The Critical Role of Fillers in Composite Polymer Electrolytes for Lithium Battery
Corresponding Author: Jinbao Zhao
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 74
Abstract
With excellent energy densities and highly safe performance, solid-state lithium batteries (SSLBs) have been hailed as promising energy storage devices. Solid-state electrolyte is the core component of SSLBs and plays an essential role in the safety and electrochemical performance of the cells. Composite polymer electrolytes (CPEs) are considered as one of the most promising candidates among all solid-state electrolytes due to their excellent comprehensive performance. In this review, we briefly introduce the components of CPEs, such as the polymer matrix and the species of fillers, as well as the integration of fillers in the polymers. In particular, we focus on the two major obstacles that affect the development of CPEs: the low ionic conductivity of the electrolyte and high interfacial impedance. We provide insight into the factors influencing ionic conductivity, in terms of macroscopic and microscopic aspects, including the aggregated structure of the polymer, ion migration rate and carrier concentration. In addition, we also discuss the electrode–electrolyte interface and summarize methods for improving this interface. It is expected that this review will provide feasible solutions for modifying CPEs through further understanding of the ion conduction mechanism in CPEs and for improving the compatibility of the electrode–electrolyte interface.
Highlights:
1 The mechanism of the change in lithium-ion transport behavior caused by the incorporation of inorganic fillers into the polymer matrix is reviewed.
2 The intrinsic factors of inorganic fillers to enhance the ionic conductivity of composite polymer electrolyte (CPEs) are investigated in depth.
3 The contribution of inorganic fillers to inhibit dendrite growth and side reactions in CPEs is summarized.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J. Wang, S. Guo, Z. Li, W. Kou, J. Zhu et al., Highly conductive thin composite solid electrolyte with vertical Li7La3Zr2O12 sheet arrays for high-energy-density all-solid-state lithium battery. Chem. Eng. J. 450(1), 137994 (2022). https://doi.org/10.1016/j.cej.2022.137994
- F. Ye, X. Zhang, K. Liao, Q. Lu, X. Zou et al., A smart lithiophilic polymer filler in gel polymer electrolyte enables stable and dendrite-free Li metal anode. J. Mater. Chem. A 8(19), 9733–9742 (2020). https://doi.org/10.1039/D0TA02499F
- Z. Ding, Q. Tang, Y. Liu, P. Yao, C. Liu et al., Integrate multifunctional ionic sieve lithiated X zeolite-ionic liquid electrolyte for solid-state lithium metal batteries with ultralong lifespan. Chem. Eng. J. 433(2), 133522 (2022). https://doi.org/10.1016/j.cej.2021.133522
- Y. Yang, H. Zhou, J. Xie, L. Bao, T. Li et al., Organic fast ion-conductor with ordered Li-ion conductive nano-pathways and high ionic conductivity for electrochemical energy storage. J. Energy Chem. 66, 647–656 (2022). https://doi.org/10.1016/j.jechem.2021.09.011
- X. Li, Y. Wang, K. Xi, W. Yu, J. Feng et al., Quasi-solid-state ion-conducting arrays composite electrolytes with fast ion transport vertical-aligned interfaces for all-weather practical lithium-metal batteries. Nano-Micro Lett. 14(1), 210 (2022). https://doi.org/10.1007/s40820-022-00952-z
- X.Y. Li, C.X. Zhao, B.Q. Li, J.Q. Huang, Q. Zhang, Advances on composite cathodes for lithium-sulfur batteries. J. Electrochem. 28(12), 2219013 (2022). https://doi.org/10.13208/j.electrochem.2219013
- W. Zha, W. Li, Y. Ruan, J. Wang, Z. Wen, In situ fabricated ceramic/polymer hybrid electrolyte with vertically aligned structure for solid-state lithium batteries. Energy Storage Mater. 36, 171–178 (2021). https://doi.org/10.1016/j.ensm.2020.12.028
- H. Duan, L. Li, K. Zou, Y. Deng, G. Chen, Cyclodextrin-integrated PEO-based composite solid electrolytes for high-rate and ultrastable all-solid-state lithium batteries. ACS Appl. Mater. Interfaces 13(48), 57380–57391 (2021). https://doi.org/10.1021/acsami.1c18589
- S. Woo, B. Kang, Superior compatibilities of a LiSiCON-type oxide solid electrolyte enable high energy density all-solid-state batteries. J. Mater. Chem. A 10, 23185–23194 (2022). https://doi.org/10.1039/D2TA05948G
- H. Choi, M. Kim, H. Lee, S. Jung, Y.-G. Lee et al., Unexpected pressure effects on sulfide-based polymer-in-ceramic solid electrolytes for all-solid-state batteries. Nano Energy 102, 107679 (2022). https://doi.org/10.1016/j.nanoen.2022.107679
- S. Liu, W. Liu, D. Ba, Y. Zhao, Y. Ye et al., Filler-integrated composite polymer electrolyte for solid-state lithium batteries. Adv. Mater. 35, 2110423 (2023). https://doi.org/10.1002/adma.202110423
- Z. Cheng, T. Liu, B. Zhao, F. Shen, H. Jin et al., Recent advances in organic-inorganic composite solid electrolytes for all-solid-state lithium batteries. Energy Storage Mater. 34, 388–416 (2021). https://doi.org/10.1016/j.ensm.2020.09.016
- G. Yang, Y. Song, L. Deng, Polyaddition enabled functional polymer/inorganic hybrid electrolytes for lithium metal batteries. J. Mater. Chem. A 9(11), 6881–6889 (2021). https://doi.org/10.1039/D0TA11730G
- X. Li, L. Cong, S. Ma, S. Shi, Y. Li et al., Low resistance and high stable solid–liquid electrolyte interphases enable high-voltage solid-state lithium metal batteries. Adv. Funct. Mater. 31(20), 2010611 (2021). https://doi.org/10.1002/adfm.202010611
- M. Liu, Z. Cheng, S. Ganapathy, C. Wang, L.A. Haverkate et al., Tandem interface and bulk li-ion transport in a hybrid solid electrolyte with microsized active filler. ACS Energy Lett. 4(9), 2336–2342 (2019). https://doi.org/10.1021/acsenergylett.9b01371
- X. Zheng, J. Wu, X. Wang, Z. Yang, Cellulose-reinforced poly (cyclocarbonate-ether)-based composite polymer electrolyte and facile gel interfacial modification for solid-state lithium-ion batteries. Chem. Eng. J. 446(3), 137194 (2022). https://doi.org/10.1016/j.cej.2022.137194
- Y. Jin, X. Zong, X. Zhang, Z. Jia, H. Xie et al., Constructing 3D Li+-percolated transport network in composite polymer electrolytes for rechargeable quasi-solid-state lithium batteries. Energy Storage Mater. 49, 433–444 (2022). https://doi.org/10.1016/j.ensm.2022.04.035
- X. Yu, A. Manthiram, A review of composite polymer-ceramic electrolytes for lithium batteries. Energy Storage Mater. 34, 282–300 (2021). https://doi.org/10.1016/j.ensm.2020.10.006
- S. Su, J. Ma, L. Zhao, K. Lin, Q. Li et al., Progress and perspective of the cathode/electrolyte interface construction in all-solid-state lithium batteries. Carbon Energy 3(6), 866–894 (2021). https://doi.org/10.1002/cey2.129
- Z. Shen, Y. Cheng, S. Sun, X. Ke, L. Liu et al., The critical role of inorganic nanofillers in solid polymer composite electrolyte for i+ transportation. Carbon Energy 3(3), 482–508 (2021). https://doi.org/10.1002/cey2.108
- H. Chen, M. Zheng, S. Qian, H.Y. Ling, Z. Wu et al., Functional additives for solid polymer electrolytes in flexible and high-energy-density solid-state lithium-ion batteries. Carbon Energy 3(6), 929–956 (2021). https://doi.org/10.1002/cey2.146
- G. Zhang, J. Shu, L. Xu, X. Cai, W. Zou et al., Pancake-like MOF solid-state electrolytes with fast ion migration for high-performance sodium battery. Nano-Micro Lett. 13(1), 105 (2021). https://doi.org/10.1007/s40820-021-00628-0
- C. Liu, J. Wang, W. Kou, Z. Yang, P. Zhai et al., A flexible, ion-conducting solid electrolyte with vertically bicontinuous transfer channels toward high performance all-solid-state lithium batteries. Chem. Eng. J. 404, 126517 (2021). https://doi.org/10.1016/j.cej.2020.126517
- Z. Lu, L. Peng, Y. Rong, E. Wang, R. Shi et al., Enhanced electrochemical proterties and optimiazed Li+ transmission pathways of PEO/LLZTO-based composite electrolytes modified by supramolecular combination. Energy Environ. Mater. (2022). https://doi.org/10.1002/eem2.12498
- S. Li, S.Q. Zhang, L. Shen, Q. Liu, J.B. Ma et al., Progress and perspective of ceramic/polymer composite solid electrolytes for lithium batteries. Adv. Sci. 7(5), 1903088 (2020). https://doi.org/10.1002/advs.201903088
- C. Guo, L. He, Y.H. Yao, W.Z. Lin, Y.Z. Zhang et al., Bifunctional liquid metals allow electrical insulating phase change materials to dual-mode thermal manage the Li-ion batteries. Nano-Micro Lett. 14(1), 202 (2022). https://doi.org/10.1007/s40820-022-0094
- J.J. Xu, critical review on cathode–electrolyte interphase toward high-voltage cathodes for Li-ion batteries. Nano-Micro Lett. 14(1), 166 (2022). https://doi.org/10.1007/s40820-022-00917
- M. Du, Y. Sun, B. Liu, B. Chen, K. Liao et al., Smart construction of an intimate lithium | garnet interface for all-solid-state batteries by tuning the tension of molten lithium. Adv. Funct. Mater. 31(31), 2101556 (2021). https://doi.org/10.1002/adfm.202101556
- C. Guo, Y. Shen, P. Mao, K. Liao, M. Du et al., Grafting of lithiophilic and electron-blocking interlayer for garnet-based solid-state li metal batteries via one-step anhydrous poly-phosphoric acid post-treatment. Adv. Funct. Mater. 21(3), 2213443 (2022). https://doi.org/10.1002/adfm.202213443
- G. DiMarco, M. Lanza, M. Pieruccini, Electrical conductivity in ionic complexes of poly(ethylene oxide). Solid State Ion. 89(1–2), 117–125 (1996). https://doi.org/10.1016/0167-2738(96)00032-X
- D. Baril, C. Michot, M. Armand, Electrochemistry of liquids vs. solids: polymer electrolytes. Solid State Ion. 94(1–4), 35–47 (1997). https://doi.org/10.1016/S0167-2738(96)00614-5
- M. Armand, The history of polymer electrolytes. Solid State Ion. 69(3–4), 309–319 (1994). https://doi.org/10.1016/0167-2738(94)90419-7
- J. Lu, P. Jaumaux, T. Wang, C. Wang, G. Wang, Recent progress in quasi-solid and solid polymer electrolytes for multivalent metal-ion batteries. J. Mater. Chem. A 9(43), 24175–24194 (2021). https://doi.org/10.1039/D1TA06606D
- L. Long, S. Wang, M. Xiao, Y. Meng, Polymer electrolytes for lithium polymer batteries. J. Mater. Chem. A 4(26), 10038–10069 (2016). https://doi.org/10.1039/C6TA02621D
- R. Tanaka, M. Sakurai, H. Sekiguchi, H. Mori, T. Murayama et al., Lithium ion conductivity in polyoxyethylene/polyethylenimine blends. Electrochim. Acta 46(10), 1709–1715 (2001). https://doi.org/10.1016/S0013-4686(00)00775-1
- Q. Zhou, J. Ma, S. Dong, X. Li, G. Cui, Intermolecular chemistry in solid polymer electrolytes for high-energy-density lithium batteries. Adv. Mater. 31(50), 1902029 (2019). https://doi.org/10.1002/adma.201902029
- P.W. Majewski, M. Gopinadhan, W.S. Jang, J.L. Lutkenhaus, C.O. Osuji, Anisotropic ionic conductivity in block copolymer membranes by magnetic field alignment. J. Am. Chem. Soc. 132(49), 17516–17522 (2010). https://doi.org/10.1021/ja107309p
- S. Srivastava, J.L. Schaefer, Z.C. Yang, Z.Y. Tu, L.A. Archer, 25th anniversary : polymer–p composites: phase stability and applications in electrochemical energy storage. Adv. Mater. 26(2), 201–233 (2014). https://doi.org/10.1002/adma.201303070
- E. Staunton, Y.G. Andreev, P.G. Bruce, Factors influencing the conductivity of crystalline polymer electrolytes. Faraday Discuss. 134, 143–156 (2007). https://doi.org/10.1039/B601945E
- Z. Gadjourova, D. Martín y Marero, K.H. Andersen, Y.G. Andreev, P.G. Bruce, Structures of the polymer electrolyte complexes PEO6:LiXF6 (X = P, Sb), determined from neutron powder diffraction data. Chem. Mater. 13(4), 1282–1285 (2001). https://doi.org/10.1021/cm000949k
- Z. Gadjourova, Y.G. Andreev, D.P. Tunstall, P.G. Bruce, Ionic conductivity in crystalline polymer electrolytes. Nature 412(6846), 520–523 (2001). https://doi.org/10.1038/35087538
- D. Zhou, D. Shanmukaraj, A. Tkacheva, M. Armand, G. Wang, Polymer electrolytes for lithium-based batteries: advances and prospects. Chem 5(9), 2326–2352 (2019). https://doi.org/10.1016/j.chempr.2019.05.009
- P.W. Majewski, M. Gopinadhan, W.S. Jang, J.L. Lutkenhaus, C.O. Osuji, Structural and electrochemical properties of succinonitrile-based gel polymer electrolytes: role of ionic liquid addition. J. Am. Chem. Soc. 132(49), 17516–17522 (2010). https://doi.org/10.1021/ja107309p
- D. Zhou, Y.B. He, R.L. Liu, M. Liu, H.D. Du et al., In situ synthesis of a hierarchical all-solid-state electrolyte based on nitrile materials for high-performance lithium-ion batteries. Adv. Energy Mater. 5(15), 1500353 (2015). https://doi.org/10.1002/aenm.201500353
- N. Terasawa, N. Ono, Y. Hayakawa, K. Mukai, T. Koga et al., Effect of hexafluoropropylene on the performance of poly (vinylidene fluoride) polymer actuators based on single-walled carbon nanotube–ionic liquid gel. Sens. Actuators B Chem. 160(1), 161–167 (2011). https://doi.org/10.1016/j.snb.2011.07.027
- S.C. Yu, L. Chen, Y.W. Chen, Y.F. Tong, Microporous gel electrolytes based on amphiphilic poly (vinylidene fluoride-co-hexafluoropropylene) for lithium batteries. Appl. Surf. Sci. 258(11), 4983–4989 (2012). https://doi.org/10.1016/j.apsusc.2012.01.146
- D. Devaux, R. Bouchet, D. Gle, R. Denoyel, Mechanism of ion transport in PEO/LiTFSI complexes: effect of temperature, molecular weight and end groups. Solid State Ion. 227, 119–127 (2012). https://doi.org/10.1016/j.ssi.2012.09.020
- V. Gregorio, N. Garcia, P. Tiemblo, Ionic conductivity enhancement in uhmw PEO gel electrolytes based on room-temperature ionic liquids and deep eutectic solvents. ACS Appl. Polym. Mater. 4(4), 2860–2870 (2022). https://doi.org/10.1021/acsapm.2c00104
- M.S. Cho, B. Shin, S.D. Choi, Y. Lee, K.G. Song, Gel polymer electrolyte nanocomposites PEGDA with Mg–Al layered double hydroxides. Electrochim. Acta 50(2–3), 331–334 (2004). https://doi.org/10.1016/j.electacta.2004.03.050
- R.X. He, M. Echeverri, D. Ward, Y. Zhu, T. Kyu, Highly conductive solvent-free polymer electrolyte membrane for lithium-ion batteries: effect of prepolymer molecular weight. J. Membr. Sci. 498, 208–217 (2015). https://doi.org/10.1016/j.memsci.2015.10.008
- H. Wang, Y. Yang, T. Zhang, Tape-casting method of hybrid solid electrolytes with a residual active solvent of tetraethylene glycol dimethyl ether. ACS Appl. Energy Mater. 6, 2031 (2023). https://doi.org/10.1021/acsaem.2c03935
- J. Li, S. Dong, C. Wang, Z. Hu, Z. Zhang et al., A study on the interfacial stability of the cathode/polycarbonate interface: implication of overcharge and transition metal redox. J. Mater. Chem. A 6(25), 11846–11852 (2018). https://doi.org/10.1039/C8TA02975J
- X. Huang, D.H. Xu, W.Y. Chen, H.Z. Yin, C.C. Zhang et al., Preparation, characterization and properties of poly(propylene carbonate)/poly(methyl methacrylate)-coated polyethylene gel polymer electrolyte for lithium-ion batteries. J. Electroanal. Chem. 804, 133–139 (2017). https://doi.org/10.1016/j.jelechem.2017.09.050
- P.C. Barbosa, L.C. Rodrigues, M.M. Silva, M.J. Smith, A.J. Parola et al., Solid-state electrochromic devices using pTMC/PEO blends as polymer electrolytes. Electrochim. Acta 55(4), 1495–1502 (2009). https://doi.org/10.1016/j.electacta.2009.03.031
- R. Kumar, S.S. Sekhon, Effect of molecular weight of PMMA on the conductivity and viscosity behavior of polymer gel electrolytes containing NH4CF3SO3. Ionics 14, 509–514 (2008). https://doi.org/10.1007/s11581-008-0209-0
- H.L. He, X.B. Wang, W.J. Liu, Effects of PEGDMA on a PET non-woven fabric embedded PAN lithium-ion power battery separator. Solid State Ion. 294, 31–36 (2016). https://doi.org/10.1016/j.ssi.2016.06.019
- O. Ismail, Peleg and Weibull models for water absorption of copolymer gels crosslinked on polyethylene glycol dimethacrylates. Res. Chem. Intermed. 40, 1327–1335 (2014). https://doi.org/10.1007/s11164-013-1041-3
- N.S. Choi, J.K. Park, New polymer electrolytes based on PVC/PMMA blend for plastic lithium-ion batteries. Electrochim. Acta 46, 10–11 (2001). https://doi.org/10.1016/S0013-4686(00)00739-8
- S. Rajendran, M.S. Song, M.S. Park, J.H. Kim, J.Y. Lee, Lithium ion conduction in PVC–LiN(CF3SO2)2 electrolytes gelled with PVdF. Mater. Lett. 59(18), 2347–2351 (2005). https://doi.org/10.1016/j.matlet.2005.03.023
- S. Rajendran, R. Shanker Babu, P. Sivakumar, Investigations on PVC/PAN composite polymer electrolytes. J. Membr. Sci. 315, 67–73 (2008). https://doi.org/10.1016/j.memsci.2008.02.007
- Y.W. Chen-Yang, H.C. Chen, F.J. Lin, C.C. Chen, Polyacrylonitrile electrolytes: 1. A novel high-conductivity composite polymer electrolyte based on PAN, LiClO4 and α-Al2O3. Solid State Ion. 150(3–4), 327–335 (2002). https://doi.org/10.1016/S0167-2738(02)00457-5
- P. Carol, P. Ramakrishnan, B. John, G. Cheruvally, Preparation and characterization of electrospun poly(acrylonitrile) fibrous membrane based gel polymer electrolytes for lithium-ion batteries. J. Power Sources 196(23), 10156–10162 (2011). https://doi.org/10.1016/j.jpowsour.2011.08.037
- S.S. Sekhon, F.P. Singh, Ionic conductivity of PVdF-based polymer gel electrolytes. Solid State Ion. 152, 169–174 (2002). https://doi.org/10.1016/S0167-2738(02)00296-5
- S.W. Choi, J.R. Kim, Y.R. Ahn, S.M. Jo, E.J. Cairns, Characterization of electrospun PVdF fiber-based polymer electrolytes. Chem. Mater. 19(1), 104–115 (2007). https://doi.org/10.1021/cm060223
- R. Chen, W. Qu, X. Guo, L. Li, F. Wu, The pursuit of solid-state electrolytes for lithium batteries: from comprehensive insight to emerging horizons. Mater. Horiz. 3(6), 487–516 (2016). https://doi.org/10.1039/c6mh00218h
- S. Hua, J.L. Li, M.X. Jing, F. Chen, B.W. Ju et al., Effects of surface lithiated TiO2 nanorods on room-temperature properties of polymer solid electrolytes. Int. J. Energy Res. 44(8), 6452–6462 (2020). https://doi.org/10.1002/er.5379
- J. Li, M. Jing, R. Li, L. Li, Z. Huang et al., Al2O3 fiber-reinforced polymer solid electrolyte films with excellent lithium-ion transport properties for high-voltage solid-state lithium batteries. ACS Appl. Polym. Mater. 4(10), 7144–7151 (2022). https://doi.org/10.1021/acsapm.2c01034
- C. Wang, T. Yang, W. Zhang, H. Huang, Y. Gan et al., Hydrogen bonding enhanced SiO2/PEO composite electrolytes for solid-state lithium batteries. J. Mater. Chem. A 10(7), 3400–3408 (2022). https://doi.org/10.1039/D1TA10607D
- H. Xu, M. Jing, J. Li, Z. Huang, T. Wang et al., Safety-enhanced flexible polypropylene oxide–ZrO2 composite solid electrolyte film with high room-temperature ionic conductivity. ACS Sustain. Chem. Eng. 9(33), 11118–11126 (2021). https://doi.org/10.1021/acssuschemeng.1c02886
- A. Jagadeesan, M. Sasikumar, R. Jeevani, H.A. Therese, N. Ananth et al., Fabrication of BaTiO3 ceramic filler incorporated PVC-PEMA based blend nanocomposite gel polymer electrolytes for Li ion battery applications. J. Mater. Sci. Mater. 30(18), 17181–17194 (2019). https://doi.org/10.1007/s10854-019-02065-7
- S. Hua, M.X. Jing, C. Han, H. Yang, H. Chen et al., A novel titania nanorods-filled composite solid electrolyte with improved room temperature performance for solid-state Li-ion battery. Int. J. Energy Res. 43(13), 7296–7305 (2019). https://doi.org/10.1002/er.4758
- P.N. Didwal, Y.N. Singhbabu, R. Verma, B.J. Sung, G.H. Lee et al., An advanced solid polymer electrolyte composed of poly(propylene carbonate) and mesoporous silica nanops for use in all-solid-state lithium-ion batteries. Energy Storage Mater. 37, 476–490 (2021). https://doi.org/10.1016/j.ensm.2021.02.034
- H. Zhan, M. Wu, R. Wang, S. Wu, H. Li et al., Excellent performances of composite polymer electrolytes with porous vinyl-functionalized SiO2 nanops for lithium metal batteries. Polymers 13(15), 2468 (2021). https://doi.org/10.3390/polym13152468
- O. Sheng, C. Jin, J. Luo, H. Yuan, H. Huang et al., Mg2B2O5 nanowire enabled multifunctional solid-state electrolytes with high ionic conductivity, excellent mechanical properties, and flame-retardant performance. Nano Lett. 18(5), 3104–3112 (2018). https://doi.org/10.1021/acs.nanolett.8b00659
- T. Feng, Y. Hu, L. Xu, J. Huang, S. Hu et al., Improving the cyclability of solid polymer electrolyte with porous V2O5 nanotube filler. Mater. Today Energy 28, 101062 (2022). https://doi.org/10.1016/j.mtener.2022.101062
- A.E. Abdelmaoula, L. Du, L. Xu, Y. Cheng, A.A. Mahdy et al., Biomimetic brain-like nanostructures for solid polymer electrolytes with fast ion transport. Sci. China Mater. 65(6), 1476–1484 (2022). https://doi.org/10.1007/s40843-021-1940-2
- X. Ao, X. Wang, J. Tan, S. Zhang, C. Su et al., Nanocomposite with fast Li+ conducting percolation network: solid polymer electrolyte with Li+ non-conducting filler. Nano Energy 79, 105475 (2021). https://doi.org/10.1016/j.nanoen.2020.105475
- Y. Li, Z. Sun, D. Liu, Y. Gao, Y. Wang et al., A composite solid polymer electrolyte incorporating MnO2 nanosheets with reinforced mechanical properties and electrochemical stability for lithium metal batteries. J. Mater. Chem. A 8(4), 2021–2032 (2020). https://doi.org/10.1039/C9TA11542K
- Z. Lei, J. Shen, W. Zhang, Q. Wang, J. Wang et al., Exploring porous zeolitic imidazolate frame Work-8 (ZIF-8) as an efficient filler for high-performance poly (ethyleneoxide)-based solid polymer electrolytes. Nano Res. 13(8), 2259–2267 (2020). https://doi.org/10.1007/s12274-020-2845-2
- S.V. Ganesan, K.K. Mothilal, T.K. Ganesan, The role of zirconium oxide as nano-filler on the conductivity, morphology, and thermal stability of poly (methyl methacrylate)–poly(styrene-co-acrylonitrile)-based plasticized composite solid polymer electrolytes. Ionics 24(12), 3845–3860 (2018). https://doi.org/10.1007/s11581-018-2529-z
- W. Bao, L. Zhao, H. Zhao, L. Su, X. Cai et al., Vapor phase infiltration of ZnO quantum dots for all-solid-state PEO-based lithium batteries. Energy Storage Mater. 43, 258–265 (2021). https://doi.org/10.1016/j.ensm.2021.09.010
- X. Wu, K. Chen, Z. Yao, J. Hu, M. Huang et al., Metal organic framework reinforced polymer electrolyte with high cation transference number to enable dendrite-free solid state Li metal conversion batteries. J. Power Sources 501, 229946 (2021). https://doi.org/10.1016/j.jpowsour.2021.229946
- Y. Zhang, X.H. Wang, W. Feng, Y.C. Zhen, P.Y. Zhao et al., The effects of the size and content of BaTiO3 nanops on solid polymer electrolytes for all-solid-state lithium-ion batteries. J. Solid State Electrochem. 23(3), 749–758 (2019). https://doi.org/10.1007/s10008-018-04175-4
- G. Liang, J. Xu, W. Xu, X. Shen, Z. Bai et al., Nonisothermal crystallization behaviors and conductive properties of PEO-based solid polymer electrolytes containing yttrium oxide nanops. Polym. Eng. Sci. 51(12), 2526–2534 (2011). https://doi.org/10.1002/pen.22030
- Q. Zhu, X. Wang, J.D. Miller, Advanced nanoclay-based nanocomposite solid polymer electrolyte for lithium iron phosphate batteries. ACS Appl. Mater. Interfaces 11(9), 8954–8960 (2019). https://doi.org/10.1021/acsami.8b13735
- S. Chen, J. Wang, Z. Zhang, L. Wu, L. Yao et al., In-situ preparation of poly (ethylene oxide)/Li3PS4 hybrid polymer electrolyte with good nanofiller distribution for rechargeable solid-state lithium batteries. J. Power Sources 387, 72–80 (2018). https://doi.org/10.1016/j.jpowsour.2018.03.016
- Y. Zhao, C. Wu, G. Peng, X. Chen, X. Yao et al., A new solid polymer electrolyte incorporating Li10GeP2S12 into a polyethylene oxide matrix for all-solid-state lithium batteries. J. Power Sources 301, 47–53 (2016). https://doi.org/10.1016/j.jpowsour.2015.09.111
- K. Liu, R. Zhang, J. Sun, M. Wu, T. Zhao, Polyoxyethylene (PEO)|PEO–perovskite|PEO composite electrolyte for all-solid-state lithium metal batteries. ACS Appl. Mater. Interfaces 11(50), 46930–46937 (2019). https://doi.org/10.1021/acsami.9b16936
- P. Sivaraj, K.P. Abhilash, B. Nalini, P. Perumal, P.C. Selvin et al., Free-standing, high Li-ion conducting hybrid PAN/PVdF/LiClO4/Li0.5La0.5TiO3 nanocomposite solid polymer electrolytes for all-solid-state batteries. J. Solid State Electrochem. 25(30), 905–917 (2021). https://doi.org/10.1007/s10008-020-04858-x
- P. Sivaraj, K.P. Abhilash, B. Nalini, P. Perumal, K. Somasundaram et al., Performance enhancement of PVDF/LiCIO4 based nanocomposite solid polymer electrolytes via incorporation of Li0.5La0.5TiO3 nano filler for all-solid-state batteries. Macromol. Res. 28(8), 739–750 (2020). https://doi.org/10.1007/s13233-020-8096-y
- H. Zhuang, W. Ma, J. Xie, X. Liu, B. Li et al., Solvent-free synthesis of PEO/Garnet composite electrolyte for high-safety all-solid-state lithium batteries. J. Alloy. Compd. 860, 157915 (2021). https://doi.org/10.1016/j.jallcom.2020.157915
- E.C. Self, Z.D. Hood, T. Brahmbhatt, F.M. Delnick, H.M. Meyer et al., Solvent-mediated synthesis of amorphous Li3PS4/Polyethylene oxide composite solid electrolytes with high Li+ conductivity. Chem. Mater. 32(20), 8789–8797 (2020). https://doi.org/10.1021/acs.chemmater.0c01990
- L. Liu, L. Chu, B. Jiang, M. Li, Li1.4Al0.4Ti1.6(PO4)3 Nanop-reinforced solid polymer electrolytes for all-solid-state lithium batteries. Solid State Ion. 331, 89–95 (2019). https://doi.org/10.1016/j.ssi.2019.01.007
- J. Lu, Y. Li, W. Huang, Study on structure and electrical properties of PVDF/Li3/8Sr7/16Zr1/4Ta3/4O3 composite solid polymer electrolytes for quasi-solid-state Li battery. Mater. Res. Bull. 153, 111880 (2022). https://doi.org/10.1016/j.materresbull.2022.111880
- C. Li, Y. Huang, X. Liu, C. Chen, X. Feng et al., Composite solid electrolyte with Li+ conducting 3d porous garnet-type framework for all-solid-state lithium batteries. Mater. Chem. Front. 6(12), 1672–1680 (2022). https://doi.org/10.1039/d1qm01589c
- J. Li, K.J. Zhu, Z.R. Yao, G.M. Qian, J. Zhang et al., A promising composite solid electrolyte incorporating LLZO into PEO/PVDF matrix for all-solid-state lithium-ion batteries. Ionics 26(3), 1101–1108 (2020). https://doi.org/10.1007/s11581-019-03320-x
- Y. Zhao, Z. Huang, S. Chen, B. Chen, J. Yang et al., A promising PEO/LAGP hybrid electrolyte prepared by a simple method for all-solid-state lithium batteries. Solid State Ion. 295, 65–71 (2016). https://doi.org/10.1016/j.ssi.2016.07.013
- X. Zhu, K. Wang, Y. Xu, G. Zhang, S. Li et al., Strategies to boost ionic conductivity and interface compatibility of inorganic-organic solid composite electrolytes. Energy Storage Mater. 36, 291–308 (2021). https://doi.org/10.1016/j.ensm.2021.01.002
- T. Ye, L. Li, Y. Zhang, Recent progress in solid electrolytes for energy storage devices. Adv. Funct. Mater. 30(29), 2000077 (2020). https://doi.org/10.1002/adfm.202000077
- Y. Li, Y. Qin, J. Zhao, M. Ma, M. Zhang et al., Boosting the ion mobility in solid polymer electrolytes using hollow polymer nanospheres as an additive. ACS Appl. Mater. Interfaces 14(16), 18360–18372 (2022). https://doi.org/10.1021/acsami.2c00244
- Z. Huang, W. Pang, P. Liang, Z. Jin, N. Grundish et al., A dopamine modified Li6.4La3Zr1.4Ta0.6O12/PEO solid-state electrolyte: enhanced thermal and electrochemical properties. J. Mater. Chem. A 7(27), 16425–16436 (2019). https://doi.org/10.1039/c9ta03395e
- D.C. Lin, W. Liu, Y.Y. Liu, H.R. Lee, P.C. Hsu et al., High ionic conductivity of composite solid polymer electrolyte via in situ synthesis of monodispersed SiO2 nanospheres in poly(ethylene oxide). Nano-Micro Lett. 16(1), 459–465 (2019). https://doi.org/10.1021/acs.nanolett.5b04117
- L. Chen, Y. Li, S.P. Li, L.Z. Fan, C.W. Nan et al., PEO/Garnet composite electrolytes for solid-state lithium batteries: from “ceramic-in-polymer” to “polymer-in-ceramic.” Nano Energy 46, 176–184 (2018). https://doi.org/10.1016/j.nanoen.2017.12.037
- F. Croce, L. Persi, B. Scrosati, F. Serraino-Fiory, E. Plichta et al., Role of the ceramic fillers in enhancing the transport properties of composite polymer electrolytes. Electrochim. Acta 46(16), 2457–2461 (2001). https://doi.org/10.1016/-4686(01)00458-3
- W. Liu, N. Liu, J. Sun, P.-C. Hsu, Y. Li et al., ionic conductivity enhancement of polymer electrolytes with ceramic nanowire fillers. Nano Lett. 15(4), 2740–2745 (2015). https://doi.org/10.1021/acs.nanolett.5b00600
- H. Chen, D. Adekoya, L. Hencz, J. Ma, S. Chen et al., Stable seamless interfaces and rapid ionic conductivity of Ca-CeO2/LiTFSI/PEO composite electrolyte for high-rate and high-voltage all-solid-state battery. Adv. Energy Mater. 10(21), 2000049 (2020). https://doi.org/10.1002/aenm.202000049
- Y. Shi, B. Li, Q. Zhu, K. Shen, W. Tang et al., MXene-based mesoporous nanosheets toward superior lithium ion conductors. Adv. Energy Mater. 10(9), 1903534 (2020). https://doi.org/10.1002/aenm.201903534
- R. Rojaee, S. Cavallo, S. Mogurampelly, B.K. Wheatle, V. Yurkiv et al., Highly-cyclable room-temperature phosphorene polymer electrolyte composites for Li metal batteries. Adv. Funct. Mater. 30(32), 1910749 (2020). https://doi.org/10.1002/adfm.201910749
- W.J. Tang, S. Tang, C.J. Zhang, Q.T. Ma, Q. Xiang et al., Simultaneously enhancing the thermal stability, mechanical modulus, and electrochemical performance of solid polymer electrolytes by incorporating 2D sheets. Adv. Energy Mater. 8(24), 1800866 (2018). https://doi.org/10.1002/aenm.201800866
- W. Liu, S.W. Lee, D. Lin, F. Shi, S. Wang et al., Enhancing ionic conductivity in composite polymer electrolytes with well-aligned ceramic nanowires. Nat. Energy 2(5), 17035 (2017). https://doi.org/10.1038/nenergy.2017.35
- H. Zhai, P. Xu, M. Ning, Q. Cheng, J. Mandal et al., A flexible solid composite electrolyte with vertically aligned and connected ion-conducting nanops for lithium batteries. Nano Lett. 17(5), 3182–3187 (2017). https://doi.org/10.1021/acs.nanolett.7b00715
- X. Zhang, J. Xie, F. Shi, D. Lin, Y. Liu et al., Vertically aligned and continuous nanoscale ceramic–polymer interfaces in composite solid polymer electrolytes for enhanced ionic conductivity. Nano Lett. 18(6), 3829–3838 (2018). https://doi.org/10.1021/acs.nanolett.8b01111
- J. Dai, K. Fu, Y. Gong, J. Song, C. Chen et al., Flexible solid-state electrolyte with aligned nanostructures derived from wood. ACS Mater. Lett. 1(3), 354–361 (2019). https://doi.org/10.1021/acsmaterialslett.9b00189
- K. Fu, Y. Gong, J. Dai, A. Gong, X. Han et al., Flexible, solid-state, ion-conducting membrane with 3D garnet nanofiber networks for lithium batteries. Proc. Natl. Acad. Sci. USA 113(26), 7094–7099 (2016). https://doi.org/10.1073/pnas.1600422113
- D. Lin, P.Y. Yuen, Y. Liu, W. Liu, N. Liu et al., A silica-aerogel-reinforced composite polymer electrolyte with high ionic conductivity and high modulus. Adv. Mater. 30(32), e1802661 (2018). https://doi.org/10.1002/adma.201802661
- S. Zekoll, C. Marriner-Edwards, A.K.O. Hekselman, J. Kasemchainan, C. Kuss et al., Hybrid electrolytes with 3D bicontinuous ordered ceramic and polymer microchannels for all-solid-state batteries. Energy Environ. Sci. 11(1), 185–201 (2018). https://doi.org/10.1039/c7ee02723k
- J. Bae, Y.T. Li, J. Zhang, X.Y. Zhou, F. Zhao et al., A 3D nanostructured hydrogel-framework-derived high-performance composite polymer lithium-ion electrolyte. Angew. Chem. Int. Ed. 57(8), 2096–2100 (2018). https://doi.org/10.1002/anie.201710841
- C.H. Ahn, J.J. Kim, W.S. Yang, H.K. Cho, Multiple functional biomolecule-based metal-organic-framework-reinforced polyethylene oxide composite electrolytes for high-performance solid-state lithium batteries. J. Power Sources 557, 232528 (2023). https://doi.org/10.1016/j.jpowsour.2022.232528
- X.Y. Zhou, B. Zhang, F.F. Huang, F.K. Li, Z.S. Ma et al., MOF for dendrite-free all-solid-state lithium metal batteries by synergistic effect of hydrogen bond and electrostatic interaction. Nano Energy 108, 108221 (2023). https://doi.org/10.1016/j.nanoen.2023.108221
- S. Chen, Y. Wu, S. Niu, Z. Wei, Y. Wu et al., Interface manipulation of composite solid polymer electrolyte with polydopamine to construct durable and fast Li+ conduction pathways. ACS Appl. Energy Mater. 6, 1989 (2023). https://doi.org/10.1021/acsaem.2c03911
- C. Hu, Y. Shen, M. Shen, X. Liu, H. Chen et al., Superionic conductors via bulk interfacial conduction. J. Am. Chem. Soc. 142(42), 18035–18041 (2020). https://doi.org/10.1021/jacs.0c07060
- J. Zhang, N. Zhao, M. Zhang, Y. Li, P.K. Chu et al., Flexible and ion-conducting membrane electrolytes for solid-state lithium batteries: dispersion of garnet nanops in insulating polyethylene oxide. Nano Energy 28, 447–454 (2016). https://doi.org/10.1016/j.nanoen.2016.09.002
- J. Xu, G. Ma, N. Wang, S. Zhao, J. Zhou, Borderline metal centers on nonporous metal-organic framework nanowire boost fast li-ion interfacial transport of composite polymer electrolyte. Small 18(40), 2204163 (2022). https://doi.org/10.1002/smll.202204163
- W. Wang, E. Yi, A.J. Fici, R.M. Laine, J. Kieffer, Lithium ion conducting poly (ethylene oxide)-based solid electrolytes containing active or passive ceramic nanops. J. Phys. Chem. C 121(5), 2563–2573 (2017). https://doi.org/10.1021/acs.jpcc.6b11136
- J. Feng, L. Wang, Y. Chen, P. Wang, H. Zhang et al., PEO based polymer-ceramic hybrid solid electrolytes: a review. Nano Converg. 8(1), 2 (2021). https://doi.org/10.1186/s40580-020-00252-5
- Q. Yang, A. Wang, J. Luo, W. Tang, Improving ionic conductivity of polymer-based solid electrolytes for lithium metal batteries. Chin. J. Chem. Eng. 43, 202–215 (2022). https://doi.org/10.1016/j.cjche.2021.07.008
- Z. Xue, D. He, X. Xie, Poly (ethylene oxide)-based electrolytes for lithium-ion batteries. J. Mater. Chem. A 3(38), 19218–19253 (2015). https://doi.org/10.1039/c5ta03471j
- H. Huo, B. Wu, T. Zhang, X. Zheng, L. Ge et al., Anion-immobilized polymer electrolyte achieved by cationic metal-organic framework filler for dendrite-free solid-state batteries. Energy Storage Mater. 18, 59–67 (2019). https://doi.org/10.1016/j.ensm.2019.01.007
- H. Chen, H. Tu, C. Hu, Y. Liu, D. Dong et al., Cationic covalent organic framework nanosheets for fast Li-ion conduction. J. Am. Chem. Soc. 140(3), 896–899 (2018). https://doi.org/10.1021/jacs.7b12292
- W. Liu, D. Lin, J. Sun, G. Zhou, Y. Cui, Improved lithium ionic conductivity in composite polymer electrolytes with oxide-ion conducting nanowires. ACS Nano 10(12), 11407–11413 (2016). https://doi.org/10.1021/acsnano.6b06797
- L. Tian, A. Li, Q. Huang, Y. Zhang, D. Long, Homogenously dispersed ultrasmall niobium(v) oxide nanops enabling improved ionic conductivity and interfacial compatibility of composite polymer electrolyte. J. Colloid Interface Sci. 586, 855–865 (2021). https://doi.org/10.1016/j.jcis.2020.11.010
- C.H. Park, D.W. Kim, J. Prakash, Y.K. Sun, Electrochemical stability and conductivity enhancement of composite polymer electrolytes. Solid State Ion. 159(1), 111–119 (2003). https://doi.org/10.1016/S0167-2738(03)00025-0
- P. Zhai, N. Peng, Z. Sun, W. Wu, W. Kou et al., Thin Laminar composite solid electrolyte with high ionic conductivity and mechanical strength towards advanced all-solid-state lithium–sulfur battery. J. Mater. Chem. A 8(44), 23344–23353 (2020). https://doi.org/10.1039/D0TA07630A
- W. Li, C. Sun, J. Jin, Y. Li, C. Chen et al., Realization of the Li+ domain diffusion effect via constructing molecular brushes on the LLZTO surface and its application in all-solid-state lithium batteries. J. Mater. Chem. A 7(48), 27304–27312 (2019). https://doi.org/10.1039/C9TA10400C
- J. Zheng, Y.Y. Hu, New insights into the compositional dependence of Li-ion transport in polymer–ceramic composite electrolytes. ACS Appl. Mater. Interfaces 10(4), 4113–4120 (2018). https://doi.org/10.1021/acsami.7b17301
- K.Q. He, S.H.S. Cheng, J.Y. Hu, Y.Q. Zhang, H.W. Yang et al., In-situ intermolecular interaction in composite polymer electrolyte for ultralong life quasi-solid-state lithium metal batteries. Angew. Chem. Int. Ed. 60(21), 12116–12123 (2021). https://doi.org/10.1002/anie.202103403
- M.D. Tikekar, L.A. Archer, D.L. Koch, Stability analysis of electrodeposition across a structured electrolyte with immobilized anions. J. Electrochem. Soc. 161(6), A847 (2014). https://doi.org/10.1149/2.085405jes
- R. Xu, X.B. Cheng, C. Yan, X.Q. Zhang, Y. Xiao et al., Artificial interphases for highly stable lithium metal anode. Matter 1(2), 317–344 (2019). https://doi.org/10.1016/j.matt.2019.05.016
- J. Li, Y. Cai, H. Wu, Z. Yu, X. Yan et al., Polymers in lithium-ion and lithium metal batteries. Adv. Energy Mater. 11(15), 2003239 (2021). https://doi.org/10.1002/aenm.202003239
- Y. Wang, X. Li, Y. Qin, D. Zhang, Z. Song et al., Local electric field effect of montmorillonite in solid polymer electrolytes for lithium metal batteries. Nano Energy 90, 106490 (2021). https://doi.org/10.1016/j.nanoen.2021.106490
- Y.M. Hu, N. Dunlap, S. Wan, S.L. Lu, S.F. Huang et al., Crystalline lithium imidazolate covalent organic frameworks with high Li-ion conductivity. J. Am. Chem. Soc. 141(18), 7518–7525 (2019). https://doi.org/10.1021/jacs.9b02448
- D. Han, Z. Zhao, Z. Xu, H. Wang, Z. He et al., Metal organic frameworks enabled multifunctional poly(ethylene oxide)-based solid polymer electrolytes with high lithium-ion conductivity and excellent stability. ACS Appl. Energy Mater. 5, 8973 (2022). https://doi.org/10.1021/acsaem.2c01461
- L. Chen, W. Li, L.Z. Fan, C.W. Nan, Q. Zhang, Intercalated electrolyte with high transference number for dendrite-free solid-state lithium batteries. Adv. Funct. Mater. 29(28), 1901047 (2019). https://doi.org/10.1002/adfm.201901047
- P. Dhatarwal, R.J. Sengwa, Dielectric relaxation, Li-ion transport, electrochemical, and structural behaviour of PEO/PVDF/LiClO4/TiO2/PC-based plasticized nanocomposite solid polymer electrolyte films. Compos. Commun. 17, 182–191 (2020). https://doi.org/10.1016/j.coco.2019.12.006
- Q. Zhang, K. Liu, F. Ding, X. Liu, Recent advances in solid polymer electrolytes for lithium batteries. Nano Res. 10(12), 4139–4174 (2017). https://doi.org/10.1007/s12274-017-1763-4
- S. Ai, S. Mazumdar, H. Li, Y. Cao, T. Li, Nano-silica doped composite polymer chitosan/poly (ethylene oxide)-based electrolyte with high electrochemical stability suitable for quasi solid-state lithium metal batteries. J. Electroanal. Chem. 895, 115464 (2021). https://doi.org/10.1016/j.jelechem.2021.115464
- Q. Wang, J.F. Wu, Z.Y. Yu, X. Guo, Composite polymer electrolytes reinforced by two-dimensional layer-double-hydroxide nanosheets for dendrite-free lithium batteries. Solid State Ion. (2020). https://doi.org/10.1016/j.ssi.2020.115275
- E. Zhao, Y. Guo, Y. Liu, S. Liu, G. Xu, Nanostructured zeolitic imidazolate framework-67 reinforced poly (ethylene oxide) composite electrolytes for all solid state lithium ion batteries. Appl. Surf. Sci. 573, 151489 (2022). https://doi.org/10.1016/j.apsusc.2021.151489
- X. Mei, Y. Wu, Y. Gao, Y. Zhu, S.H. Bo et al., A quantitative correlation between macromolecular crystallinity and ionic conductivity in polymer-ceramic composite solid electrolytes. Mater. Today Commun. 24, 101004 (2020). https://doi.org/10.1016/j.mtcomm.2020.101004
- K. Yang, H. Su, M. Ding, Y. Li, B. Xue et al., The role of nickel–iron based layered double hydroxide on the crystallinity, electrochemical performance, and thermal and mechanical properties of the poly(ethylene-oxide) solid electrolyte. New J. Chem. 45(42), 19986–19995 (2021). https://doi.org/10.1039/D1NJ04467B
- Z. Wu, Z. Xie, A. Yoshida, J. Wang, T. Yu et al., Nickel phosphate nanorod-enhanced polyethylene oxide-based composite polymer electrolytes for solid-state lithium batteries. J. Colloid Interf. Sci. 565, 110–118 (2020). https://doi.org/10.1016/j.jcis.2020.01.005
- X. Wang, H. Hua, X. Xie, P. Zhang, J. Zhao, Hydroxyl on the filler surface promotes Li+ conduction in PEO all-solid-state electrolyte. Solid State Ion. 372, 115768 (2021). https://doi.org/10.1016/j.ssi.2021.115768
- J. Xi, X. Tang, Investigations on the enhancement mechanism of inorganic filler on ionic conductivity of PEO-based composite polymer electrolyte: the case of molecular sieves. Electrochim. Acta 51(22), 4765–4770 (2006). https://doi.org/10.1016/j.electacta.2006.01.016
- M. Marzantowicz, F. Krok, J.R. Dygas, Z. Florjanczyk, E. Zygadlo-Monikowska, The influence of phase segregation on properties of semicrystalline PEO: LiTFSI electrolytes. Solid State Ion. 179(27–32), 1670–1678 (2008). https://doi.org/10.1016/j.ssi.2007.11.035
- Y.W. Kim, W. Lee, B.K. Choi, Relation between glass transition and melting of peo-salt complexes. Electrochim. Acta 45(8–9), 1473–1477 (2000). https://doi.org/10.1016/S0013-4686(99)00362-X
- E. Lee, J.Y. Hong, G. Ungar, J. Jang, Crystallization of poly (ethylene oxide) embedded with surface-modified SiO2 nanops. Polym. Int. 62(7), 1112–1122 (2013). https://doi.org/10.1002/pi.4402
- J. Xi, X. Qiu, J. Wang, Y. Bai, W. Zhu et al., Effect of molecular sieves ZSM-5 on the crystallization behavior of PEO-based composite polymer electrolyte. J. Power Sources 158(1), 627–634 (2006). https://doi.org/10.1016/j.jpowsour.2005.10.010
- Y. Gao, B. Zhang, Probing the mechanically stable solid electrolyte interphase and the implications in design strategies. Adv. Mater. (2022). https://doi.org/10.1002/adma.202205421
- K. Qin, K. Holguin, M. Mohammadiroudbari, J. Huang, E.Y.S. Kim et al., Strategies in structure and electrolyte design for high-performance lithium metal batteries. Adv. Funct. Mater. 31(15), 2009694 (2021). https://doi.org/10.1002/adfm.202009694
- J. Sun, C. He, X. Yao, A. Song, Y. Li et al., Hierarchical composite-solid-electrolyte with high electrochemical stability and interfacial regulation for boosting ultra-stable lithium batteries. Adv. Funct. Mater. 31(1), 2006381 (2021). https://doi.org/10.1002/adfm.202006381
- Y. Wang, L. Wu, Z. Lin, M. Tang, P. Ding et al., Hydrogen bonds enhanced composite polymer electrolyte for high-voltage cathode of solid-state lithium battery. Nano Energy 96, 107105 (2022). https://doi.org/10.1016/j.nanoen.2022.107105
- L. Li, Y. Deng, H. Duan, Y. Qian, G. Chen, LiF and LiNO3 as synergistic additives for PEO-PVDF/LLZTO-based composite electrolyte towards high-voltage lithium batteries with dual-interfaces stability. J. Energy Chem. 65, 319–328 (2022). https://doi.org/10.1016/j.jechem.2021.05.055
- H. Xu, W. Ye, Q. Wang, B. Han, J. Wang et al., An in situ photopolymerized composite solid electrolyte from halloysite nanotubes and comb-like polycaprolactone for high voltage lithium metal batteries. J. Mater. Chem. A 9(15), 9826–9836 (2021). https://doi.org/10.1039/D1TA00745A
- L. Gao, N. Wu, N. Deng, Z. Li, J. Li et al., Optimized CeO2 nanowires with rich surface oxygen vacancies enable fast Li-Ion conduction in composite polymer electrolytes. Energy Environ. Mater. 6, e12272 (2023). https://doi.org/10.1002/eem2.12272
- T. Huang, W. Xiong, X. Ye, Z. Huang, Y. Feng et al., A cerium-doped nasicon chemically coupled poly (vinylidene fluoride-hexafluoropropylene)-based polymer electrolyte for high-rate and high-voltage quasi-solid-state lithium metal batteries. J. Energy Chem. 73, 311–321 (2022). https://doi.org/10.1016/j.jechem.2022.06.030
- X. Wang, K. Guo, Y. Xia, Y. Min, Q. Xu, Nonstoichiometric molybdenum trioxide adjustable energy barrier enabling ultralong-life all-solid-state lithium batteries. ACS Appl. Mater. Interfaces 13(51), 60907–60920 (2021). https://doi.org/10.1021/acsami.1c19422
- H. Wu, H. Jia, C. Wang, J.G. Zhang, W. Xu, Recent progress in understanding solid electrolyte interphase on lithium metal anodes. Adv. Energy Mater. 11(5), 2003092 (2021). https://doi.org/10.1002/aenm.202003092
- Z. Cao, Y. Zhang, Y. Cui, J. Gu, Z. Du et al., Harnessing the unique features of 2d materials toward dendrite-free metal anodes. Energy Environ. Mater. 5(1), 45–67 (2022). https://doi.org/10.1002/eem2.12165
- C.Z. Zhao, X.Q. Zhang, X.B. Cheng, R. Zhang, R. Xu et al., An anion-immobilized composite electrolyte for dendrite-free lithium metal anodes. Proc. Natl. Acad. Sci. USA (PNAS) 114(42), 11069–11074 (2017). https://doi.org/10.1073/pnas.1708489114
- X. Yang, Q. Sun, C. Zhao, X. Gao, K. Adair et al., Self-healing electrostatic shield enabling uniform lithium deposition in all-solid-state lithium batteries. Energy Storage Mater. 22, 194–199 (2019). https://doi.org/10.1016/j.ensm.2019.07.015
- Z. Li, S. Wang, J. Shi, Y. Liu, S. Zheng et al., A 3d interconnected metal-organic framework-derived solid-state electrolyte for dendrite-free lithium metal battery. Energy Storage Mater. 47, 262–270 (2022). https://doi.org/10.1016/j.ensm.2022.02.014
- R. Fan, W. Liao, S. Fan, D. Chen, J. Tang et al., Regulating interfacial li-ion transport via an integrated corrugated 3d skeleton in solid composite electrolyte for all-solid-state lithium metal batteries. Adv. Sci. 9(8), 2104506 (2022). https://doi.org/10.1002/advs.202104506
- Z. Guo, Y. Pang, S. Xia, F. Xu, J. Yang et al., Uniform and anisotropic solid electrolyte membrane enables superior solid-state Li metal batteries. Adv. Sci. 8(16), 2100899 (2021). https://doi.org/10.1002/advs.202100899
- N. Wu, Y. Li, A. Dolocan, W. Li, H. Xu et al., In situ formation of Li3P layer enables fast Li+ conduction across Li/solid polymer electrolyte interface. Adv. Funct. Mater. 30(22), 2000831 (2020). https://doi.org/10.1002/adfm.202000831
- H. Huo, Y. Chen, J. Luo, X. Yang, X. Guo et al., Rational design of hierarchical “ceramic-in-polymer” and “polymer-in-ceramic” electrolytes for dendrite-free solid-state batteries. Adv. Energy Mater. 9(17), 1804004 (2019). https://doi.org/10.1002/aenm.201804004
- K. Liu, M. Wu, H. Jiang, Y. Lin, T. Zhao, An ultrathin, strong, flexible composite solid electrolyte for high-voltage lithium metal batteries. J. Mater. Chem. A 8(36), 18802–18809 (2020). https://doi.org/10.1039/d0ta05644h
- D. Li, L. Chen, T. Wang, L.Z. Fan, 3D fiber-network-reinforced bicontinuous composite solid electrolyte for dendrite-free lithium metal batteries. ACS Appl. Mater. Interfaces 10(8), 7069–7078 (2018). https://doi.org/10.1021/acsami.7b18123
- R. Li, S. Guo, L. Yu, L. Wang, D. Wu et al., Morphosynthesis of 3d macroporous garnet frameworks and perfusion of polymer-stabilized lithium salts for flexible solid-state hybrid electrolytes. Adv. Mater. Interfaces 6(10), 1900200 (2019). https://doi.org/10.1002/admi.201900200
References
J. Wang, S. Guo, Z. Li, W. Kou, J. Zhu et al., Highly conductive thin composite solid electrolyte with vertical Li7La3Zr2O12 sheet arrays for high-energy-density all-solid-state lithium battery. Chem. Eng. J. 450(1), 137994 (2022). https://doi.org/10.1016/j.cej.2022.137994
F. Ye, X. Zhang, K. Liao, Q. Lu, X. Zou et al., A smart lithiophilic polymer filler in gel polymer electrolyte enables stable and dendrite-free Li metal anode. J. Mater. Chem. A 8(19), 9733–9742 (2020). https://doi.org/10.1039/D0TA02499F
Z. Ding, Q. Tang, Y. Liu, P. Yao, C. Liu et al., Integrate multifunctional ionic sieve lithiated X zeolite-ionic liquid electrolyte for solid-state lithium metal batteries with ultralong lifespan. Chem. Eng. J. 433(2), 133522 (2022). https://doi.org/10.1016/j.cej.2021.133522
Y. Yang, H. Zhou, J. Xie, L. Bao, T. Li et al., Organic fast ion-conductor with ordered Li-ion conductive nano-pathways and high ionic conductivity for electrochemical energy storage. J. Energy Chem. 66, 647–656 (2022). https://doi.org/10.1016/j.jechem.2021.09.011
X. Li, Y. Wang, K. Xi, W. Yu, J. Feng et al., Quasi-solid-state ion-conducting arrays composite electrolytes with fast ion transport vertical-aligned interfaces for all-weather practical lithium-metal batteries. Nano-Micro Lett. 14(1), 210 (2022). https://doi.org/10.1007/s40820-022-00952-z
X.Y. Li, C.X. Zhao, B.Q. Li, J.Q. Huang, Q. Zhang, Advances on composite cathodes for lithium-sulfur batteries. J. Electrochem. 28(12), 2219013 (2022). https://doi.org/10.13208/j.electrochem.2219013
W. Zha, W. Li, Y. Ruan, J. Wang, Z. Wen, In situ fabricated ceramic/polymer hybrid electrolyte with vertically aligned structure for solid-state lithium batteries. Energy Storage Mater. 36, 171–178 (2021). https://doi.org/10.1016/j.ensm.2020.12.028
H. Duan, L. Li, K. Zou, Y. Deng, G. Chen, Cyclodextrin-integrated PEO-based composite solid electrolytes for high-rate and ultrastable all-solid-state lithium batteries. ACS Appl. Mater. Interfaces 13(48), 57380–57391 (2021). https://doi.org/10.1021/acsami.1c18589
S. Woo, B. Kang, Superior compatibilities of a LiSiCON-type oxide solid electrolyte enable high energy density all-solid-state batteries. J. Mater. Chem. A 10, 23185–23194 (2022). https://doi.org/10.1039/D2TA05948G
H. Choi, M. Kim, H. Lee, S. Jung, Y.-G. Lee et al., Unexpected pressure effects on sulfide-based polymer-in-ceramic solid electrolytes for all-solid-state batteries. Nano Energy 102, 107679 (2022). https://doi.org/10.1016/j.nanoen.2022.107679
S. Liu, W. Liu, D. Ba, Y. Zhao, Y. Ye et al., Filler-integrated composite polymer electrolyte for solid-state lithium batteries. Adv. Mater. 35, 2110423 (2023). https://doi.org/10.1002/adma.202110423
Z. Cheng, T. Liu, B. Zhao, F. Shen, H. Jin et al., Recent advances in organic-inorganic composite solid electrolytes for all-solid-state lithium batteries. Energy Storage Mater. 34, 388–416 (2021). https://doi.org/10.1016/j.ensm.2020.09.016
G. Yang, Y. Song, L. Deng, Polyaddition enabled functional polymer/inorganic hybrid electrolytes for lithium metal batteries. J. Mater. Chem. A 9(11), 6881–6889 (2021). https://doi.org/10.1039/D0TA11730G
X. Li, L. Cong, S. Ma, S. Shi, Y. Li et al., Low resistance and high stable solid–liquid electrolyte interphases enable high-voltage solid-state lithium metal batteries. Adv. Funct. Mater. 31(20), 2010611 (2021). https://doi.org/10.1002/adfm.202010611
M. Liu, Z. Cheng, S. Ganapathy, C. Wang, L.A. Haverkate et al., Tandem interface and bulk li-ion transport in a hybrid solid electrolyte with microsized active filler. ACS Energy Lett. 4(9), 2336–2342 (2019). https://doi.org/10.1021/acsenergylett.9b01371
X. Zheng, J. Wu, X. Wang, Z. Yang, Cellulose-reinforced poly (cyclocarbonate-ether)-based composite polymer electrolyte and facile gel interfacial modification for solid-state lithium-ion batteries. Chem. Eng. J. 446(3), 137194 (2022). https://doi.org/10.1016/j.cej.2022.137194
Y. Jin, X. Zong, X. Zhang, Z. Jia, H. Xie et al., Constructing 3D Li+-percolated transport network in composite polymer electrolytes for rechargeable quasi-solid-state lithium batteries. Energy Storage Mater. 49, 433–444 (2022). https://doi.org/10.1016/j.ensm.2022.04.035
X. Yu, A. Manthiram, A review of composite polymer-ceramic electrolytes for lithium batteries. Energy Storage Mater. 34, 282–300 (2021). https://doi.org/10.1016/j.ensm.2020.10.006
S. Su, J. Ma, L. Zhao, K. Lin, Q. Li et al., Progress and perspective of the cathode/electrolyte interface construction in all-solid-state lithium batteries. Carbon Energy 3(6), 866–894 (2021). https://doi.org/10.1002/cey2.129
Z. Shen, Y. Cheng, S. Sun, X. Ke, L. Liu et al., The critical role of inorganic nanofillers in solid polymer composite electrolyte for i+ transportation. Carbon Energy 3(3), 482–508 (2021). https://doi.org/10.1002/cey2.108
H. Chen, M. Zheng, S. Qian, H.Y. Ling, Z. Wu et al., Functional additives for solid polymer electrolytes in flexible and high-energy-density solid-state lithium-ion batteries. Carbon Energy 3(6), 929–956 (2021). https://doi.org/10.1002/cey2.146
G. Zhang, J. Shu, L. Xu, X. Cai, W. Zou et al., Pancake-like MOF solid-state electrolytes with fast ion migration for high-performance sodium battery. Nano-Micro Lett. 13(1), 105 (2021). https://doi.org/10.1007/s40820-021-00628-0
C. Liu, J. Wang, W. Kou, Z. Yang, P. Zhai et al., A flexible, ion-conducting solid electrolyte with vertically bicontinuous transfer channels toward high performance all-solid-state lithium batteries. Chem. Eng. J. 404, 126517 (2021). https://doi.org/10.1016/j.cej.2020.126517
Z. Lu, L. Peng, Y. Rong, E. Wang, R. Shi et al., Enhanced electrochemical proterties and optimiazed Li+ transmission pathways of PEO/LLZTO-based composite electrolytes modified by supramolecular combination. Energy Environ. Mater. (2022). https://doi.org/10.1002/eem2.12498
S. Li, S.Q. Zhang, L. Shen, Q. Liu, J.B. Ma et al., Progress and perspective of ceramic/polymer composite solid electrolytes for lithium batteries. Adv. Sci. 7(5), 1903088 (2020). https://doi.org/10.1002/advs.201903088
C. Guo, L. He, Y.H. Yao, W.Z. Lin, Y.Z. Zhang et al., Bifunctional liquid metals allow electrical insulating phase change materials to dual-mode thermal manage the Li-ion batteries. Nano-Micro Lett. 14(1), 202 (2022). https://doi.org/10.1007/s40820-022-0094
J.J. Xu, critical review on cathode–electrolyte interphase toward high-voltage cathodes for Li-ion batteries. Nano-Micro Lett. 14(1), 166 (2022). https://doi.org/10.1007/s40820-022-00917
M. Du, Y. Sun, B. Liu, B. Chen, K. Liao et al., Smart construction of an intimate lithium | garnet interface for all-solid-state batteries by tuning the tension of molten lithium. Adv. Funct. Mater. 31(31), 2101556 (2021). https://doi.org/10.1002/adfm.202101556
C. Guo, Y. Shen, P. Mao, K. Liao, M. Du et al., Grafting of lithiophilic and electron-blocking interlayer for garnet-based solid-state li metal batteries via one-step anhydrous poly-phosphoric acid post-treatment. Adv. Funct. Mater. 21(3), 2213443 (2022). https://doi.org/10.1002/adfm.202213443
G. DiMarco, M. Lanza, M. Pieruccini, Electrical conductivity in ionic complexes of poly(ethylene oxide). Solid State Ion. 89(1–2), 117–125 (1996). https://doi.org/10.1016/0167-2738(96)00032-X
D. Baril, C. Michot, M. Armand, Electrochemistry of liquids vs. solids: polymer electrolytes. Solid State Ion. 94(1–4), 35–47 (1997). https://doi.org/10.1016/S0167-2738(96)00614-5
M. Armand, The history of polymer electrolytes. Solid State Ion. 69(3–4), 309–319 (1994). https://doi.org/10.1016/0167-2738(94)90419-7
J. Lu, P. Jaumaux, T. Wang, C. Wang, G. Wang, Recent progress in quasi-solid and solid polymer electrolytes for multivalent metal-ion batteries. J. Mater. Chem. A 9(43), 24175–24194 (2021). https://doi.org/10.1039/D1TA06606D
L. Long, S. Wang, M. Xiao, Y. Meng, Polymer electrolytes for lithium polymer batteries. J. Mater. Chem. A 4(26), 10038–10069 (2016). https://doi.org/10.1039/C6TA02621D
R. Tanaka, M. Sakurai, H. Sekiguchi, H. Mori, T. Murayama et al., Lithium ion conductivity in polyoxyethylene/polyethylenimine blends. Electrochim. Acta 46(10), 1709–1715 (2001). https://doi.org/10.1016/S0013-4686(00)00775-1
Q. Zhou, J. Ma, S. Dong, X. Li, G. Cui, Intermolecular chemistry in solid polymer electrolytes for high-energy-density lithium batteries. Adv. Mater. 31(50), 1902029 (2019). https://doi.org/10.1002/adma.201902029
P.W. Majewski, M. Gopinadhan, W.S. Jang, J.L. Lutkenhaus, C.O. Osuji, Anisotropic ionic conductivity in block copolymer membranes by magnetic field alignment. J. Am. Chem. Soc. 132(49), 17516–17522 (2010). https://doi.org/10.1021/ja107309p
S. Srivastava, J.L. Schaefer, Z.C. Yang, Z.Y. Tu, L.A. Archer, 25th anniversary : polymer–p composites: phase stability and applications in electrochemical energy storage. Adv. Mater. 26(2), 201–233 (2014). https://doi.org/10.1002/adma.201303070
E. Staunton, Y.G. Andreev, P.G. Bruce, Factors influencing the conductivity of crystalline polymer electrolytes. Faraday Discuss. 134, 143–156 (2007). https://doi.org/10.1039/B601945E
Z. Gadjourova, D. Martín y Marero, K.H. Andersen, Y.G. Andreev, P.G. Bruce, Structures of the polymer electrolyte complexes PEO6:LiXF6 (X = P, Sb), determined from neutron powder diffraction data. Chem. Mater. 13(4), 1282–1285 (2001). https://doi.org/10.1021/cm000949k
Z. Gadjourova, Y.G. Andreev, D.P. Tunstall, P.G. Bruce, Ionic conductivity in crystalline polymer electrolytes. Nature 412(6846), 520–523 (2001). https://doi.org/10.1038/35087538
D. Zhou, D. Shanmukaraj, A. Tkacheva, M. Armand, G. Wang, Polymer electrolytes for lithium-based batteries: advances and prospects. Chem 5(9), 2326–2352 (2019). https://doi.org/10.1016/j.chempr.2019.05.009
P.W. Majewski, M. Gopinadhan, W.S. Jang, J.L. Lutkenhaus, C.O. Osuji, Structural and electrochemical properties of succinonitrile-based gel polymer electrolytes: role of ionic liquid addition. J. Am. Chem. Soc. 132(49), 17516–17522 (2010). https://doi.org/10.1021/ja107309p
D. Zhou, Y.B. He, R.L. Liu, M. Liu, H.D. Du et al., In situ synthesis of a hierarchical all-solid-state electrolyte based on nitrile materials for high-performance lithium-ion batteries. Adv. Energy Mater. 5(15), 1500353 (2015). https://doi.org/10.1002/aenm.201500353
N. Terasawa, N. Ono, Y. Hayakawa, K. Mukai, T. Koga et al., Effect of hexafluoropropylene on the performance of poly (vinylidene fluoride) polymer actuators based on single-walled carbon nanotube–ionic liquid gel. Sens. Actuators B Chem. 160(1), 161–167 (2011). https://doi.org/10.1016/j.snb.2011.07.027
S.C. Yu, L. Chen, Y.W. Chen, Y.F. Tong, Microporous gel electrolytes based on amphiphilic poly (vinylidene fluoride-co-hexafluoropropylene) for lithium batteries. Appl. Surf. Sci. 258(11), 4983–4989 (2012). https://doi.org/10.1016/j.apsusc.2012.01.146
D. Devaux, R. Bouchet, D. Gle, R. Denoyel, Mechanism of ion transport in PEO/LiTFSI complexes: effect of temperature, molecular weight and end groups. Solid State Ion. 227, 119–127 (2012). https://doi.org/10.1016/j.ssi.2012.09.020
V. Gregorio, N. Garcia, P. Tiemblo, Ionic conductivity enhancement in uhmw PEO gel electrolytes based on room-temperature ionic liquids and deep eutectic solvents. ACS Appl. Polym. Mater. 4(4), 2860–2870 (2022). https://doi.org/10.1021/acsapm.2c00104
M.S. Cho, B. Shin, S.D. Choi, Y. Lee, K.G. Song, Gel polymer electrolyte nanocomposites PEGDA with Mg–Al layered double hydroxides. Electrochim. Acta 50(2–3), 331–334 (2004). https://doi.org/10.1016/j.electacta.2004.03.050
R.X. He, M. Echeverri, D. Ward, Y. Zhu, T. Kyu, Highly conductive solvent-free polymer electrolyte membrane for lithium-ion batteries: effect of prepolymer molecular weight. J. Membr. Sci. 498, 208–217 (2015). https://doi.org/10.1016/j.memsci.2015.10.008
H. Wang, Y. Yang, T. Zhang, Tape-casting method of hybrid solid electrolytes with a residual active solvent of tetraethylene glycol dimethyl ether. ACS Appl. Energy Mater. 6, 2031 (2023). https://doi.org/10.1021/acsaem.2c03935
J. Li, S. Dong, C. Wang, Z. Hu, Z. Zhang et al., A study on the interfacial stability of the cathode/polycarbonate interface: implication of overcharge and transition metal redox. J. Mater. Chem. A 6(25), 11846–11852 (2018). https://doi.org/10.1039/C8TA02975J
X. Huang, D.H. Xu, W.Y. Chen, H.Z. Yin, C.C. Zhang et al., Preparation, characterization and properties of poly(propylene carbonate)/poly(methyl methacrylate)-coated polyethylene gel polymer electrolyte for lithium-ion batteries. J. Electroanal. Chem. 804, 133–139 (2017). https://doi.org/10.1016/j.jelechem.2017.09.050
P.C. Barbosa, L.C. Rodrigues, M.M. Silva, M.J. Smith, A.J. Parola et al., Solid-state electrochromic devices using pTMC/PEO blends as polymer electrolytes. Electrochim. Acta 55(4), 1495–1502 (2009). https://doi.org/10.1016/j.electacta.2009.03.031
R. Kumar, S.S. Sekhon, Effect of molecular weight of PMMA on the conductivity and viscosity behavior of polymer gel electrolytes containing NH4CF3SO3. Ionics 14, 509–514 (2008). https://doi.org/10.1007/s11581-008-0209-0
H.L. He, X.B. Wang, W.J. Liu, Effects of PEGDMA on a PET non-woven fabric embedded PAN lithium-ion power battery separator. Solid State Ion. 294, 31–36 (2016). https://doi.org/10.1016/j.ssi.2016.06.019
O. Ismail, Peleg and Weibull models for water absorption of copolymer gels crosslinked on polyethylene glycol dimethacrylates. Res. Chem. Intermed. 40, 1327–1335 (2014). https://doi.org/10.1007/s11164-013-1041-3
N.S. Choi, J.K. Park, New polymer electrolytes based on PVC/PMMA blend for plastic lithium-ion batteries. Electrochim. Acta 46, 10–11 (2001). https://doi.org/10.1016/S0013-4686(00)00739-8
S. Rajendran, M.S. Song, M.S. Park, J.H. Kim, J.Y. Lee, Lithium ion conduction in PVC–LiN(CF3SO2)2 electrolytes gelled with PVdF. Mater. Lett. 59(18), 2347–2351 (2005). https://doi.org/10.1016/j.matlet.2005.03.023
S. Rajendran, R. Shanker Babu, P. Sivakumar, Investigations on PVC/PAN composite polymer electrolytes. J. Membr. Sci. 315, 67–73 (2008). https://doi.org/10.1016/j.memsci.2008.02.007
Y.W. Chen-Yang, H.C. Chen, F.J. Lin, C.C. Chen, Polyacrylonitrile electrolytes: 1. A novel high-conductivity composite polymer electrolyte based on PAN, LiClO4 and α-Al2O3. Solid State Ion. 150(3–4), 327–335 (2002). https://doi.org/10.1016/S0167-2738(02)00457-5
P. Carol, P. Ramakrishnan, B. John, G. Cheruvally, Preparation and characterization of electrospun poly(acrylonitrile) fibrous membrane based gel polymer electrolytes for lithium-ion batteries. J. Power Sources 196(23), 10156–10162 (2011). https://doi.org/10.1016/j.jpowsour.2011.08.037
S.S. Sekhon, F.P. Singh, Ionic conductivity of PVdF-based polymer gel electrolytes. Solid State Ion. 152, 169–174 (2002). https://doi.org/10.1016/S0167-2738(02)00296-5
S.W. Choi, J.R. Kim, Y.R. Ahn, S.M. Jo, E.J. Cairns, Characterization of electrospun PVdF fiber-based polymer electrolytes. Chem. Mater. 19(1), 104–115 (2007). https://doi.org/10.1021/cm060223
R. Chen, W. Qu, X. Guo, L. Li, F. Wu, The pursuit of solid-state electrolytes for lithium batteries: from comprehensive insight to emerging horizons. Mater. Horiz. 3(6), 487–516 (2016). https://doi.org/10.1039/c6mh00218h
S. Hua, J.L. Li, M.X. Jing, F. Chen, B.W. Ju et al., Effects of surface lithiated TiO2 nanorods on room-temperature properties of polymer solid electrolytes. Int. J. Energy Res. 44(8), 6452–6462 (2020). https://doi.org/10.1002/er.5379
J. Li, M. Jing, R. Li, L. Li, Z. Huang et al., Al2O3 fiber-reinforced polymer solid electrolyte films with excellent lithium-ion transport properties for high-voltage solid-state lithium batteries. ACS Appl. Polym. Mater. 4(10), 7144–7151 (2022). https://doi.org/10.1021/acsapm.2c01034
C. Wang, T. Yang, W. Zhang, H. Huang, Y. Gan et al., Hydrogen bonding enhanced SiO2/PEO composite electrolytes for solid-state lithium batteries. J. Mater. Chem. A 10(7), 3400–3408 (2022). https://doi.org/10.1039/D1TA10607D
H. Xu, M. Jing, J. Li, Z. Huang, T. Wang et al., Safety-enhanced flexible polypropylene oxide–ZrO2 composite solid electrolyte film with high room-temperature ionic conductivity. ACS Sustain. Chem. Eng. 9(33), 11118–11126 (2021). https://doi.org/10.1021/acssuschemeng.1c02886
A. Jagadeesan, M. Sasikumar, R. Jeevani, H.A. Therese, N. Ananth et al., Fabrication of BaTiO3 ceramic filler incorporated PVC-PEMA based blend nanocomposite gel polymer electrolytes for Li ion battery applications. J. Mater. Sci. Mater. 30(18), 17181–17194 (2019). https://doi.org/10.1007/s10854-019-02065-7
S. Hua, M.X. Jing, C. Han, H. Yang, H. Chen et al., A novel titania nanorods-filled composite solid electrolyte with improved room temperature performance for solid-state Li-ion battery. Int. J. Energy Res. 43(13), 7296–7305 (2019). https://doi.org/10.1002/er.4758
P.N. Didwal, Y.N. Singhbabu, R. Verma, B.J. Sung, G.H. Lee et al., An advanced solid polymer electrolyte composed of poly(propylene carbonate) and mesoporous silica nanops for use in all-solid-state lithium-ion batteries. Energy Storage Mater. 37, 476–490 (2021). https://doi.org/10.1016/j.ensm.2021.02.034
H. Zhan, M. Wu, R. Wang, S. Wu, H. Li et al., Excellent performances of composite polymer electrolytes with porous vinyl-functionalized SiO2 nanops for lithium metal batteries. Polymers 13(15), 2468 (2021). https://doi.org/10.3390/polym13152468
O. Sheng, C. Jin, J. Luo, H. Yuan, H. Huang et al., Mg2B2O5 nanowire enabled multifunctional solid-state electrolytes with high ionic conductivity, excellent mechanical properties, and flame-retardant performance. Nano Lett. 18(5), 3104–3112 (2018). https://doi.org/10.1021/acs.nanolett.8b00659
T. Feng, Y. Hu, L. Xu, J. Huang, S. Hu et al., Improving the cyclability of solid polymer electrolyte with porous V2O5 nanotube filler. Mater. Today Energy 28, 101062 (2022). https://doi.org/10.1016/j.mtener.2022.101062
A.E. Abdelmaoula, L. Du, L. Xu, Y. Cheng, A.A. Mahdy et al., Biomimetic brain-like nanostructures for solid polymer electrolytes with fast ion transport. Sci. China Mater. 65(6), 1476–1484 (2022). https://doi.org/10.1007/s40843-021-1940-2
X. Ao, X. Wang, J. Tan, S. Zhang, C. Su et al., Nanocomposite with fast Li+ conducting percolation network: solid polymer electrolyte with Li+ non-conducting filler. Nano Energy 79, 105475 (2021). https://doi.org/10.1016/j.nanoen.2020.105475
Y. Li, Z. Sun, D. Liu, Y. Gao, Y. Wang et al., A composite solid polymer electrolyte incorporating MnO2 nanosheets with reinforced mechanical properties and electrochemical stability for lithium metal batteries. J. Mater. Chem. A 8(4), 2021–2032 (2020). https://doi.org/10.1039/C9TA11542K
Z. Lei, J. Shen, W. Zhang, Q. Wang, J. Wang et al., Exploring porous zeolitic imidazolate frame Work-8 (ZIF-8) as an efficient filler for high-performance poly (ethyleneoxide)-based solid polymer electrolytes. Nano Res. 13(8), 2259–2267 (2020). https://doi.org/10.1007/s12274-020-2845-2
S.V. Ganesan, K.K. Mothilal, T.K. Ganesan, The role of zirconium oxide as nano-filler on the conductivity, morphology, and thermal stability of poly (methyl methacrylate)–poly(styrene-co-acrylonitrile)-based plasticized composite solid polymer electrolytes. Ionics 24(12), 3845–3860 (2018). https://doi.org/10.1007/s11581-018-2529-z
W. Bao, L. Zhao, H. Zhao, L. Su, X. Cai et al., Vapor phase infiltration of ZnO quantum dots for all-solid-state PEO-based lithium batteries. Energy Storage Mater. 43, 258–265 (2021). https://doi.org/10.1016/j.ensm.2021.09.010
X. Wu, K. Chen, Z. Yao, J. Hu, M. Huang et al., Metal organic framework reinforced polymer electrolyte with high cation transference number to enable dendrite-free solid state Li metal conversion batteries. J. Power Sources 501, 229946 (2021). https://doi.org/10.1016/j.jpowsour.2021.229946
Y. Zhang, X.H. Wang, W. Feng, Y.C. Zhen, P.Y. Zhao et al., The effects of the size and content of BaTiO3 nanops on solid polymer electrolytes for all-solid-state lithium-ion batteries. J. Solid State Electrochem. 23(3), 749–758 (2019). https://doi.org/10.1007/s10008-018-04175-4
G. Liang, J. Xu, W. Xu, X. Shen, Z. Bai et al., Nonisothermal crystallization behaviors and conductive properties of PEO-based solid polymer electrolytes containing yttrium oxide nanops. Polym. Eng. Sci. 51(12), 2526–2534 (2011). https://doi.org/10.1002/pen.22030
Q. Zhu, X. Wang, J.D. Miller, Advanced nanoclay-based nanocomposite solid polymer electrolyte for lithium iron phosphate batteries. ACS Appl. Mater. Interfaces 11(9), 8954–8960 (2019). https://doi.org/10.1021/acsami.8b13735
S. Chen, J. Wang, Z. Zhang, L. Wu, L. Yao et al., In-situ preparation of poly (ethylene oxide)/Li3PS4 hybrid polymer electrolyte with good nanofiller distribution for rechargeable solid-state lithium batteries. J. Power Sources 387, 72–80 (2018). https://doi.org/10.1016/j.jpowsour.2018.03.016
Y. Zhao, C. Wu, G. Peng, X. Chen, X. Yao et al., A new solid polymer electrolyte incorporating Li10GeP2S12 into a polyethylene oxide matrix for all-solid-state lithium batteries. J. Power Sources 301, 47–53 (2016). https://doi.org/10.1016/j.jpowsour.2015.09.111
K. Liu, R. Zhang, J. Sun, M. Wu, T. Zhao, Polyoxyethylene (PEO)|PEO–perovskite|PEO composite electrolyte for all-solid-state lithium metal batteries. ACS Appl. Mater. Interfaces 11(50), 46930–46937 (2019). https://doi.org/10.1021/acsami.9b16936
P. Sivaraj, K.P. Abhilash, B. Nalini, P. Perumal, P.C. Selvin et al., Free-standing, high Li-ion conducting hybrid PAN/PVdF/LiClO4/Li0.5La0.5TiO3 nanocomposite solid polymer electrolytes for all-solid-state batteries. J. Solid State Electrochem. 25(30), 905–917 (2021). https://doi.org/10.1007/s10008-020-04858-x
P. Sivaraj, K.P. Abhilash, B. Nalini, P. Perumal, K. Somasundaram et al., Performance enhancement of PVDF/LiCIO4 based nanocomposite solid polymer electrolytes via incorporation of Li0.5La0.5TiO3 nano filler for all-solid-state batteries. Macromol. Res. 28(8), 739–750 (2020). https://doi.org/10.1007/s13233-020-8096-y
H. Zhuang, W. Ma, J. Xie, X. Liu, B. Li et al., Solvent-free synthesis of PEO/Garnet composite electrolyte for high-safety all-solid-state lithium batteries. J. Alloy. Compd. 860, 157915 (2021). https://doi.org/10.1016/j.jallcom.2020.157915
E.C. Self, Z.D. Hood, T. Brahmbhatt, F.M. Delnick, H.M. Meyer et al., Solvent-mediated synthesis of amorphous Li3PS4/Polyethylene oxide composite solid electrolytes with high Li+ conductivity. Chem. Mater. 32(20), 8789–8797 (2020). https://doi.org/10.1021/acs.chemmater.0c01990
L. Liu, L. Chu, B. Jiang, M. Li, Li1.4Al0.4Ti1.6(PO4)3 Nanop-reinforced solid polymer electrolytes for all-solid-state lithium batteries. Solid State Ion. 331, 89–95 (2019). https://doi.org/10.1016/j.ssi.2019.01.007
J. Lu, Y. Li, W. Huang, Study on structure and electrical properties of PVDF/Li3/8Sr7/16Zr1/4Ta3/4O3 composite solid polymer electrolytes for quasi-solid-state Li battery. Mater. Res. Bull. 153, 111880 (2022). https://doi.org/10.1016/j.materresbull.2022.111880
C. Li, Y. Huang, X. Liu, C. Chen, X. Feng et al., Composite solid electrolyte with Li+ conducting 3d porous garnet-type framework for all-solid-state lithium batteries. Mater. Chem. Front. 6(12), 1672–1680 (2022). https://doi.org/10.1039/d1qm01589c
J. Li, K.J. Zhu, Z.R. Yao, G.M. Qian, J. Zhang et al., A promising composite solid electrolyte incorporating LLZO into PEO/PVDF matrix for all-solid-state lithium-ion batteries. Ionics 26(3), 1101–1108 (2020). https://doi.org/10.1007/s11581-019-03320-x
Y. Zhao, Z. Huang, S. Chen, B. Chen, J. Yang et al., A promising PEO/LAGP hybrid electrolyte prepared by a simple method for all-solid-state lithium batteries. Solid State Ion. 295, 65–71 (2016). https://doi.org/10.1016/j.ssi.2016.07.013
X. Zhu, K. Wang, Y. Xu, G. Zhang, S. Li et al., Strategies to boost ionic conductivity and interface compatibility of inorganic-organic solid composite electrolytes. Energy Storage Mater. 36, 291–308 (2021). https://doi.org/10.1016/j.ensm.2021.01.002
T. Ye, L. Li, Y. Zhang, Recent progress in solid electrolytes for energy storage devices. Adv. Funct. Mater. 30(29), 2000077 (2020). https://doi.org/10.1002/adfm.202000077
Y. Li, Y. Qin, J. Zhao, M. Ma, M. Zhang et al., Boosting the ion mobility in solid polymer electrolytes using hollow polymer nanospheres as an additive. ACS Appl. Mater. Interfaces 14(16), 18360–18372 (2022). https://doi.org/10.1021/acsami.2c00244
Z. Huang, W. Pang, P. Liang, Z. Jin, N. Grundish et al., A dopamine modified Li6.4La3Zr1.4Ta0.6O12/PEO solid-state electrolyte: enhanced thermal and electrochemical properties. J. Mater. Chem. A 7(27), 16425–16436 (2019). https://doi.org/10.1039/c9ta03395e
D.C. Lin, W. Liu, Y.Y. Liu, H.R. Lee, P.C. Hsu et al., High ionic conductivity of composite solid polymer electrolyte via in situ synthesis of monodispersed SiO2 nanospheres in poly(ethylene oxide). Nano-Micro Lett. 16(1), 459–465 (2019). https://doi.org/10.1021/acs.nanolett.5b04117
L. Chen, Y. Li, S.P. Li, L.Z. Fan, C.W. Nan et al., PEO/Garnet composite electrolytes for solid-state lithium batteries: from “ceramic-in-polymer” to “polymer-in-ceramic.” Nano Energy 46, 176–184 (2018). https://doi.org/10.1016/j.nanoen.2017.12.037
F. Croce, L. Persi, B. Scrosati, F. Serraino-Fiory, E. Plichta et al., Role of the ceramic fillers in enhancing the transport properties of composite polymer electrolytes. Electrochim. Acta 46(16), 2457–2461 (2001). https://doi.org/10.1016/-4686(01)00458-3
W. Liu, N. Liu, J. Sun, P.-C. Hsu, Y. Li et al., ionic conductivity enhancement of polymer electrolytes with ceramic nanowire fillers. Nano Lett. 15(4), 2740–2745 (2015). https://doi.org/10.1021/acs.nanolett.5b00600
H. Chen, D. Adekoya, L. Hencz, J. Ma, S. Chen et al., Stable seamless interfaces and rapid ionic conductivity of Ca-CeO2/LiTFSI/PEO composite electrolyte for high-rate and high-voltage all-solid-state battery. Adv. Energy Mater. 10(21), 2000049 (2020). https://doi.org/10.1002/aenm.202000049
Y. Shi, B. Li, Q. Zhu, K. Shen, W. Tang et al., MXene-based mesoporous nanosheets toward superior lithium ion conductors. Adv. Energy Mater. 10(9), 1903534 (2020). https://doi.org/10.1002/aenm.201903534
R. Rojaee, S. Cavallo, S. Mogurampelly, B.K. Wheatle, V. Yurkiv et al., Highly-cyclable room-temperature phosphorene polymer electrolyte composites for Li metal batteries. Adv. Funct. Mater. 30(32), 1910749 (2020). https://doi.org/10.1002/adfm.201910749
W.J. Tang, S. Tang, C.J. Zhang, Q.T. Ma, Q. Xiang et al., Simultaneously enhancing the thermal stability, mechanical modulus, and electrochemical performance of solid polymer electrolytes by incorporating 2D sheets. Adv. Energy Mater. 8(24), 1800866 (2018). https://doi.org/10.1002/aenm.201800866
W. Liu, S.W. Lee, D. Lin, F. Shi, S. Wang et al., Enhancing ionic conductivity in composite polymer electrolytes with well-aligned ceramic nanowires. Nat. Energy 2(5), 17035 (2017). https://doi.org/10.1038/nenergy.2017.35
H. Zhai, P. Xu, M. Ning, Q. Cheng, J. Mandal et al., A flexible solid composite electrolyte with vertically aligned and connected ion-conducting nanops for lithium batteries. Nano Lett. 17(5), 3182–3187 (2017). https://doi.org/10.1021/acs.nanolett.7b00715
X. Zhang, J. Xie, F. Shi, D. Lin, Y. Liu et al., Vertically aligned and continuous nanoscale ceramic–polymer interfaces in composite solid polymer electrolytes for enhanced ionic conductivity. Nano Lett. 18(6), 3829–3838 (2018). https://doi.org/10.1021/acs.nanolett.8b01111
J. Dai, K. Fu, Y. Gong, J. Song, C. Chen et al., Flexible solid-state electrolyte with aligned nanostructures derived from wood. ACS Mater. Lett. 1(3), 354–361 (2019). https://doi.org/10.1021/acsmaterialslett.9b00189
K. Fu, Y. Gong, J. Dai, A. Gong, X. Han et al., Flexible, solid-state, ion-conducting membrane with 3D garnet nanofiber networks for lithium batteries. Proc. Natl. Acad. Sci. USA 113(26), 7094–7099 (2016). https://doi.org/10.1073/pnas.1600422113
D. Lin, P.Y. Yuen, Y. Liu, W. Liu, N. Liu et al., A silica-aerogel-reinforced composite polymer electrolyte with high ionic conductivity and high modulus. Adv. Mater. 30(32), e1802661 (2018). https://doi.org/10.1002/adma.201802661
S. Zekoll, C. Marriner-Edwards, A.K.O. Hekselman, J. Kasemchainan, C. Kuss et al., Hybrid electrolytes with 3D bicontinuous ordered ceramic and polymer microchannels for all-solid-state batteries. Energy Environ. Sci. 11(1), 185–201 (2018). https://doi.org/10.1039/c7ee02723k
J. Bae, Y.T. Li, J. Zhang, X.Y. Zhou, F. Zhao et al., A 3D nanostructured hydrogel-framework-derived high-performance composite polymer lithium-ion electrolyte. Angew. Chem. Int. Ed. 57(8), 2096–2100 (2018). https://doi.org/10.1002/anie.201710841
C.H. Ahn, J.J. Kim, W.S. Yang, H.K. Cho, Multiple functional biomolecule-based metal-organic-framework-reinforced polyethylene oxide composite electrolytes for high-performance solid-state lithium batteries. J. Power Sources 557, 232528 (2023). https://doi.org/10.1016/j.jpowsour.2022.232528
X.Y. Zhou, B. Zhang, F.F. Huang, F.K. Li, Z.S. Ma et al., MOF for dendrite-free all-solid-state lithium metal batteries by synergistic effect of hydrogen bond and electrostatic interaction. Nano Energy 108, 108221 (2023). https://doi.org/10.1016/j.nanoen.2023.108221
S. Chen, Y. Wu, S. Niu, Z. Wei, Y. Wu et al., Interface manipulation of composite solid polymer electrolyte with polydopamine to construct durable and fast Li+ conduction pathways. ACS Appl. Energy Mater. 6, 1989 (2023). https://doi.org/10.1021/acsaem.2c03911
C. Hu, Y. Shen, M. Shen, X. Liu, H. Chen et al., Superionic conductors via bulk interfacial conduction. J. Am. Chem. Soc. 142(42), 18035–18041 (2020). https://doi.org/10.1021/jacs.0c07060
J. Zhang, N. Zhao, M. Zhang, Y. Li, P.K. Chu et al., Flexible and ion-conducting membrane electrolytes for solid-state lithium batteries: dispersion of garnet nanops in insulating polyethylene oxide. Nano Energy 28, 447–454 (2016). https://doi.org/10.1016/j.nanoen.2016.09.002
J. Xu, G. Ma, N. Wang, S. Zhao, J. Zhou, Borderline metal centers on nonporous metal-organic framework nanowire boost fast li-ion interfacial transport of composite polymer electrolyte. Small 18(40), 2204163 (2022). https://doi.org/10.1002/smll.202204163
W. Wang, E. Yi, A.J. Fici, R.M. Laine, J. Kieffer, Lithium ion conducting poly (ethylene oxide)-based solid electrolytes containing active or passive ceramic nanops. J. Phys. Chem. C 121(5), 2563–2573 (2017). https://doi.org/10.1021/acs.jpcc.6b11136
J. Feng, L. Wang, Y. Chen, P. Wang, H. Zhang et al., PEO based polymer-ceramic hybrid solid electrolytes: a review. Nano Converg. 8(1), 2 (2021). https://doi.org/10.1186/s40580-020-00252-5
Q. Yang, A. Wang, J. Luo, W. Tang, Improving ionic conductivity of polymer-based solid electrolytes for lithium metal batteries. Chin. J. Chem. Eng. 43, 202–215 (2022). https://doi.org/10.1016/j.cjche.2021.07.008
Z. Xue, D. He, X. Xie, Poly (ethylene oxide)-based electrolytes for lithium-ion batteries. J. Mater. Chem. A 3(38), 19218–19253 (2015). https://doi.org/10.1039/c5ta03471j
H. Huo, B. Wu, T. Zhang, X. Zheng, L. Ge et al., Anion-immobilized polymer electrolyte achieved by cationic metal-organic framework filler for dendrite-free solid-state batteries. Energy Storage Mater. 18, 59–67 (2019). https://doi.org/10.1016/j.ensm.2019.01.007
H. Chen, H. Tu, C. Hu, Y. Liu, D. Dong et al., Cationic covalent organic framework nanosheets for fast Li-ion conduction. J. Am. Chem. Soc. 140(3), 896–899 (2018). https://doi.org/10.1021/jacs.7b12292
W. Liu, D. Lin, J. Sun, G. Zhou, Y. Cui, Improved lithium ionic conductivity in composite polymer electrolytes with oxide-ion conducting nanowires. ACS Nano 10(12), 11407–11413 (2016). https://doi.org/10.1021/acsnano.6b06797
L. Tian, A. Li, Q. Huang, Y. Zhang, D. Long, Homogenously dispersed ultrasmall niobium(v) oxide nanops enabling improved ionic conductivity and interfacial compatibility of composite polymer electrolyte. J. Colloid Interface Sci. 586, 855–865 (2021). https://doi.org/10.1016/j.jcis.2020.11.010
C.H. Park, D.W. Kim, J. Prakash, Y.K. Sun, Electrochemical stability and conductivity enhancement of composite polymer electrolytes. Solid State Ion. 159(1), 111–119 (2003). https://doi.org/10.1016/S0167-2738(03)00025-0
P. Zhai, N. Peng, Z. Sun, W. Wu, W. Kou et al., Thin Laminar composite solid electrolyte with high ionic conductivity and mechanical strength towards advanced all-solid-state lithium–sulfur battery. J. Mater. Chem. A 8(44), 23344–23353 (2020). https://doi.org/10.1039/D0TA07630A
W. Li, C. Sun, J. Jin, Y. Li, C. Chen et al., Realization of the Li+ domain diffusion effect via constructing molecular brushes on the LLZTO surface and its application in all-solid-state lithium batteries. J. Mater. Chem. A 7(48), 27304–27312 (2019). https://doi.org/10.1039/C9TA10400C
J. Zheng, Y.Y. Hu, New insights into the compositional dependence of Li-ion transport in polymer–ceramic composite electrolytes. ACS Appl. Mater. Interfaces 10(4), 4113–4120 (2018). https://doi.org/10.1021/acsami.7b17301
K.Q. He, S.H.S. Cheng, J.Y. Hu, Y.Q. Zhang, H.W. Yang et al., In-situ intermolecular interaction in composite polymer electrolyte for ultralong life quasi-solid-state lithium metal batteries. Angew. Chem. Int. Ed. 60(21), 12116–12123 (2021). https://doi.org/10.1002/anie.202103403
M.D. Tikekar, L.A. Archer, D.L. Koch, Stability analysis of electrodeposition across a structured electrolyte with immobilized anions. J. Electrochem. Soc. 161(6), A847 (2014). https://doi.org/10.1149/2.085405jes
R. Xu, X.B. Cheng, C. Yan, X.Q. Zhang, Y. Xiao et al., Artificial interphases for highly stable lithium metal anode. Matter 1(2), 317–344 (2019). https://doi.org/10.1016/j.matt.2019.05.016
J. Li, Y. Cai, H. Wu, Z. Yu, X. Yan et al., Polymers in lithium-ion and lithium metal batteries. Adv. Energy Mater. 11(15), 2003239 (2021). https://doi.org/10.1002/aenm.202003239
Y. Wang, X. Li, Y. Qin, D. Zhang, Z. Song et al., Local electric field effect of montmorillonite in solid polymer electrolytes for lithium metal batteries. Nano Energy 90, 106490 (2021). https://doi.org/10.1016/j.nanoen.2021.106490
Y.M. Hu, N. Dunlap, S. Wan, S.L. Lu, S.F. Huang et al., Crystalline lithium imidazolate covalent organic frameworks with high Li-ion conductivity. J. Am. Chem. Soc. 141(18), 7518–7525 (2019). https://doi.org/10.1021/jacs.9b02448
D. Han, Z. Zhao, Z. Xu, H. Wang, Z. He et al., Metal organic frameworks enabled multifunctional poly(ethylene oxide)-based solid polymer electrolytes with high lithium-ion conductivity and excellent stability. ACS Appl. Energy Mater. 5, 8973 (2022). https://doi.org/10.1021/acsaem.2c01461
L. Chen, W. Li, L.Z. Fan, C.W. Nan, Q. Zhang, Intercalated electrolyte with high transference number for dendrite-free solid-state lithium batteries. Adv. Funct. Mater. 29(28), 1901047 (2019). https://doi.org/10.1002/adfm.201901047
P. Dhatarwal, R.J. Sengwa, Dielectric relaxation, Li-ion transport, electrochemical, and structural behaviour of PEO/PVDF/LiClO4/TiO2/PC-based plasticized nanocomposite solid polymer electrolyte films. Compos. Commun. 17, 182–191 (2020). https://doi.org/10.1016/j.coco.2019.12.006
Q. Zhang, K. Liu, F. Ding, X. Liu, Recent advances in solid polymer electrolytes for lithium batteries. Nano Res. 10(12), 4139–4174 (2017). https://doi.org/10.1007/s12274-017-1763-4
S. Ai, S. Mazumdar, H. Li, Y. Cao, T. Li, Nano-silica doped composite polymer chitosan/poly (ethylene oxide)-based electrolyte with high electrochemical stability suitable for quasi solid-state lithium metal batteries. J. Electroanal. Chem. 895, 115464 (2021). https://doi.org/10.1016/j.jelechem.2021.115464
Q. Wang, J.F. Wu, Z.Y. Yu, X. Guo, Composite polymer electrolytes reinforced by two-dimensional layer-double-hydroxide nanosheets for dendrite-free lithium batteries. Solid State Ion. (2020). https://doi.org/10.1016/j.ssi.2020.115275
E. Zhao, Y. Guo, Y. Liu, S. Liu, G. Xu, Nanostructured zeolitic imidazolate framework-67 reinforced poly (ethylene oxide) composite electrolytes for all solid state lithium ion batteries. Appl. Surf. Sci. 573, 151489 (2022). https://doi.org/10.1016/j.apsusc.2021.151489
X. Mei, Y. Wu, Y. Gao, Y. Zhu, S.H. Bo et al., A quantitative correlation between macromolecular crystallinity and ionic conductivity in polymer-ceramic composite solid electrolytes. Mater. Today Commun. 24, 101004 (2020). https://doi.org/10.1016/j.mtcomm.2020.101004
K. Yang, H. Su, M. Ding, Y. Li, B. Xue et al., The role of nickel–iron based layered double hydroxide on the crystallinity, electrochemical performance, and thermal and mechanical properties of the poly(ethylene-oxide) solid electrolyte. New J. Chem. 45(42), 19986–19995 (2021). https://doi.org/10.1039/D1NJ04467B
Z. Wu, Z. Xie, A. Yoshida, J. Wang, T. Yu et al., Nickel phosphate nanorod-enhanced polyethylene oxide-based composite polymer electrolytes for solid-state lithium batteries. J. Colloid Interf. Sci. 565, 110–118 (2020). https://doi.org/10.1016/j.jcis.2020.01.005
X. Wang, H. Hua, X. Xie, P. Zhang, J. Zhao, Hydroxyl on the filler surface promotes Li+ conduction in PEO all-solid-state electrolyte. Solid State Ion. 372, 115768 (2021). https://doi.org/10.1016/j.ssi.2021.115768
J. Xi, X. Tang, Investigations on the enhancement mechanism of inorganic filler on ionic conductivity of PEO-based composite polymer electrolyte: the case of molecular sieves. Electrochim. Acta 51(22), 4765–4770 (2006). https://doi.org/10.1016/j.electacta.2006.01.016
M. Marzantowicz, F. Krok, J.R. Dygas, Z. Florjanczyk, E. Zygadlo-Monikowska, The influence of phase segregation on properties of semicrystalline PEO: LiTFSI electrolytes. Solid State Ion. 179(27–32), 1670–1678 (2008). https://doi.org/10.1016/j.ssi.2007.11.035
Y.W. Kim, W. Lee, B.K. Choi, Relation between glass transition and melting of peo-salt complexes. Electrochim. Acta 45(8–9), 1473–1477 (2000). https://doi.org/10.1016/S0013-4686(99)00362-X
E. Lee, J.Y. Hong, G. Ungar, J. Jang, Crystallization of poly (ethylene oxide) embedded with surface-modified SiO2 nanops. Polym. Int. 62(7), 1112–1122 (2013). https://doi.org/10.1002/pi.4402
J. Xi, X. Qiu, J. Wang, Y. Bai, W. Zhu et al., Effect of molecular sieves ZSM-5 on the crystallization behavior of PEO-based composite polymer electrolyte. J. Power Sources 158(1), 627–634 (2006). https://doi.org/10.1016/j.jpowsour.2005.10.010
Y. Gao, B. Zhang, Probing the mechanically stable solid electrolyte interphase and the implications in design strategies. Adv. Mater. (2022). https://doi.org/10.1002/adma.202205421
K. Qin, K. Holguin, M. Mohammadiroudbari, J. Huang, E.Y.S. Kim et al., Strategies in structure and electrolyte design for high-performance lithium metal batteries. Adv. Funct. Mater. 31(15), 2009694 (2021). https://doi.org/10.1002/adfm.202009694
J. Sun, C. He, X. Yao, A. Song, Y. Li et al., Hierarchical composite-solid-electrolyte with high electrochemical stability and interfacial regulation for boosting ultra-stable lithium batteries. Adv. Funct. Mater. 31(1), 2006381 (2021). https://doi.org/10.1002/adfm.202006381
Y. Wang, L. Wu, Z. Lin, M. Tang, P. Ding et al., Hydrogen bonds enhanced composite polymer electrolyte for high-voltage cathode of solid-state lithium battery. Nano Energy 96, 107105 (2022). https://doi.org/10.1016/j.nanoen.2022.107105
L. Li, Y. Deng, H. Duan, Y. Qian, G. Chen, LiF and LiNO3 as synergistic additives for PEO-PVDF/LLZTO-based composite electrolyte towards high-voltage lithium batteries with dual-interfaces stability. J. Energy Chem. 65, 319–328 (2022). https://doi.org/10.1016/j.jechem.2021.05.055
H. Xu, W. Ye, Q. Wang, B. Han, J. Wang et al., An in situ photopolymerized composite solid electrolyte from halloysite nanotubes and comb-like polycaprolactone for high voltage lithium metal batteries. J. Mater. Chem. A 9(15), 9826–9836 (2021). https://doi.org/10.1039/D1TA00745A
L. Gao, N. Wu, N. Deng, Z. Li, J. Li et al., Optimized CeO2 nanowires with rich surface oxygen vacancies enable fast Li-Ion conduction in composite polymer electrolytes. Energy Environ. Mater. 6, e12272 (2023). https://doi.org/10.1002/eem2.12272
T. Huang, W. Xiong, X. Ye, Z. Huang, Y. Feng et al., A cerium-doped nasicon chemically coupled poly (vinylidene fluoride-hexafluoropropylene)-based polymer electrolyte for high-rate and high-voltage quasi-solid-state lithium metal batteries. J. Energy Chem. 73, 311–321 (2022). https://doi.org/10.1016/j.jechem.2022.06.030
X. Wang, K. Guo, Y. Xia, Y. Min, Q. Xu, Nonstoichiometric molybdenum trioxide adjustable energy barrier enabling ultralong-life all-solid-state lithium batteries. ACS Appl. Mater. Interfaces 13(51), 60907–60920 (2021). https://doi.org/10.1021/acsami.1c19422
H. Wu, H. Jia, C. Wang, J.G. Zhang, W. Xu, Recent progress in understanding solid electrolyte interphase on lithium metal anodes. Adv. Energy Mater. 11(5), 2003092 (2021). https://doi.org/10.1002/aenm.202003092
Z. Cao, Y. Zhang, Y. Cui, J. Gu, Z. Du et al., Harnessing the unique features of 2d materials toward dendrite-free metal anodes. Energy Environ. Mater. 5(1), 45–67 (2022). https://doi.org/10.1002/eem2.12165
C.Z. Zhao, X.Q. Zhang, X.B. Cheng, R. Zhang, R. Xu et al., An anion-immobilized composite electrolyte for dendrite-free lithium metal anodes. Proc. Natl. Acad. Sci. USA (PNAS) 114(42), 11069–11074 (2017). https://doi.org/10.1073/pnas.1708489114
X. Yang, Q. Sun, C. Zhao, X. Gao, K. Adair et al., Self-healing electrostatic shield enabling uniform lithium deposition in all-solid-state lithium batteries. Energy Storage Mater. 22, 194–199 (2019). https://doi.org/10.1016/j.ensm.2019.07.015
Z. Li, S. Wang, J. Shi, Y. Liu, S. Zheng et al., A 3d interconnected metal-organic framework-derived solid-state electrolyte for dendrite-free lithium metal battery. Energy Storage Mater. 47, 262–270 (2022). https://doi.org/10.1016/j.ensm.2022.02.014
R. Fan, W. Liao, S. Fan, D. Chen, J. Tang et al., Regulating interfacial li-ion transport via an integrated corrugated 3d skeleton in solid composite electrolyte for all-solid-state lithium metal batteries. Adv. Sci. 9(8), 2104506 (2022). https://doi.org/10.1002/advs.202104506
Z. Guo, Y. Pang, S. Xia, F. Xu, J. Yang et al., Uniform and anisotropic solid electrolyte membrane enables superior solid-state Li metal batteries. Adv. Sci. 8(16), 2100899 (2021). https://doi.org/10.1002/advs.202100899
N. Wu, Y. Li, A. Dolocan, W. Li, H. Xu et al., In situ formation of Li3P layer enables fast Li+ conduction across Li/solid polymer electrolyte interface. Adv. Funct. Mater. 30(22), 2000831 (2020). https://doi.org/10.1002/adfm.202000831
H. Huo, Y. Chen, J. Luo, X. Yang, X. Guo et al., Rational design of hierarchical “ceramic-in-polymer” and “polymer-in-ceramic” electrolytes for dendrite-free solid-state batteries. Adv. Energy Mater. 9(17), 1804004 (2019). https://doi.org/10.1002/aenm.201804004
K. Liu, M. Wu, H. Jiang, Y. Lin, T. Zhao, An ultrathin, strong, flexible composite solid electrolyte for high-voltage lithium metal batteries. J. Mater. Chem. A 8(36), 18802–18809 (2020). https://doi.org/10.1039/d0ta05644h
D. Li, L. Chen, T. Wang, L.Z. Fan, 3D fiber-network-reinforced bicontinuous composite solid electrolyte for dendrite-free lithium metal batteries. ACS Appl. Mater. Interfaces 10(8), 7069–7078 (2018). https://doi.org/10.1021/acsami.7b18123
R. Li, S. Guo, L. Yu, L. Wang, D. Wu et al., Morphosynthesis of 3d macroporous garnet frameworks and perfusion of polymer-stabilized lithium salts for flexible solid-state hybrid electrolytes. Adv. Mater. Interfaces 6(10), 1900200 (2019). https://doi.org/10.1002/admi.201900200