Progression in the Oxidation Stability of MXenes
Corresponding Author: Bin Xu
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 108
Abstract
MXenes are under the spotlight due to their versatile physicochemical characteristics. Since their discovery in 2011, significant advancements have been achieved in their synthesis and application sectors. However, the spontaneous oxidation of MXenes, which is critical to its processing and product lifespan, has gotten less attention due to its chemical complexity and poorly understood oxidation mechanism. This perspective focuses on the oxidation stability of MXenes and addresses the most recent advancements in understanding and the possible countermeasures to limit the spontaneous oxidation of MXenes. A section is dedicated to the presently accessible methods for monitoring oxidation, with a discussion on the debatable oxidation mechanism and coherently operating factors that contribute to the complexity of MXenes oxidation. The current potential solutions for mitigating MXenes oxidation and the existing challenges are also discussed with prospects to prolong MXene’s shelf-life storage and expand their application scope.
Highlights:
1 The progression of MXene's oxidation stability, the techniques available to monitor the phenomenon as well as the variables that contribute to its oxidation rate are discussed.
2 Comprehensive aspects of the oxidation process in various storage settings and the debated oxidation mechanism along with the most effective antioxidation strategies are addressed in conjunction with current challenges to the air stability of MXenes.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Z. Xu, X. Ding, S. Li, F. Huang, B. Wang, S. Wang et al., Oxidation-resistant MXene-based melamine foam with ultralow-percolation thresholds for electromagnetic-Infrared compatible shielding. ACS Appl. Mater. Interfaces 14(35), 40407 (2022). https://doi.org/10.1021/acsami.2c05544
- T. Agarkar, V.K. Nair, S. Tripathy, V. Chawla, S. Ghosh et al., Oxygen vacancy modulated MnO2 bi-electrode system for attomole-level pathogen nucleic acid sequence detection. Electrochim Acta. 407, 139876 (2022). https://doi.org/10.1016/j.electacta.2022.139876
- Y. Li, Q. Zhu, M. Xu, B. Zang, Y. Wang, B. Xu, Cu-modified Ti3C2Cl2 MXene with zincophilic and hydrophobic characteristics as a protective coating for highly stable Zn anode. Adv. Funct. Mater. (2023). https://doi.org/10.1002/adfm.202213416
- M. Dadashi Firouzjaei, M. Karimiziarani, H. Moradkhani, M. Elliott, B. Anasori, MXenes: the two-dimensional influencers. Mater. Today Adv. 13, 100202 (2022). https://doi.org/10.1016/j.mtadv.2021.100202
- G. Murali, J.K. Reddy Modigunta, Y.H. Park, J.-H. Lee, J. Rawal et al., A review on MXene synthesis, stability, and photocatalytic applications. ACS Nano 16(9), 13429 (2022). https://doi.org/10.1021/acsnano.2c04750
- Q. Zhao, Q. Zhu, Y. Liu, B. Xu, Status and prospects of MXene-based lithium–sulfur batteries. Adv. Funct. Mater. 31(21), 2100457 (2021). https://doi.org/10.1002/adfm.202100457
- H. Liu, L. Jiang, B. Cao, H. Du, H. Lu et al., Van der Waals interaction-driven self-assembly of V2O5 nanoplates and MXene for high-performing zinc-ion batteries by suppressing vanadium dissolution. ACS Nano 16(9), 14539 (2022). https://doi.org/10.1021/acsnano.2c04968
- E. Choi, J. Lee, Y.J. Kim, H. Kim, M. Kim et al., Enhanced stability of Ti3C2Tx MXene enabled by continuous ZIF-8 coating. Carbon 191, 599 (2022). https://doi.org/10.1016/j.carbon.2022.02.036
- X. Chang, Q. Zhu, Q. Zhao, P. Zhang, N. Sun et al., 3D porous Co3O4/MXene foam fabricated via a sulfur template strategy for enhanced Li/K-Ion storage. ACS Appl. Mater. Interfaces 15(6), 7999–8009 (2023). https://doi.org/10.1021/acsami.2c19681
- P. Zhang, Q. Zhu, Y. Wei, B. Xu, Achieving stable and fast potassium storage of Sb2S3@MXene anode via interfacial bonding and electrolyte chemistry. J. Chem. Eng. 451, 138891 (2023). https://doi.org/10.1016/j.cej.2022.138891
- P. Zhang, J. Li, D. Yang, R.A. Soomro, B. Xu, Flexible carbon dots-intercalated MXene film electrode with outstanding volumetric performance for supercapacitors. Adv. Funct. Mater. 33(1), 2209918 (2023). https://doi.org/10.1002/adfm.202209918
- P. Zhang, Y. Peng, Q. Zhu, R.A. Soomro, N. Sun et al., 3D foam-based MXene architectures: atructural and electrolytic engineering for advangced potassium ion storage. Energy Environ. Mater. (2022). https://doi.org/10.1002/eem2.12379
- B. Cao, H. Liu, X. Zhang, P. Zhang, Q. Zhu et al., MOF-Derived ZnS Nanodots/Ti3C2Tx MXene hybrids boosting superior lithium storage performance. Nano-Micro Lett. 13(1), 202 (2021). https://doi.org/10.1007/s40820-021-00728-x
- J. Kim, Y. Yoon, S.K. Kim, S. Park, W. Song et al., Chemically stabilized and functionalized 2D-MXene with deep eutectic solvents as versatile dispersion medium. Adv. Funct. Mater. 31(13), 2008722 (2021). https://doi.org/10.1002/adfm.202008722
- N. Sun, Z. Guan, Q. Zhu, B. Anasori, Y. Gogotsi et al., Enhanced ionic accessibility of flexible MXene electrodes produced by natural sedimentation. Nano-Micro Lett. 12(1), 89 (2020). https://doi.org/10.1007/s40820-020-00426-0
- P. Zhang, D. Wang, Q. Zhu, N. Sun, F. Fu et al., Plate-to-layer Bi2MoO6/MXene-heterostructured anode for lithium-ion batteries. Nano-Micro Lett. 11(1), 81 (2019). https://doi.org/10.1007/s40820-019-0312-y
- X. Wang, Z. Wang, J. Qiu, Stabilizing MXene by hydration chemistry in aqueous aolution. Angew. Chem. Int. Ed. 60(51), 26587–26591 (2021). https://doi.org/10.1002/anie.202113981
- C.J. Zhang, S. Pinilla, N. McEvoy, C.P. Cullen, B. Anasori et al., Oxidation stability of colloidal two-dimensional titanium carbides (MXenes). Chem. Mater. 29(11), 4848–4856 (2017). https://doi.org/10.1021/acs.chemmater.7b00745
- M. Zhang, F. Héraly, M. Yi, J. Yuan, Multitasking tartaric acid-enabled highly conductive, stable titanium carbide MXene/PEDOT: PSS composite for ultrafast Supercapacitor. Cell Rep. 2(6), 100449 (2021). https://doi.org/10.1016/j.xcrp.2021.100449
- S. Doo, A. Chae, D. Kim, T. Oh, T.Y. Ko et al., Mechanism and kinetics of oxidation reaction of aqueous Ti3C2Tx suspensions at different pHs and temperatures. ACS Appl. Mater. Interfaces 13(19), 22855–22865 (2021). https://doi.org/10.1021/acsami.1c04663
- S. Huang, V.N. Mochalin, Hydrolysis of 2D transition-metal carbides (MXenes) in colloidal solutions. Inorg. Chem. 58(3), 1958–1966 (2019). https://doi.org/10.1021/acs.inorgchem.8b02890
- T. Habib, X. Zhao, S.A. Shah, Y. Chen, W. Sun et al., Oxidation stability of Ti3C2Tx MXene nanosheets in solvents and composite films. Npj 2D Mater Appl. 3(1), 1–6 (2019). https://doi.org/10.1038/s41699-019-0089-3
- X. Sang, Y. Xie, M.-W. Lin, M. Alhabeb, K.L. Van Aken et al., Atomic defects in monolayer titanium carbide (Ti3C2Tx) MXene. ACS Nano 10(10), 9193–9200 (2016). https://doi.org/10.1021/acsnano.6b05240
- X. Zhao, A. Vashisth, J.W. Blivin, Z. Tan, D.E. Holta et al., pH, nanosheet concentration, and antioxidant affect the oxidation of Ti3C2Tx and Ti2CTx MXene dispersions. Adv. Mater. Interfaces 7(20), 2000845 (2020). https://doi.org/10.1002/admi.202000845
- W. Cui, Z.-Y. Hu, R.R. Unocic, G. Van Tendeloo, X. Sang, Atomic defects, functional groups and properties in MXenes. Chin. Chem. Lett. 32(1), 339–344 (2021). https://doi.org/10.1016/j.cclet.2020.04.024
- J. Palisaitis, I. Persson, J. Halim, J. Rosen, P.O. Persson, On the structural stability of MXene and the role of transition metal adatoms. Nanoscale 10(23), 10850–10855 (2018). https://doi.org/10.1039/C8NR01986J
- K.R.G. Lim, M. Shekhirev, B.C. Wyatt, B. Anasori, Y. Gogotsi et al., Fundamentals of MXene synthesis. Nat. Synth. 1(8), 601–614 (2022). https://doi.org/10.1038/s44160-022-00104-6
- H. Chen, H. Ma, C. Li, Host–guest intercalation chemistry in MXenes and its implications for practical applications. ACS Nano 15(10), 15502–15537 (2021). https://doi.org/10.1021/acsnano.1c04423
- M. Han, C.E. Shuck, R. Rakhmanov, D. Parchment, B. Anasori et al., Ti3C2Tx: MXenes for electromagnetic interference shielding. ACS Nano 14(4), 5008–5016 (2020). https://doi.org/10.1021/acsnano.0c01312
- M. Ashton, K. Mathew, R.G. Hennig, S.B. Sinnott, Predicted surface composition and thermodynamic stability of MXenes in solution. J. Phys. Chem. C 120(6), 3550–3556 (2016). https://doi.org/10.1021/acs.jpcc.5b11887
- H. Ghassemi, W. Harlow, O. Mashtalir, M. Beidaghi, M.R. Lukatskaya et al., In situ environmental transmission electron microscopy study of oxidation of two-dimensional Ti3C2 and formation of carbon-supported TiO2. J. Mater. Chem. A 2(35), 14339–14343 (2014). https://doi.org/10.1039/C4TA02583K
- Z. Li, L. Wang, D. Sun, Y. Zhang, B. Liu et al., Synthesis and thermal stability of two-dimensional carbide MXene Ti3C2. J. Mater. Sci. Eng. B 191, 33–40 (2015). https://doi.org/10.1016/j.mseb.2014.10.009
- Y. Wen, T.E. Rufford, X. Chen, N. Li, M. Lyu et al., Nitrogen-doped Ti3C2Tx MXene electrodes for high-performance supercapacitors. Nano Energy 38, 368–376 (2017). https://doi.org/10.1016/j.nanoen.2017.06.009
- R.B. Rakhi, B. Ahmed, M.N. Hedhili, D.H. Anjum, H.N. Alshareef, Effect of postetch annealing gas composition on the structural and electrochemical properties of Ti2CTx MXene electrodes for supercapacitor applications. Chem. Mater. 27(15), 5314–5323 (2015). https://doi.org/10.1021/acs.chemmater.5b01623
- K. Wang, Y. Zhou, W. Xu, D. Huang, Z. Wang et al., Fabrication and thermal stability of two-dimensional carbide Ti3C2 nanosheets. Ceram. Int. 42(7), 8419–8424 (2016). https://doi.org/10.1016/j.ceramint.2016.02.059
- B. Anasori, M.R. Lukatskaya, Y. Gogotsi, 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2(2), 1–17 (2017). https://doi.org/10.1038/natrevmats.2016.98
- M. Seredych, C.E. Shuck, D. Pinto, M. Alhabeb, E. Precetti et al., High-temperature behavior and surface chemistry of carbide MXenes studied by thermal analysis. Chem. Mater. 31(9), 3324–3332 (2019). https://doi.org/10.1021/acs.chemmater.9b00397
- F. Xia, J. Lao, R. Yu, X. Sang, J. Luo et al., Ambient oxidation of Ti3C2 MXene initialized by atomic defects. Nanoscale 11(48), 23330–23337 (2019). https://doi.org/10.1039/C9NR07236E
- V. Natu, M. Sokol, L. Verger, M.W. Barsoum, Effect of edge charges on stability and aggregation of Ti3C2Tz MXene colloidal suspensions. J. Phys. Chem. C 122(48), 27745–27753 (2018). https://doi.org/10.1021/acs.jpcc.8b08860
- S. Huang, V.N. Mochalin, Understanding chemistry of two-dimensional transition Metal carbides and carbonitrides (MXenes) with gas analysis. ACS Nano 14(8), 10251–10257 (2020). https://doi.org/10.1021/acsnano.0c03602
- T. Wu, P.R.C. Kent, Y. Gogotsi, D.-E. Jiang, How water attacks MXene. Chem. Mater. 34(11), 4975–4982 (2022). https://doi.org/10.1021/acs.chemmater.2c00224
- Y. Lee, S.J. Kim, Y.-J. Kim, Y. Lim, Y. Chae et al., Oxidation-resistant titanium carbide MXene films. J. Mater. Chem. A 8(2), 573–581 (2020). https://doi.org/10.1039/C9TA07036B
- C.E. Shuck, M. Han, K. Maleski, K. Hantanasirisakul, S.J. Kim et al., Effect of Ti3AlC2 MAX phase on structure and properties of resultant Ti3C2T x MXene. ACS Appl. Nano Mater. 2(6), 3368–3376 (2019). https://doi.org/10.1021/acsanm.9b00286
- R. Lotfi, M. Naguib, D.E. Yilmaz, J. Nanda, A.C. Van Duin, A comparative study on the oxidation of two-dimensional Ti3C2 MXene structures in different environments. J. Mater. Chem. A 6(26), 12733–12743 (2018). https://doi.org/10.1039/C8TA01468J
- X. Zhao, H. Cao, B.J. Coleman, Z. Tan, I.J. Echols et al., The role of antioxidant structure in mitigating oxidation in Ti3C2Tx and Ti2CTx MXenes. Adv. Mater. Interfaces 9(20), 2200480 (2022). https://doi.org/10.1002/admi.202200480
- T.S. Mathis, K. Maleski, Modified MAX phase synthesis for environmentally stable and highly conductive Ti3C2 MXene. ACS Nano 15(4), 6420–6429 (2021). https://doi.org/10.1021/acsnano.0c08357
- K. Maleski, V.N. Mochalin, Y. Gogotsi, Dispersions of two-dimensional titanium carbide MXene in organic solvents. Chem. Mater. 29(4), 1632–1640 (2017). https://doi.org/10.1021/acs.chemmater.6b04830
- V. Natu, J.L. Hart, M. Sokol, H. Chiang, M.L. Taheri et al., Edge capping of 2D-MXene sheets with polyanionic salts to mitigate oxidation in aqueous colloidal suspensions. Angew. Chem. Int. Ed. 131(36), 12785–12790 (2019). https://doi.org/10.1002/ange.201906138
- X. Zhao, A. Vashisth, E. Prehn, W. Sun, S.A. Shah et al., Antioxidants unlock shelf-stable Ti3C2Tx (MXene) nanosheet dispersions. Matter 1(2), 513–526 (2019). https://doi.org/10.1016/j.matt.2019.05.020
- H. Shi, P. Zhang, Z. Liu, S. Park, M.R. Lohe et al., Ambient-stable two-dimensional titanium carbide (MXene) enabled by iodine etching. Angew. Chem. Int. Ed. 60(16), 8689–8693 (2021). https://doi.org/10.1002/anie.202015627
- P. Zhang, R.A. Soomro, Z. Guan, N. Sun, B. Xu, 3D carbon-coated MXene architectures with high and ultrafast lithium/sodium-ion storage. Energy Storage Mater. 29, 163–171 (2020). https://doi.org/10.1016/j.ensm.2020.04.016
- H. Zhao, J. Ding, M. Zhou, H. Yu, Air-stable titanium carbide MXene nanosheets for corrosion protection. ACS Appl. Nano Mater. 4(3), 3075–3086 (2021). https://doi.org/10.1021/acsanm.1c00219
- S. Lim, H. Park, J.H. Kim, J. Yang, C. Kwak et al., Polyelectrolyte-grafted Ti3C2-MXenes stable in extreme salinity aquatic conditions for remediation of contaminated subsurface environments. RSC Adv. 10(43), 25966–25978 (2020). https://doi.org/10.1039/D0RA04348F
- R. Bian, S. Xiang, D. Cai, Fast treatment of MXene films with isocyanate to give enhanced stability. ChemNanoMat 6(1), 64–67 (2020). https://doi.org/10.1002/cnma.201900602
- S. Lim, H. Park, J. Yang, C. Kwak, J. Lee, Stable colloidal dispersion of octylated Ti3C2-MXenes in a nonpolar solvent. Colloids Surf. A Physicochem Eng. 579, 123648 (2019). https://doi.org/10.1016/j.colsurfa.2019.123648
- R. Thakur, A. VahidMohammadi, J. Moncada, W.R. Adams, M. Chi et al., Insights into the thermal and chemical stability of multilayered V2CTx MXene. Nanoscale 11(22), 10716–10726 (2019). https://doi.org/10.1039/C9NR03020D
- X. Zhao, D.E. Holta, Z. Tan, J.-H. Oh, I.J. Echols et al., Annealed Ti3C2Tz MXene films for oxidation-resistant functional coatings. ACS Appl. Nano Mater. 3(11), 10578–10585 (2020). https://doi.org/10.1021/acsanm.0c02473
- J. Zhang, N. Kong, D. Hegh, K.A.S. Usman, G. Guan et al., Freezing titanium carbide aqueous dispersions for ultra-long-term storage. ACS Appl. Mater. Interfaces 12(30), 34032–34040 (2020). https://doi.org/10.1021/acsami.0c06728
- S. Lai, J. Jeon, S.K. Jang, J. Xu, Y.J. Choi et al., Surface group modification and carrier transport properties of layered transition metal carbides (Ti2CTx, T: –OH, –F and –O). Nanoscale 7(46), 19390–19396 (2015). https://doi.org/10.1039/C5NR06513E
References
Z. Xu, X. Ding, S. Li, F. Huang, B. Wang, S. Wang et al., Oxidation-resistant MXene-based melamine foam with ultralow-percolation thresholds for electromagnetic-Infrared compatible shielding. ACS Appl. Mater. Interfaces 14(35), 40407 (2022). https://doi.org/10.1021/acsami.2c05544
T. Agarkar, V.K. Nair, S. Tripathy, V. Chawla, S. Ghosh et al., Oxygen vacancy modulated MnO2 bi-electrode system for attomole-level pathogen nucleic acid sequence detection. Electrochim Acta. 407, 139876 (2022). https://doi.org/10.1016/j.electacta.2022.139876
Y. Li, Q. Zhu, M. Xu, B. Zang, Y. Wang, B. Xu, Cu-modified Ti3C2Cl2 MXene with zincophilic and hydrophobic characteristics as a protective coating for highly stable Zn anode. Adv. Funct. Mater. (2023). https://doi.org/10.1002/adfm.202213416
M. Dadashi Firouzjaei, M. Karimiziarani, H. Moradkhani, M. Elliott, B. Anasori, MXenes: the two-dimensional influencers. Mater. Today Adv. 13, 100202 (2022). https://doi.org/10.1016/j.mtadv.2021.100202
G. Murali, J.K. Reddy Modigunta, Y.H. Park, J.-H. Lee, J. Rawal et al., A review on MXene synthesis, stability, and photocatalytic applications. ACS Nano 16(9), 13429 (2022). https://doi.org/10.1021/acsnano.2c04750
Q. Zhao, Q. Zhu, Y. Liu, B. Xu, Status and prospects of MXene-based lithium–sulfur batteries. Adv. Funct. Mater. 31(21), 2100457 (2021). https://doi.org/10.1002/adfm.202100457
H. Liu, L. Jiang, B. Cao, H. Du, H. Lu et al., Van der Waals interaction-driven self-assembly of V2O5 nanoplates and MXene for high-performing zinc-ion batteries by suppressing vanadium dissolution. ACS Nano 16(9), 14539 (2022). https://doi.org/10.1021/acsnano.2c04968
E. Choi, J. Lee, Y.J. Kim, H. Kim, M. Kim et al., Enhanced stability of Ti3C2Tx MXene enabled by continuous ZIF-8 coating. Carbon 191, 599 (2022). https://doi.org/10.1016/j.carbon.2022.02.036
X. Chang, Q. Zhu, Q. Zhao, P. Zhang, N. Sun et al., 3D porous Co3O4/MXene foam fabricated via a sulfur template strategy for enhanced Li/K-Ion storage. ACS Appl. Mater. Interfaces 15(6), 7999–8009 (2023). https://doi.org/10.1021/acsami.2c19681
P. Zhang, Q. Zhu, Y. Wei, B. Xu, Achieving stable and fast potassium storage of Sb2S3@MXene anode via interfacial bonding and electrolyte chemistry. J. Chem. Eng. 451, 138891 (2023). https://doi.org/10.1016/j.cej.2022.138891
P. Zhang, J. Li, D. Yang, R.A. Soomro, B. Xu, Flexible carbon dots-intercalated MXene film electrode with outstanding volumetric performance for supercapacitors. Adv. Funct. Mater. 33(1), 2209918 (2023). https://doi.org/10.1002/adfm.202209918
P. Zhang, Y. Peng, Q. Zhu, R.A. Soomro, N. Sun et al., 3D foam-based MXene architectures: atructural and electrolytic engineering for advangced potassium ion storage. Energy Environ. Mater. (2022). https://doi.org/10.1002/eem2.12379
B. Cao, H. Liu, X. Zhang, P. Zhang, Q. Zhu et al., MOF-Derived ZnS Nanodots/Ti3C2Tx MXene hybrids boosting superior lithium storage performance. Nano-Micro Lett. 13(1), 202 (2021). https://doi.org/10.1007/s40820-021-00728-x
J. Kim, Y. Yoon, S.K. Kim, S. Park, W. Song et al., Chemically stabilized and functionalized 2D-MXene with deep eutectic solvents as versatile dispersion medium. Adv. Funct. Mater. 31(13), 2008722 (2021). https://doi.org/10.1002/adfm.202008722
N. Sun, Z. Guan, Q. Zhu, B. Anasori, Y. Gogotsi et al., Enhanced ionic accessibility of flexible MXene electrodes produced by natural sedimentation. Nano-Micro Lett. 12(1), 89 (2020). https://doi.org/10.1007/s40820-020-00426-0
P. Zhang, D. Wang, Q. Zhu, N. Sun, F. Fu et al., Plate-to-layer Bi2MoO6/MXene-heterostructured anode for lithium-ion batteries. Nano-Micro Lett. 11(1), 81 (2019). https://doi.org/10.1007/s40820-019-0312-y
X. Wang, Z. Wang, J. Qiu, Stabilizing MXene by hydration chemistry in aqueous aolution. Angew. Chem. Int. Ed. 60(51), 26587–26591 (2021). https://doi.org/10.1002/anie.202113981
C.J. Zhang, S. Pinilla, N. McEvoy, C.P. Cullen, B. Anasori et al., Oxidation stability of colloidal two-dimensional titanium carbides (MXenes). Chem. Mater. 29(11), 4848–4856 (2017). https://doi.org/10.1021/acs.chemmater.7b00745
M. Zhang, F. Héraly, M. Yi, J. Yuan, Multitasking tartaric acid-enabled highly conductive, stable titanium carbide MXene/PEDOT: PSS composite for ultrafast Supercapacitor. Cell Rep. 2(6), 100449 (2021). https://doi.org/10.1016/j.xcrp.2021.100449
S. Doo, A. Chae, D. Kim, T. Oh, T.Y. Ko et al., Mechanism and kinetics of oxidation reaction of aqueous Ti3C2Tx suspensions at different pHs and temperatures. ACS Appl. Mater. Interfaces 13(19), 22855–22865 (2021). https://doi.org/10.1021/acsami.1c04663
S. Huang, V.N. Mochalin, Hydrolysis of 2D transition-metal carbides (MXenes) in colloidal solutions. Inorg. Chem. 58(3), 1958–1966 (2019). https://doi.org/10.1021/acs.inorgchem.8b02890
T. Habib, X. Zhao, S.A. Shah, Y. Chen, W. Sun et al., Oxidation stability of Ti3C2Tx MXene nanosheets in solvents and composite films. Npj 2D Mater Appl. 3(1), 1–6 (2019). https://doi.org/10.1038/s41699-019-0089-3
X. Sang, Y. Xie, M.-W. Lin, M. Alhabeb, K.L. Van Aken et al., Atomic defects in monolayer titanium carbide (Ti3C2Tx) MXene. ACS Nano 10(10), 9193–9200 (2016). https://doi.org/10.1021/acsnano.6b05240
X. Zhao, A. Vashisth, J.W. Blivin, Z. Tan, D.E. Holta et al., pH, nanosheet concentration, and antioxidant affect the oxidation of Ti3C2Tx and Ti2CTx MXene dispersions. Adv. Mater. Interfaces 7(20), 2000845 (2020). https://doi.org/10.1002/admi.202000845
W. Cui, Z.-Y. Hu, R.R. Unocic, G. Van Tendeloo, X. Sang, Atomic defects, functional groups and properties in MXenes. Chin. Chem. Lett. 32(1), 339–344 (2021). https://doi.org/10.1016/j.cclet.2020.04.024
J. Palisaitis, I. Persson, J. Halim, J. Rosen, P.O. Persson, On the structural stability of MXene and the role of transition metal adatoms. Nanoscale 10(23), 10850–10855 (2018). https://doi.org/10.1039/C8NR01986J
K.R.G. Lim, M. Shekhirev, B.C. Wyatt, B. Anasori, Y. Gogotsi et al., Fundamentals of MXene synthesis. Nat. Synth. 1(8), 601–614 (2022). https://doi.org/10.1038/s44160-022-00104-6
H. Chen, H. Ma, C. Li, Host–guest intercalation chemistry in MXenes and its implications for practical applications. ACS Nano 15(10), 15502–15537 (2021). https://doi.org/10.1021/acsnano.1c04423
M. Han, C.E. Shuck, R. Rakhmanov, D. Parchment, B. Anasori et al., Ti3C2Tx: MXenes for electromagnetic interference shielding. ACS Nano 14(4), 5008–5016 (2020). https://doi.org/10.1021/acsnano.0c01312
M. Ashton, K. Mathew, R.G. Hennig, S.B. Sinnott, Predicted surface composition and thermodynamic stability of MXenes in solution. J. Phys. Chem. C 120(6), 3550–3556 (2016). https://doi.org/10.1021/acs.jpcc.5b11887
H. Ghassemi, W. Harlow, O. Mashtalir, M. Beidaghi, M.R. Lukatskaya et al., In situ environmental transmission electron microscopy study of oxidation of two-dimensional Ti3C2 and formation of carbon-supported TiO2. J. Mater. Chem. A 2(35), 14339–14343 (2014). https://doi.org/10.1039/C4TA02583K
Z. Li, L. Wang, D. Sun, Y. Zhang, B. Liu et al., Synthesis and thermal stability of two-dimensional carbide MXene Ti3C2. J. Mater. Sci. Eng. B 191, 33–40 (2015). https://doi.org/10.1016/j.mseb.2014.10.009
Y. Wen, T.E. Rufford, X. Chen, N. Li, M. Lyu et al., Nitrogen-doped Ti3C2Tx MXene electrodes for high-performance supercapacitors. Nano Energy 38, 368–376 (2017). https://doi.org/10.1016/j.nanoen.2017.06.009
R.B. Rakhi, B. Ahmed, M.N. Hedhili, D.H. Anjum, H.N. Alshareef, Effect of postetch annealing gas composition on the structural and electrochemical properties of Ti2CTx MXene electrodes for supercapacitor applications. Chem. Mater. 27(15), 5314–5323 (2015). https://doi.org/10.1021/acs.chemmater.5b01623
K. Wang, Y. Zhou, W. Xu, D. Huang, Z. Wang et al., Fabrication and thermal stability of two-dimensional carbide Ti3C2 nanosheets. Ceram. Int. 42(7), 8419–8424 (2016). https://doi.org/10.1016/j.ceramint.2016.02.059
B. Anasori, M.R. Lukatskaya, Y. Gogotsi, 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2(2), 1–17 (2017). https://doi.org/10.1038/natrevmats.2016.98
M. Seredych, C.E. Shuck, D. Pinto, M. Alhabeb, E. Precetti et al., High-temperature behavior and surface chemistry of carbide MXenes studied by thermal analysis. Chem. Mater. 31(9), 3324–3332 (2019). https://doi.org/10.1021/acs.chemmater.9b00397
F. Xia, J. Lao, R. Yu, X. Sang, J. Luo et al., Ambient oxidation of Ti3C2 MXene initialized by atomic defects. Nanoscale 11(48), 23330–23337 (2019). https://doi.org/10.1039/C9NR07236E
V. Natu, M. Sokol, L. Verger, M.W. Barsoum, Effect of edge charges on stability and aggregation of Ti3C2Tz MXene colloidal suspensions. J. Phys. Chem. C 122(48), 27745–27753 (2018). https://doi.org/10.1021/acs.jpcc.8b08860
S. Huang, V.N. Mochalin, Understanding chemistry of two-dimensional transition Metal carbides and carbonitrides (MXenes) with gas analysis. ACS Nano 14(8), 10251–10257 (2020). https://doi.org/10.1021/acsnano.0c03602
T. Wu, P.R.C. Kent, Y. Gogotsi, D.-E. Jiang, How water attacks MXene. Chem. Mater. 34(11), 4975–4982 (2022). https://doi.org/10.1021/acs.chemmater.2c00224
Y. Lee, S.J. Kim, Y.-J. Kim, Y. Lim, Y. Chae et al., Oxidation-resistant titanium carbide MXene films. J. Mater. Chem. A 8(2), 573–581 (2020). https://doi.org/10.1039/C9TA07036B
C.E. Shuck, M. Han, K. Maleski, K. Hantanasirisakul, S.J. Kim et al., Effect of Ti3AlC2 MAX phase on structure and properties of resultant Ti3C2T x MXene. ACS Appl. Nano Mater. 2(6), 3368–3376 (2019). https://doi.org/10.1021/acsanm.9b00286
R. Lotfi, M. Naguib, D.E. Yilmaz, J. Nanda, A.C. Van Duin, A comparative study on the oxidation of two-dimensional Ti3C2 MXene structures in different environments. J. Mater. Chem. A 6(26), 12733–12743 (2018). https://doi.org/10.1039/C8TA01468J
X. Zhao, H. Cao, B.J. Coleman, Z. Tan, I.J. Echols et al., The role of antioxidant structure in mitigating oxidation in Ti3C2Tx and Ti2CTx MXenes. Adv. Mater. Interfaces 9(20), 2200480 (2022). https://doi.org/10.1002/admi.202200480
T.S. Mathis, K. Maleski, Modified MAX phase synthesis for environmentally stable and highly conductive Ti3C2 MXene. ACS Nano 15(4), 6420–6429 (2021). https://doi.org/10.1021/acsnano.0c08357
K. Maleski, V.N. Mochalin, Y. Gogotsi, Dispersions of two-dimensional titanium carbide MXene in organic solvents. Chem. Mater. 29(4), 1632–1640 (2017). https://doi.org/10.1021/acs.chemmater.6b04830
V. Natu, J.L. Hart, M. Sokol, H. Chiang, M.L. Taheri et al., Edge capping of 2D-MXene sheets with polyanionic salts to mitigate oxidation in aqueous colloidal suspensions. Angew. Chem. Int. Ed. 131(36), 12785–12790 (2019). https://doi.org/10.1002/ange.201906138
X. Zhao, A. Vashisth, E. Prehn, W. Sun, S.A. Shah et al., Antioxidants unlock shelf-stable Ti3C2Tx (MXene) nanosheet dispersions. Matter 1(2), 513–526 (2019). https://doi.org/10.1016/j.matt.2019.05.020
H. Shi, P. Zhang, Z. Liu, S. Park, M.R. Lohe et al., Ambient-stable two-dimensional titanium carbide (MXene) enabled by iodine etching. Angew. Chem. Int. Ed. 60(16), 8689–8693 (2021). https://doi.org/10.1002/anie.202015627
P. Zhang, R.A. Soomro, Z. Guan, N. Sun, B. Xu, 3D carbon-coated MXene architectures with high and ultrafast lithium/sodium-ion storage. Energy Storage Mater. 29, 163–171 (2020). https://doi.org/10.1016/j.ensm.2020.04.016
H. Zhao, J. Ding, M. Zhou, H. Yu, Air-stable titanium carbide MXene nanosheets for corrosion protection. ACS Appl. Nano Mater. 4(3), 3075–3086 (2021). https://doi.org/10.1021/acsanm.1c00219
S. Lim, H. Park, J.H. Kim, J. Yang, C. Kwak et al., Polyelectrolyte-grafted Ti3C2-MXenes stable in extreme salinity aquatic conditions for remediation of contaminated subsurface environments. RSC Adv. 10(43), 25966–25978 (2020). https://doi.org/10.1039/D0RA04348F
R. Bian, S. Xiang, D. Cai, Fast treatment of MXene films with isocyanate to give enhanced stability. ChemNanoMat 6(1), 64–67 (2020). https://doi.org/10.1002/cnma.201900602
S. Lim, H. Park, J. Yang, C. Kwak, J. Lee, Stable colloidal dispersion of octylated Ti3C2-MXenes in a nonpolar solvent. Colloids Surf. A Physicochem Eng. 579, 123648 (2019). https://doi.org/10.1016/j.colsurfa.2019.123648
R. Thakur, A. VahidMohammadi, J. Moncada, W.R. Adams, M. Chi et al., Insights into the thermal and chemical stability of multilayered V2CTx MXene. Nanoscale 11(22), 10716–10726 (2019). https://doi.org/10.1039/C9NR03020D
X. Zhao, D.E. Holta, Z. Tan, J.-H. Oh, I.J. Echols et al., Annealed Ti3C2Tz MXene films for oxidation-resistant functional coatings. ACS Appl. Nano Mater. 3(11), 10578–10585 (2020). https://doi.org/10.1021/acsanm.0c02473
J. Zhang, N. Kong, D. Hegh, K.A.S. Usman, G. Guan et al., Freezing titanium carbide aqueous dispersions for ultra-long-term storage. ACS Appl. Mater. Interfaces 12(30), 34032–34040 (2020). https://doi.org/10.1021/acsami.0c06728
S. Lai, J. Jeon, S.K. Jang, J. Xu, Y.J. Choi et al., Surface group modification and carrier transport properties of layered transition metal carbides (Ti2CTx, T: –OH, –F and –O). Nanoscale 7(46), 19390–19396 (2015). https://doi.org/10.1039/C5NR06513E