S. Wang, X. Wu, J. Qiu, MXene-based electrode with enhanced pseudocapacitance and volumetric capacity for power-type and ultra-long life lithium storage. ACS Nano 12, 3928–3937 (2018). https://doi.org/10.1021/acsnano.8b01459
Y. Zhong, B. Li, S. Li, S. Xu, Z. Pan et al., Bi nanoparticles anchored in N-doped porous carbon as anode of high energy density lithium ion battery. Nano-Micro Lett. 10, 56 (2018). https://doi.org/10.1007/s40820-018-0209-1
N. Sun, Z. Guan, Y. Liu, Y. Cao, Q. Zhu et al., Extended “adsorption–insertion” model: a new insight into the sodium storage mechanism of hard carbons. Adv. Energy Mater. 9, 1901351 (2019). https://doi.org/10.1002/aenm.201901351
Y. Huang, H. Yang, Y. Zhang, Y. Zhang, Y. Wu et al., A safe and fast-charging lithium-ion battery anode using MXene supported Li3VO4. J. Mater. Chem. A 7, 11250–11256 (2019). https://doi.org/10.1039/c9ta02037c
Q. Xu, J.-K. Sun, Y.-X. Yin, Y.-G. Guo, Facile synthesis of blocky SiOx/C with graphite-like structure for high-performance lithium-ion battery anodes. Adv. Funct. Mater. 28, 1705235 (2018). https://doi.org/10.1002/adfm.201705235
H. Tabassum, R. Zou, A. Mahmood, Z. Liang, Q. Wang et al., A universal strategy for hollow metal oxide nanoparticles encapsulated into B/N Co-doped graphitic nanotubes as high-performance lithium-ion battery anodes. Adv. Mater. 30, 1705441 (2018). https://doi.org/10.1002/adma.201705441
M. Zheng, H. Tang, L. Li, Q. Hu, L. Zhang, H. Xue, H. Pang, Hierarchically nanostructured transition metal oxides for lithium-ion batteries. Adv. Sci. 5, 1700592 (2018). https://doi.org/10.1002/advs.201700592
S.H. Yu, S.H. Lee, D.J. Lee, Y.E. Sung, T. Hyeon, Conversion reaction-based oxide nanomaterials for lithium ion battery anodes. Small 12, 2146–2172 (2016). https://doi.org/10.1002/smll.201502299
J. Zhang, H. Ren, J. Wang, J. Qi, R. Yu, D. Wang, Y. Liu, Engineering of multi-shelled SnO2 hollow microspheres for highly stable lithium-ion batteries. J. Mater. Chem. A 4, 17673–17677 (2016). https://doi.org/10.1039/c6ta07717j
M.S. Park, G.X. Wang, Y.M. Kang, D. Wexler, S.X. Dou, H.K. Liu, Preparation and electrochemical properties of SnO2 nanowires for application in lithium-ion batteries. Angew. Chem. Int. Ed. 46, 750–753 (2007). https://doi.org/10.1002/anie.200603309
H. Liu, M. Jia, Q. Zhu, B. Cao, R. Chen et al., 3D-0D graphene-Fe3O4 quantum dot hybrids as high-performance anode materials for sodium-ion batteries. ACS Appl. Mater. Interfaces 8, 26878–26885 (2016). https://doi.org/10.1021/acsami.6b09496
M. Wang, Y. Huang, N. Zhang, K. Wang, X. Chen, X. Ding, A facile synthesis of controlled Mn3O4 hollow polyhedron for high-performance lithium-ion battery anodes. Chem. Eng. J. 334, 2383–2391 (2018). https://doi.org/10.1016/j.cej.2017.12.017
M.V. Reddy, G.V. Subba Rao, B.V.R. Chowdari, Metal oxides and oxysalts as anode materials for li ion batteries. Chem. Rev. 113, 5364–5457 (2013). https://doi.org/10.1021/cr3001884
Y. Lu, L. Yu, X.W. Lou, Nanostructured conversion-type anode materials for advanced lithium-ion batteries. Chem 4, 972–996 (2018). https://doi.org/10.1016/j.chempr.2018.01.003
W.J. Zhang, A review of the electrochemical performance of alloy anodes for lithium-ion batteries. J. Power Sources 196, 12–24 (2011). https://doi.org/10.1016/j.jpowsour.2010.07.020
N. Mahmood, T. Tang, Y. Hou, Nanostructured anode materials for lithium ion batteries: progress, challenge and perspective. Adv. Energy Mater. 6, 1600374 (2016). https://doi.org/10.1002/aenm.201600374
J.S. Chen, X.W. Lou, SnO2-based nanomaterials: synthesis and application in lithium-ion batteries. Small 9, 1877–1893 (2013). https://doi.org/10.1002/smll.201202601
C. Kim, J.W. Jung, K.R. Yoon, D.Y. Youn, S. Park, I.D. Kim, A high-capacity and long-cycle-life lithium-ion battery anode architecture: silver nanoparticle-decorated SnO2/NiO Nanotubes. ACS Nano 10, 11317–11326 (2016). https://doi.org/10.1021/acsnano.6b06512
Y. Lu, J. Nai, X.W. Lou, Formation of NiCo2V2O8 yolk–double shell spheres with enhanced lithium storage properties. Angew. Chem. Int. Ed. 57, 2899–2903 (2018). https://doi.org/10.1002/anie.201800363
Y. Zhang, K. Zhang, S. Ren, K. Jia, Y. Dang et al., 3D nanoflower-like composite anode of α-Fe2O3/coal-based graphene for lithium-ion batteries. J. Alloy Compd. 792, 828–834 (2019). https://doi.org/10.1016/j.jallcom.2019.04.011
K. Yu, X. Pan, G. Zhang, X. Liao, X. Zhou, M. Yan, L. Xu, L. Mai, Nanowires in energy storage devices: structures, synthesis, and applications. Adv. Energy Mater. 8, 1802369 (2018). https://doi.org/10.1002/aenm.201802369
L. Yu, H. Hu, H.B. Wu, X.W. Lou, Complex hollow nanostructures: synthesis and energy-related applications. Adv. Mater. 29, 1604563 (2017). https://doi.org/10.1002/adma.201604563
W. Chen, K. Song, L. Mi, X. Feng, J. Zhang, S. Cui, C. Liu, Synergistic effect induced ultrafine SnO2/graphene nanocomposite as an advanced lithium/sodium-ion batteries anode. J. Mater. Chem. A 5, 10027–10038 (2017). https://doi.org/10.1039/c7ta01634d
Y.M. Chen, L. Yu, X.W. Lou, Hierarchical tubular structures composed of Co3O4 hollow nanoparticles and carbon nanotubes for lithium storage. Angew. Chem. Int. Ed. 55, 5990–5993 (2016). https://doi.org/10.1002/anie.201600133
Q. Tian, F. Zhang, L. Yang, Fabricating thin two-dimensional hollow tin dioxide/carbon nanocomposite for high-performance lithium-ion battery anode. Appl. Surf. Sci. 481, 1377–1384 (2019). https://doi.org/10.1016/j.apsusc.2019.03.252
X. Yang, Y. Xiang, X. Wang, S. Li, H. Chen, X. Ding, Pyrene-based conjugated polymer/Bi2MoO6 Z-scheme hybrids: facile construction and sustainable enhanced photocatalytic performance in ciprofloxacin and Cr(VI) removal under visible light irradiation. Catalysis 8, 185 (2018). https://doi.org/10.3390/catal8050185
W.-B. Chen, L.-N. Zhang, Z.-J. Ji, Y.-D. Zheng, S. Yuan, Q. Wang, Self-supported Bi2MoO6 nanosheet arrays as advanced integrated electrodes for Li-ion batteries with super high capacity and long cycle life. Nano 13, 1850066 (2018). https://doi.org/10.1142/S1793292018500662
X. Zhai, J. Gao, R. Xue, X. Xu, L. Xu, L. Wang, Q. Tian, Y. Liu, Facile synthesis of Bi2MoO6/reduced graphene oxide composites as anode materials towards enhanced lithium storage performance. J. Colloid Interface Sci. 518, 242–251 (2018). https://doi.org/10.1016/j.jcis.2018.02.012
S. Yuan, Y. Zhao, W. Chen, C. Wu, X. Wang, L. Zhang, Q. Wang, Self-assembled 3D hierarchical porous Bi2MoO6 microspheres toward high capacity and ultra-long-life anode material for li-ion batteries. ACS Appl. Mater. Interfaces 9, 21781–21790 (2017). https://doi.org/10.1021/acsami.7b04045
Y. Zheng, T. Zhou, X. Zhao, W.K. Pang, H. Gao et al., Atomic interface engineering and electric-field effect in ultrathin Bi2MoO6 nanosheets for superior lithium ion storage. Adv. Mater. 29, 1700396 (2017). https://doi.org/10.1002/adma.201700396
Y. Zhang, G. Zhao, P. Ge, T. Wu, L. Li et al., Bi2MoO6 microsphere with double-polyaniline layers toward ultrastable lithium energy storage by reinforced structure. Inorg. Chem. 58, 6410–6421 (2019). https://doi.org/10.1021/acs.inorgchem.9b00627
A. Lipatov, M. Alhabeb, M.R. Lukatskaya, A. Boson, Y. Gogotsi, A. Sinitskii, Effect of synthesis on quality, electronic properties and environmental stability of individual monolayer Ti3C2 MXene flakes. Adv. Electron. Mater. 2, 1600255 (2016). https://doi.org/10.1002/aelm.201600255
B. Anasori, M.R. Lukatskaya, Y. Gogotsi, 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2, 16098 (2017). https://doi.org/10.1038/natrevmats.2016.98
L. Yu, L. Hu, B. Anasori, Y.-T. Liu, Q. Zhu, P. Zhang, Y. Gogotsi, B. Xu, MXene-bonded activated carbon as a flexible electrode for high-performance supercapacitors. ACS Energy Lett. 3, 1597–1603 (2018). https://doi.org/10.1021/acsenergylett.8b00718
Y. Tian, Y. An, J. Feng, Flexible and freestanding silicon/MXene composite papers for high-performance lithium-ion batteries. ACS Appl. Mater. Interfaces 11, 10004–10011 (2019). https://doi.org/10.1021/acsami.8b21893
Z. Lin, D. Sun, Q. Huang, J. Yang, M.W. Barsoum, X. Yan, Carbon nanofiber bridged two-dimensional titanium carbide as a superior anode for lithium-ion batteries. J. Mater. Chem. A 3, 14096–14100 (2015). https://doi.org/10.1039/c5ta01855b
M. Xu, S. Lei, J. Qi, Q. Dou, L. Liu et al., Opening magnesium storage capability of two-dimensional MXene by intercalation of cationic surfactant. ACS Nano 12, 3733–3740 (2018). https://doi.org/10.1021/acsnano.8b00959
Q. Tang, Z. Zhou, P. Shen, Are MXenes promising anode materials for Li ion batteries? Computational studies on electronic properties and Li storage capability of Ti3C2 and Ti3C2X2 (X = F, OH) monolayer. J. Am. Chem. Soc. 134, 16909–16916 (2012). https://doi.org/10.1021/ja308463r
Y. Tian, Y. An, S. Xiong, J. Feng, Y. Qian, A general method for constructing robust, flexible and freestanding MXene@metal anodes for high-performance potassium-ion batteries. J. Mater. Chem. A 7, 9716–9725 (2019). https://doi.org/10.1039/c9ta02233c
Y.-T. Liu, P. Zhang, N. Sun, B. Anasori, Q.-Z. Zhu, H. Liu, Y. Gogotsi, B. Xu, Self-assembly of transition metal oxide nanostructures on MXene nanosheets for fast and stable lithium storage. Adv. Mater. 30, 1707334 (2018). https://doi.org/10.1002/adma.201707334
H. Liu, X. Zhang, Y. Zhu, B. Cao, Q. Zhu et al., Electrostatic self-assembly of 0D–2D SnO2 quantum dots/Ti3C2Tx MXene hybrids as anode for lithium-ion batteries. Nano-Micro Lett. 11(65), 65 (2019). https://doi.org/10.1007/s40820-019-0296-7
Y. Wang, Y. Li, Z. Qiu, X. Wu, P. Zhou et al., Fe3O4@Ti3C2 MXene hybrids with ultrahigh volumetric capacity as an anode material for lithium-ion batteries. J. Mater. Chem. A 6, 11189–11197 (2018). https://doi.org/10.1039/c8ta00122g
X. Guo, X. Xie, S. Choi, Y. Zhao, H. Liu, C. Wang, S. Chang, G. Wang, Sb2O3/MXene(Ti3C2Tx) hybrid anode materials with enhanced performance for sodium-ion batteries. J. Mater. Chem. A 5, 12445–12452 (2017). https://doi.org/10.1039/c7ta02689g
C. Wei, H. Fei, Y. An, Y. Zhang, J. Feng, Crumpled Ti3C2Tx (MXene) nanosheet encapsulated LiMn2O4 for high performance lithium-ion batteries. Electrochim. Acta 309, 362–370 (2019). https://doi.org/10.1016/j.electacta.2019.04.094
M.-Q. Zhao, M. Torelli, C.E. Ren, M. Ghidiu, Z. Ling, B. Anasori, M.W. Barsoum, Y. Gogotsi, 2D titanium carbide and transition metal oxides hybrid electrodes for Li-ion storage. Nano Energy 30, 603–613 (2016). https://doi.org/10.1016/j.nanoen.2016.10.062
Q. Zhao, Q. Zhu, J. Miao, P. Zhang, B. Xu, 2D MXene nanosheets enable small-sulfur electrodes to be flexible for lithium–sulfur batteries. Nanoscale 11, 8442–8448 (2019). https://doi.org/10.1039/c8nr09653h
P. Zhang, Q. Zhu, Z. Guan, Q. Zhao, N. Sun, B. Xu, A Flexible Si@C Electrode with excellent stability employing an MXene as a multifunctional binder for lithium-ion batteries. ChemSusChem 12, 1–9 (2019). https://doi.org/10.1002/cssc.201901497
J. Wu, Y. Sun, C. Gu, T. Wang, Y. Xin, C. Chai, C. Cui, D. Ma, Pt supported and carbon coated Bi2MoO6 composite for enhanced 2,4-dibromophenol degradation under visible–light irradiation: insight into band gap structure and photocatalytic mechanism. Appl. Catal. B: Environ. 237, 622–632 (2018). https://doi.org/10.1016/j.apcatb.2018.06.016
X. Wang, T.S. Mathis, K. Li, Z. Lin, L. Vlcek et al., Influences from solvents on charge storage in titanium carbide MXenes. Nat. Energy 4, 241–248 (2019). https://doi.org/10.1038/s41560-019-0339-9
H. Shen, W. Xue, F. Fu, J. Sun, Y. Zhen, D. Wang, B. Shao, J. Tang, Efficient degradation of phenol and 4-nitrophenol by surface oxygen vacancies and plasmonic silver Co-modified Bi2MoO6 photocatalysts. Chem. Eur. J. 24, 18463–18478 (2018). https://doi.org/10.1002/chem.201804267
L. Guo, Q. Zhao, H. Shen, X. Han, K. Zhang, D. Wang, F. Fu, B. Xu, Ultrafine Au nanoparticles anchored on Bi2MoO6 with abundant surface oxygen vacancies for efficient oxygen molecule activation. Catal. Sci. Technol. 9, 3193–3202 (2019). https://doi.org/10.1039/c9cy00579j
J. Yan, C.E. Ren, K. Maleski, C.B. Hatter, B. Anasori, P. Urbankowski, A. Sarycheva, Y. Gogotsi, Flexible MXene/graphene films for ultrafast supercapacitors with outstanding volumetric capacitance. Adv. Funct. Mater. 27, 1701264 (2017). https://doi.org/10.1002/adfm.201701264
L. Shen, X. Zhou, X. Zhang, Y. Zhang, Y. Liu, W. Wang, W. Si, X. Dong, Carbon-intercalated Ti3C2Tx MXene for high-performance electrochemical energy storage. J. Mater. Chem. A 6, 23513–23520 (2018). https://doi.org/10.1039/c8ta09600g
S. Nie, L. Liu, J. Liu, J. Xie, Y. Zhang et al., Nitrogen-doped TiO2–C composite nanofibers with high-capacity and long-cycle life as anode materials for sodium-ion batteries. Nano-Micro Lett. 10, 71 (2018). https://doi.org/10.1007/s40820-018-0225-1
N. Sun, H. Liu, Bin Xu, Facile synthesis of high performance hard carbon anode materials for sodium ion batteries. J. Mater. Chem. A 3, 20560–20566 (2015). https://doi.org/10.1039/c5ta05118e
M.-Q. Zhao, X. Xie, C.E. Ren, T. Makaryan, B. Anasori, G. Wang, Y. Gogotsi, Hollow MXene spheres and 3D macroporous MXene frameworks for Na-ion storage. Adv. Mater. 29, 1702410 (2017). https://doi.org/10.1002/adma.201702410
H. Sun, G. Xin, T. Hu, M. Yu, D. Shao, X. Sun, J. Lian, High-rate lithiation-induced reactivation of mesoporous hollow spheres for long-lived lithium-ion batteries. Nat. Commun. 5, 4526 (2014). https://doi.org/10.1038/ncomms5526
B. Cao, Q. Zhang, H. Liu, B. Xu, S. Zhang et al., Graphitic carbon nanocage as a stable and high power anode for potassium-ion batteries. Adv. Energy Mater. 8, 1801149 (2018). https://doi.org/10.1002/aenm.201801149
H. Liu, S. Zhang, Q. Zhu, B. Cao, P. Zhang et al., Fluffy carbon-coated red phosphorus as a highly stable and high-rate anode for lithium-ion batteries. J. Mater. Chem. A 7, 11205–11213 (2019). https://doi.org/10.1039/c9ta02030f
R. Meng, J. Huang, Y. Feng, L. Zu, C. Peng et al., Black phosphorus quantum dot/Ti3C2 MXene nanosheet composites for efficient electrochemical lithium/sodium-ion storage. Adv. Energy Mater. 8, 1801514 (2018). https://doi.org/10.1002/aenm.201801514
X. Guo, J. Zhang, J. Song, W. Wu, H. Liu, G. Wang, MXene encapsulated titanium oxide nanospheres for ultra-stable and fast sodium storage. Energy Storage Mater. 14, 306–313 (2018). https://doi.org/10.1016/j.ensm.2018.05.010