Deciphering Local Microstrain-Induced Optimization of Asymmetric Fe Single Atomic Sites for Efficient Oxygen Reduction
Corresponding Author: Yuan Pan
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 278
Abstract
Disrupting the symmetric electron distribution of porphyrin-like Fe single-atom catalysts has been considered as an effective way to harvest high intrinsic activity. Understanding the catalytic performance governed by geometric microstrains is highly desirable for further optimization of such efficient sites. Here, we decipher the crucial role of local microstrain in boosting intrinsic activity and durability of asymmetric Fe single-atom catalysts (Fe–N3S1) by replacing one N atom with S atom. The high-curvature hollow carbon nanosphere substrate introduces 1.3% local compressive strain to Fe–N bonds and 1.5% tensile strain to Fe–S bonds, downshifting the d-band center and accelerating the kinetics of *OH reduction. Consequently, highly curved Fe–N3S1 sites anchored on hollow carbon nanosphere (FeNS-HNS-20) exhibit negligible current loss, a high half-wave potential of 0.922 V vs. RHE and turnover frequency of 6.2 e−1 s−1 site−1, which are 53 mV more positive and 1.7 times that of flat Fe–N–S counterpart, respectively. More importantly, multiple operando spectroscopies monitored the dynamic optimization of strained Fe–N3S1 sites into Fe–N3 sites, further mitigating the overadsorption of *OH intermediates. This work not only sheds new light on local microstrain-induced catalytic enhancement, but also provides a plausible direction for optimizing efficient asymmetric sites via geometric configurations.
Highlights:
1 Crucial role of local microstrain was deciphered to boost oxygen electrocatalysis via quantitatively riveting asymmetric Fe–N3S1 sites on carbon hollow nanospheres with specific curvature.
2 The local microstrain accelerates kinetics of *OH reduction on Fe–N3S1, enabling much enhanced intrinsic activity, selectivity and stability toward oxygen electrocatalysis.
3 The strained Fe–N3S1 sites were monitored to transformed into Fe–N3–S1 sites, further dynamically mitigating the overadsorption of *OH intermediates.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J. Liang, Y. Wan, H. Lv, X. Liu, F. Lv et al., Metal bond strength regulation enables large-scale synthesis of intermetallic nanocrystals for practical fuel cells. Nat. Mater. 23(9), 1259–1267 (2024). https://doi.org/10.1038/s41563-024-01901-4
- B. Peng, Z. Liu, L. Sementa, Q. Jia, Q. Sun et al., Embedded oxide clusters stabilize sub-2 nm Pt nanops for highly durable fuel cells. Nat. Catal. 7(7), 818–828 (2024). https://doi.org/10.1038/s41929-024-01180-x
- Z. Guo, S. Yang, M. Liu, Q. Xu, G. Zeng, Construction of imide-linked covalent organic frameworks with palladium nanops for oxygen reduction reaction. EcoEnergy 2(1), 192–201 (2024). https://doi.org/10.1002/ece2.32
- H.T. Chung, D.A. Cullen, D. Higgins, B.T. Sneed, E.F. Holby et al., Direct atomic-level insight into the active sites of a high-performance PGM-free ORR catalyst. Science 357(6350), 479–484 (2017). https://doi.org/10.1126/science.aan2255
- Y. Zeng, C. Li, B. Li, J. Liang, M.J. Zachman et al., Tuning the thermal activation atmosphere breaks the activity–stability trade-off of Fe–N–C oxygen reduction fuel cell catalysts. Nat. Catal. 6(12), 1215–1227 (2023). https://doi.org/10.1038/s41929-023-01062-8
- P. Zhang, K. Chen, J. Li, M. Wang, M. Li et al., Bifunctional single atom catalysts for rechargeable zinc–air batteries: from dynamic mechanism to rational design. Adv. Mater. 35(35), 2303243 (2023). https://doi.org/10.1002/adma.202303243
- M. Liu, J. Zhang, H. Su, Y. Jiang, W. Zhou et al., In situ modulating coordination fields of single-atom cobalt catalyst for enhanced oxygen reduction reaction. Nat. Commun. 15(1), 1675 (2024). https://doi.org/10.1038/s41467-024-45990-w
- Y. Shin, Y. Lee, C. Jo, Y.-H. Kim, S. Park, Co(O)4(N)-type single-atom-based catalysts and ligand-driven modulation of electrocatalytic properties for reducing oxygen molecules. EcoEnergy 2(1), 154–168 (2024). https://doi.org/10.1002/ece2.27
- L. Zong, K. Fan, L. Cui, F. Lu, P. Liu et al., Constructing Fe–N4 sites through anion exchange-mediated transformation of Fe coordination environments in hierarchical carbon support for efficient oxygen reduction. Angew. Chem. Int. Ed. 62(38), e202309784 (2023). https://doi.org/10.1002/anie.202309784
- L. Zong, K. Fan, P. Li, F. Lu, B. Li et al., Promoting oxygen reduction reaction on atomically dispersed Fe sites via establishing hydrogen bonding with the neighboring P atoms. Adv. Energy Mater. 13(5), 2203611 (2023). https://doi.org/10.1002/aenm.202203611
- M. Xiao, Y. Chen, J. Zhu, H. Zhang, X. Zhao et al., Climbing the apex of the ORR volcano plot via binuclear site construction: electronic and geometric engineering. J. Am. Chem. Soc. 141(44), 17763–17770 (2019). https://doi.org/10.1021/jacs.9b08362
- G. Chen, Y. An, S. Liu, F. Sun, H. Qi et al., Highly accessible and dense surface single metal FeN4 active sites for promoting the oxygen reduction reaction. Energy Environ. Sci. 15(6), 2619–2628 (2022). https://doi.org/10.1039/D2EE00542E
- L. Cui, J. Hao, Y. Zhang, X. Kang, J. Zhang et al., N and S dual-coordinated Fe single-atoms in hierarchically porous hollow nanocarbon for efficient oxygen reduction. J. Colloid Interface Sci. 650, 603–612 (2023). https://doi.org/10.1016/j.jcis.2023.06.153
- Y. Pan, X. Ma, M. Wang, X. Yang, S. Liu et al., Construction of N, P Co-doped carbon frames anchored with Fe single atoms and Fe2P nanops as a robust coupling catalyst for electrocatalytic oxygen reduction. Adv. Mater. 34(29), 2203621 (2022). https://doi.org/10.1002/adma.202203621
- J. Zhang, M. Zhang, Y. Zeng, J. Chen, L. Qiu et al., Single Fe atom on hierarchically porous S, N-codoped nanocarbon derived from Porphyra enable boosted oxygen catalysis for rechargeable Zn-air batteries. Small 15(24), 1900307 (2019). https://doi.org/10.1002/smll.201900307
- L. Li, N. Li, J.-W. Xia, S.-L. Zhou, X.-Y. Qian et al., A pH-universal ORR catalyst with atomic Fe-heteroatom (N, S) sites for high-performance Zn-air batteries. Nano Res. 16(7), 9416–9425 (2023). https://doi.org/10.1007/s12274-023-5625-y
- M. Wang, W. Yang, X. Li, Y. Xu, L. Zheng et al., Atomically dispersed Fe–heteroatom (N, S) bridge sites anchored on carbon nanosheets for promoting oxygen reduction reaction. ACS Energy Lett. 6(2), 379–386 (2021). https://doi.org/10.1021/acsenergylett.0c02484
- C. Shao, L. Wu, Y. Wang, K. Qu, H. Chu et al., Engineering asymmetric Fe coordination centers with hydroxyl adsorption for efficient and durable oxygen reduction catalysis. Appl. Catal. B Environ. 316, 121607 (2022). https://doi.org/10.1016/j.apcatb.2022.121607
- J. Yang, Z. Wang, C.-X. Huang, Y. Zhang, Q. Zhang et al., Compressive strain modulation of single iron sites on helical carbon support boosts electrocatalytic oxygen reduction. Angew. Chem. Int. Ed. 60(42), 22722–22728 (2021). https://doi.org/10.1002/anie.202109058
- L. Peng, J. Yang, Y. Yang, F. Qian, Q. Wang et al., Mesopore-rich Fe–N–C catalyst with FeN4–O–NC single-atom sites delivers remarkable oxygen reduction reaction performance in alkaline media. Adv. Mater. 34(29), 2202544 (2022). https://doi.org/10.1002/adma.202202544
- X. Xie, L. Peng, H. Yang, G.I.N. Waterhouse, L. Shang et al., MIL-101-derived mesoporous carbon supporting highly exposed Fe single-atom sites as efficient oxygen reduction reaction catalysts. Adv. Mater. 33(23), 2101038 (2021). https://doi.org/10.1002/adma.202101038
- Q. Yu, P. Wang, S. Hu, J. Hui, J. Zhuang et al., Hydrothermal synthesis of hollow silica spheres under acidic conditions. Langmuir 27(11), 7185–7191 (2011). https://doi.org/10.1021/la200719g
- H. Li, K. Gan, R. Li, H. Huang, J. Niu et al., Highly dispersed NiO clusters induced electron delocalization of Ni–N–C catalysts for enhanced CO2 electroreduction. Adv. Funct. Mater. 33(1), 2208622 (2023). https://doi.org/10.1002/adfm.202208622
- Y. Zhao, H.-C. Chen, X. Ma, J. Li, Q. Yuan et al., Vacancy defects inductive effect of asymmetrically coordinated single-atom Fe─N3S1 active sites for robust electrocatalytic oxygen reduction with high turnover frequency and mass activity. Adv. Mater. 36(11), 2308243 (2024). https://doi.org/10.1002/adma.202308243
- P. Zhang, H.-C. Chen, H. Zhu, K. Chen, T. Li et al., Inter-site structural heterogeneity induction of single atom Fe catalysts for robust oxygen reduction. Nat. Commun. 15(1), 2062 (2024). https://doi.org/10.1038/s41467-024-46389-3
- T. Wang, J. Wang, C. Lu, K. Jiang, S. Yang et al., Single-atom anchored curved carbon surface for efficient CO2 electro-reduction with nearly 100% CO selectivity and industrially-relevant current density. Adv. Mater. 35(35), 2205553 (2023). https://doi.org/10.1002/adma.202205553
- G. Chen, R. Lu, C. Li, J. Yu, X. Li et al., Hierarchically porous carbons with highly curved surfaces for hosting single metal FeN4 sites as outstanding oxygen reduction catalysts. Adv. Mater. 35(32), 2300907 (2023). https://doi.org/10.1002/adma.202300907
- J. Moreno, S. Aspera, M. David, H. Kasai, A computational study on the effect of local curvature on the adsorption of oxygen on single-walled carbon nanotubes. Carbon 94, 936–941 (2015). https://doi.org/10.1016/j.carbon.2015.07.081
- V. Eckert, E. Haubold, S. Oswald, S. Michel, C. Bellmann et al., Investigation of the surface properties of different highly aligned N-MWCNT carpets. Carbon 141, 99–106 (2019). https://doi.org/10.1016/j.carbon.2018.09.035
- G. Han, X. Zhang, W. Liu, Q. Zhang, Z. Wang et al., Substrate strain tunes operando geometric distortion and oxygen reduction activity of CuN2C2 single-atom sites. Nat. Commun. 12(1), 6335 (2021). https://doi.org/10.1038/s41467-021-26747-1
- L. Li, Y.-J. Chen, H.-R. Xing, N. Li, J.-W. Xia et al., Single-atom Fe–N5 catalyst for high-performance zinc-air batteries. Nano Res. 15(9), 8056–8064 (2022). https://doi.org/10.1007/s12274-022-4424-1
- C.-X. Zhao, X. Liu, J.-N. Liu, J. Wang, X. Wan et al., Molecular recognition regulates coordination structure of single-atom sites. Angew. Chem. Int. Ed. 62(48), e202313028 (2023). https://doi.org/10.1002/anie.202313028
- S. Yin, H. Yi, M. Liu, J. Yang, S. Yang et al., An in situ exploration of how Fe/N/C oxygen reduction catalysts evolve during synthesis under pyrolytic conditions. Nat. Commun. 15, 6229 (2024). https://doi.org/10.1038/s41467-024-50629-x
- H. Zhang, Y. Liu, T. Chen, J. Zhang, J. Zhang et al., Unveiling the activity origin of electrocatalytic oxygen evolution over isolated Ni atoms supported on a N-doped carbon matrix. Adv. Mater. 31(48), 1904548 (2019). https://doi.org/10.1002/adma.201904548
- C.-L. Yang, L.-N. Wang, P. Yin, J. Liu, M.-X. Chen et al., Sulfur-anchoring synthesis of platinum intermetallic nanop catalysts for fuel cells. Science 374(6566), 459–464 (2021). https://doi.org/10.1126/science.abj9980
- H. Shang, X. Zhou, J. Dong, A. Li, X. Zhao et al., Engineering unsymmetrically coordinated Cu-S1N3 single atom sites with enhanced oxygen reduction activity. Nat. Commun. 11(1), 3049 (2020). https://doi.org/10.1038/s41467-020-16848-8
- P. Chen, N. Zhang, S. Wang, T. Zhou, Y. Tong et al., Interfacial engineering of cobalt sulfide/graphene hybrids for highly efficient ammonia electrosynthesis. Proc. Natl. Acad. Sci. U.S.A. 116(14), 6635–6640 (2019). https://doi.org/10.1073/pnas.1817881116
- J. Yang, X. Zhou, D. Wu, X. Zhao, Z. Zhou, S-doped N-rich carbon nanosheets with expanded interlayer distance as anode materials for sodium-ion batteries. Adv. Mater. 29(6), 1604108 (2017). https://doi.org/10.1002/adma.201604108
- L. Qie, W. Chen, X. Xiong, C. Hu, F. Zou et al., Sulfur-doped carbon with enlarged interlayer distance as a high-performance anode material for sodium-ion batteries. Adv. Sci. 2(12), 1500195 (2015). https://doi.org/10.1002/advs.201500195
- Z. Li, H. Liu, Y.-H. Wang, S. Ji, Y. Zhang et al., Electronic structure modulation induced by the synergy of cobalt low-nuclearity clusters and mononuclear sites for efficient oxygen electrocatalysis. ACS Nano 19(1), 1600–1610 (2025). https://doi.org/10.1021/acsnano.4c15035
- S. Ji, Y. Wang, H. Liu, X. Lu, C. Guo et al., Regulating the electronic synergy of asymmetric atomic Fe sites with adjacent defects for boosting activity and durability toward oxygen reduction. Adv. Funct. Mater. 34(29), 2314621 (2024). https://doi.org/10.1002/adfm.202314621
- G. Wu, P. Zelenay, Activity versus stability of atomically dispersed transition-metal electrocatalysts. Nat. Rev. Mater. 9(9), 643–656 (2024). https://doi.org/10.1038/s41578-024-00703-z
- Y. He, Q. Shi, W. Shan, X. Li, A.J. Kropf et al., Dynamically unveiling metal–nitrogen coordination during thermal activation to design high-efficient atomically dispersed CoN4 active sites. Angew. Chem. Int. Ed. 60(17), 9516–9526 (2021). https://doi.org/10.1002/anie.202017288
- D. Malko, A. Kucernak, T. Lopes, In situ electrochemical quantification of active sites in Fe-N/C non-precious metal catalysts. Nat. Commun. 7, 13285 (2016). https://doi.org/10.1038/ncomms13285
- X. Wan, X. Liu, Y. Li, R. Yu, L. Zheng et al., Fe–N–C electrocatalyst with dense active sites and efficient mass transport for high-performance proton exchange membrane fuel cells. Nat. Catal. 2(3), 259–268 (2019). https://doi.org/10.1038/s41929-019-0237-3
- Y. Zhou, R. Lu, X. Tao, Z. Qiu, G. Chen et al., Boosting oxygen electrocatalytic activity of Fe–N–C catalysts by phosphorus incorporation. J. Am. Chem. Soc. 145(6), 3647–3655 (2023). https://doi.org/10.1021/jacs.2c12933
- Z. Jin, P. Li, Y. Meng, Z. Fang, D. Xiao et al., Understanding the inter-site distance effect in single-atom catalysts for oxygen electroreduction. Nat. Catal. 4(7), 615–622 (2021). https://doi.org/10.1038/s41929-021-00650-w
- N. Zion, D.A. Cullen, P. Zelenay, L. Elbaz, Heat-treated aerogel as a catalyst for the oxygen reduction reaction. Angew. Chem. Int. Ed. 59(6), 2483–2489 (2020). https://doi.org/10.1002/anie.201913521
- S. Ji, Y. Mou, H. Liu, X. Lu, Y. Zhang et al., Manipulating the electronic properties of an Fe single atom catalyst via secondary coordination sphere engineering to provide enhanced oxygen electrocatalytic activity in zinc-air batteries. Adv. Mater. 36(44), 2410121 (2024). https://doi.org/10.1002/adma.202410121
- Z. Li, J. Chen, Y. Guo, F. Zheng, K. Qu et al., Interfacial oxygen atom modification of a PdSn alloy to boost oxygen reduction in zinc-air batteries. J. Colloid Interface Sci. 659, 257–266 (2024). https://doi.org/10.1016/j.jcis.2023.12.168
- Z. Li, W. Kang, J. Lin, R. Li, K. Qu et al., Single-atom co meets remote Fe for a synergistic boost in oxygen electrocatalysis. Adv. Energy Mater. (2025). https://doi.org/10.1002/aenm.202500617
- J. Han, H. Wang, Y. Wang, H. Zhang, J. Li et al., Lattice oxygen activation through deep oxidation of Co4N by jahn–teller–active dopants for improved electrocatalytic oxygen evolution. Angew. Chem. Int. Ed. 63(33), e202405839 (2024). https://doi.org/10.1002/anie.202405839
References
J. Liang, Y. Wan, H. Lv, X. Liu, F. Lv et al., Metal bond strength regulation enables large-scale synthesis of intermetallic nanocrystals for practical fuel cells. Nat. Mater. 23(9), 1259–1267 (2024). https://doi.org/10.1038/s41563-024-01901-4
B. Peng, Z. Liu, L. Sementa, Q. Jia, Q. Sun et al., Embedded oxide clusters stabilize sub-2 nm Pt nanops for highly durable fuel cells. Nat. Catal. 7(7), 818–828 (2024). https://doi.org/10.1038/s41929-024-01180-x
Z. Guo, S. Yang, M. Liu, Q. Xu, G. Zeng, Construction of imide-linked covalent organic frameworks with palladium nanops for oxygen reduction reaction. EcoEnergy 2(1), 192–201 (2024). https://doi.org/10.1002/ece2.32
H.T. Chung, D.A. Cullen, D. Higgins, B.T. Sneed, E.F. Holby et al., Direct atomic-level insight into the active sites of a high-performance PGM-free ORR catalyst. Science 357(6350), 479–484 (2017). https://doi.org/10.1126/science.aan2255
Y. Zeng, C. Li, B. Li, J. Liang, M.J. Zachman et al., Tuning the thermal activation atmosphere breaks the activity–stability trade-off of Fe–N–C oxygen reduction fuel cell catalysts. Nat. Catal. 6(12), 1215–1227 (2023). https://doi.org/10.1038/s41929-023-01062-8
P. Zhang, K. Chen, J. Li, M. Wang, M. Li et al., Bifunctional single atom catalysts for rechargeable zinc–air batteries: from dynamic mechanism to rational design. Adv. Mater. 35(35), 2303243 (2023). https://doi.org/10.1002/adma.202303243
M. Liu, J. Zhang, H. Su, Y. Jiang, W. Zhou et al., In situ modulating coordination fields of single-atom cobalt catalyst for enhanced oxygen reduction reaction. Nat. Commun. 15(1), 1675 (2024). https://doi.org/10.1038/s41467-024-45990-w
Y. Shin, Y. Lee, C. Jo, Y.-H. Kim, S. Park, Co(O)4(N)-type single-atom-based catalysts and ligand-driven modulation of electrocatalytic properties for reducing oxygen molecules. EcoEnergy 2(1), 154–168 (2024). https://doi.org/10.1002/ece2.27
L. Zong, K. Fan, L. Cui, F. Lu, P. Liu et al., Constructing Fe–N4 sites through anion exchange-mediated transformation of Fe coordination environments in hierarchical carbon support for efficient oxygen reduction. Angew. Chem. Int. Ed. 62(38), e202309784 (2023). https://doi.org/10.1002/anie.202309784
L. Zong, K. Fan, P. Li, F. Lu, B. Li et al., Promoting oxygen reduction reaction on atomically dispersed Fe sites via establishing hydrogen bonding with the neighboring P atoms. Adv. Energy Mater. 13(5), 2203611 (2023). https://doi.org/10.1002/aenm.202203611
M. Xiao, Y. Chen, J. Zhu, H. Zhang, X. Zhao et al., Climbing the apex of the ORR volcano plot via binuclear site construction: electronic and geometric engineering. J. Am. Chem. Soc. 141(44), 17763–17770 (2019). https://doi.org/10.1021/jacs.9b08362
G. Chen, Y. An, S. Liu, F. Sun, H. Qi et al., Highly accessible and dense surface single metal FeN4 active sites for promoting the oxygen reduction reaction. Energy Environ. Sci. 15(6), 2619–2628 (2022). https://doi.org/10.1039/D2EE00542E
L. Cui, J. Hao, Y. Zhang, X. Kang, J. Zhang et al., N and S dual-coordinated Fe single-atoms in hierarchically porous hollow nanocarbon for efficient oxygen reduction. J. Colloid Interface Sci. 650, 603–612 (2023). https://doi.org/10.1016/j.jcis.2023.06.153
Y. Pan, X. Ma, M. Wang, X. Yang, S. Liu et al., Construction of N, P Co-doped carbon frames anchored with Fe single atoms and Fe2P nanops as a robust coupling catalyst for electrocatalytic oxygen reduction. Adv. Mater. 34(29), 2203621 (2022). https://doi.org/10.1002/adma.202203621
J. Zhang, M. Zhang, Y. Zeng, J. Chen, L. Qiu et al., Single Fe atom on hierarchically porous S, N-codoped nanocarbon derived from Porphyra enable boosted oxygen catalysis for rechargeable Zn-air batteries. Small 15(24), 1900307 (2019). https://doi.org/10.1002/smll.201900307
L. Li, N. Li, J.-W. Xia, S.-L. Zhou, X.-Y. Qian et al., A pH-universal ORR catalyst with atomic Fe-heteroatom (N, S) sites for high-performance Zn-air batteries. Nano Res. 16(7), 9416–9425 (2023). https://doi.org/10.1007/s12274-023-5625-y
M. Wang, W. Yang, X. Li, Y. Xu, L. Zheng et al., Atomically dispersed Fe–heteroatom (N, S) bridge sites anchored on carbon nanosheets for promoting oxygen reduction reaction. ACS Energy Lett. 6(2), 379–386 (2021). https://doi.org/10.1021/acsenergylett.0c02484
C. Shao, L. Wu, Y. Wang, K. Qu, H. Chu et al., Engineering asymmetric Fe coordination centers with hydroxyl adsorption for efficient and durable oxygen reduction catalysis. Appl. Catal. B Environ. 316, 121607 (2022). https://doi.org/10.1016/j.apcatb.2022.121607
J. Yang, Z. Wang, C.-X. Huang, Y. Zhang, Q. Zhang et al., Compressive strain modulation of single iron sites on helical carbon support boosts electrocatalytic oxygen reduction. Angew. Chem. Int. Ed. 60(42), 22722–22728 (2021). https://doi.org/10.1002/anie.202109058
L. Peng, J. Yang, Y. Yang, F. Qian, Q. Wang et al., Mesopore-rich Fe–N–C catalyst with FeN4–O–NC single-atom sites delivers remarkable oxygen reduction reaction performance in alkaline media. Adv. Mater. 34(29), 2202544 (2022). https://doi.org/10.1002/adma.202202544
X. Xie, L. Peng, H. Yang, G.I.N. Waterhouse, L. Shang et al., MIL-101-derived mesoporous carbon supporting highly exposed Fe single-atom sites as efficient oxygen reduction reaction catalysts. Adv. Mater. 33(23), 2101038 (2021). https://doi.org/10.1002/adma.202101038
Q. Yu, P. Wang, S. Hu, J. Hui, J. Zhuang et al., Hydrothermal synthesis of hollow silica spheres under acidic conditions. Langmuir 27(11), 7185–7191 (2011). https://doi.org/10.1021/la200719g
H. Li, K. Gan, R. Li, H. Huang, J. Niu et al., Highly dispersed NiO clusters induced electron delocalization of Ni–N–C catalysts for enhanced CO2 electroreduction. Adv. Funct. Mater. 33(1), 2208622 (2023). https://doi.org/10.1002/adfm.202208622
Y. Zhao, H.-C. Chen, X. Ma, J. Li, Q. Yuan et al., Vacancy defects inductive effect of asymmetrically coordinated single-atom Fe─N3S1 active sites for robust electrocatalytic oxygen reduction with high turnover frequency and mass activity. Adv. Mater. 36(11), 2308243 (2024). https://doi.org/10.1002/adma.202308243
P. Zhang, H.-C. Chen, H. Zhu, K. Chen, T. Li et al., Inter-site structural heterogeneity induction of single atom Fe catalysts for robust oxygen reduction. Nat. Commun. 15(1), 2062 (2024). https://doi.org/10.1038/s41467-024-46389-3
T. Wang, J. Wang, C. Lu, K. Jiang, S. Yang et al., Single-atom anchored curved carbon surface for efficient CO2 electro-reduction with nearly 100% CO selectivity and industrially-relevant current density. Adv. Mater. 35(35), 2205553 (2023). https://doi.org/10.1002/adma.202205553
G. Chen, R. Lu, C. Li, J. Yu, X. Li et al., Hierarchically porous carbons with highly curved surfaces for hosting single metal FeN4 sites as outstanding oxygen reduction catalysts. Adv. Mater. 35(32), 2300907 (2023). https://doi.org/10.1002/adma.202300907
J. Moreno, S. Aspera, M. David, H. Kasai, A computational study on the effect of local curvature on the adsorption of oxygen on single-walled carbon nanotubes. Carbon 94, 936–941 (2015). https://doi.org/10.1016/j.carbon.2015.07.081
V. Eckert, E. Haubold, S. Oswald, S. Michel, C. Bellmann et al., Investigation of the surface properties of different highly aligned N-MWCNT carpets. Carbon 141, 99–106 (2019). https://doi.org/10.1016/j.carbon.2018.09.035
G. Han, X. Zhang, W. Liu, Q. Zhang, Z. Wang et al., Substrate strain tunes operando geometric distortion and oxygen reduction activity of CuN2C2 single-atom sites. Nat. Commun. 12(1), 6335 (2021). https://doi.org/10.1038/s41467-021-26747-1
L. Li, Y.-J. Chen, H.-R. Xing, N. Li, J.-W. Xia et al., Single-atom Fe–N5 catalyst for high-performance zinc-air batteries. Nano Res. 15(9), 8056–8064 (2022). https://doi.org/10.1007/s12274-022-4424-1
C.-X. Zhao, X. Liu, J.-N. Liu, J. Wang, X. Wan et al., Molecular recognition regulates coordination structure of single-atom sites. Angew. Chem. Int. Ed. 62(48), e202313028 (2023). https://doi.org/10.1002/anie.202313028
S. Yin, H. Yi, M. Liu, J. Yang, S. Yang et al., An in situ exploration of how Fe/N/C oxygen reduction catalysts evolve during synthesis under pyrolytic conditions. Nat. Commun. 15, 6229 (2024). https://doi.org/10.1038/s41467-024-50629-x
H. Zhang, Y. Liu, T. Chen, J. Zhang, J. Zhang et al., Unveiling the activity origin of electrocatalytic oxygen evolution over isolated Ni atoms supported on a N-doped carbon matrix. Adv. Mater. 31(48), 1904548 (2019). https://doi.org/10.1002/adma.201904548
C.-L. Yang, L.-N. Wang, P. Yin, J. Liu, M.-X. Chen et al., Sulfur-anchoring synthesis of platinum intermetallic nanop catalysts for fuel cells. Science 374(6566), 459–464 (2021). https://doi.org/10.1126/science.abj9980
H. Shang, X. Zhou, J. Dong, A. Li, X. Zhao et al., Engineering unsymmetrically coordinated Cu-S1N3 single atom sites with enhanced oxygen reduction activity. Nat. Commun. 11(1), 3049 (2020). https://doi.org/10.1038/s41467-020-16848-8
P. Chen, N. Zhang, S. Wang, T. Zhou, Y. Tong et al., Interfacial engineering of cobalt sulfide/graphene hybrids for highly efficient ammonia electrosynthesis. Proc. Natl. Acad. Sci. U.S.A. 116(14), 6635–6640 (2019). https://doi.org/10.1073/pnas.1817881116
J. Yang, X. Zhou, D. Wu, X. Zhao, Z. Zhou, S-doped N-rich carbon nanosheets with expanded interlayer distance as anode materials for sodium-ion batteries. Adv. Mater. 29(6), 1604108 (2017). https://doi.org/10.1002/adma.201604108
L. Qie, W. Chen, X. Xiong, C. Hu, F. Zou et al., Sulfur-doped carbon with enlarged interlayer distance as a high-performance anode material for sodium-ion batteries. Adv. Sci. 2(12), 1500195 (2015). https://doi.org/10.1002/advs.201500195
Z. Li, H. Liu, Y.-H. Wang, S. Ji, Y. Zhang et al., Electronic structure modulation induced by the synergy of cobalt low-nuclearity clusters and mononuclear sites for efficient oxygen electrocatalysis. ACS Nano 19(1), 1600–1610 (2025). https://doi.org/10.1021/acsnano.4c15035
S. Ji, Y. Wang, H. Liu, X. Lu, C. Guo et al., Regulating the electronic synergy of asymmetric atomic Fe sites with adjacent defects for boosting activity and durability toward oxygen reduction. Adv. Funct. Mater. 34(29), 2314621 (2024). https://doi.org/10.1002/adfm.202314621
G. Wu, P. Zelenay, Activity versus stability of atomically dispersed transition-metal electrocatalysts. Nat. Rev. Mater. 9(9), 643–656 (2024). https://doi.org/10.1038/s41578-024-00703-z
Y. He, Q. Shi, W. Shan, X. Li, A.J. Kropf et al., Dynamically unveiling metal–nitrogen coordination during thermal activation to design high-efficient atomically dispersed CoN4 active sites. Angew. Chem. Int. Ed. 60(17), 9516–9526 (2021). https://doi.org/10.1002/anie.202017288
D. Malko, A. Kucernak, T. Lopes, In situ electrochemical quantification of active sites in Fe-N/C non-precious metal catalysts. Nat. Commun. 7, 13285 (2016). https://doi.org/10.1038/ncomms13285
X. Wan, X. Liu, Y. Li, R. Yu, L. Zheng et al., Fe–N–C electrocatalyst with dense active sites and efficient mass transport for high-performance proton exchange membrane fuel cells. Nat. Catal. 2(3), 259–268 (2019). https://doi.org/10.1038/s41929-019-0237-3
Y. Zhou, R. Lu, X. Tao, Z. Qiu, G. Chen et al., Boosting oxygen electrocatalytic activity of Fe–N–C catalysts by phosphorus incorporation. J. Am. Chem. Soc. 145(6), 3647–3655 (2023). https://doi.org/10.1021/jacs.2c12933
Z. Jin, P. Li, Y. Meng, Z. Fang, D. Xiao et al., Understanding the inter-site distance effect in single-atom catalysts for oxygen electroreduction. Nat. Catal. 4(7), 615–622 (2021). https://doi.org/10.1038/s41929-021-00650-w
N. Zion, D.A. Cullen, P. Zelenay, L. Elbaz, Heat-treated aerogel as a catalyst for the oxygen reduction reaction. Angew. Chem. Int. Ed. 59(6), 2483–2489 (2020). https://doi.org/10.1002/anie.201913521
S. Ji, Y. Mou, H. Liu, X. Lu, Y. Zhang et al., Manipulating the electronic properties of an Fe single atom catalyst via secondary coordination sphere engineering to provide enhanced oxygen electrocatalytic activity in zinc-air batteries. Adv. Mater. 36(44), 2410121 (2024). https://doi.org/10.1002/adma.202410121
Z. Li, J. Chen, Y. Guo, F. Zheng, K. Qu et al., Interfacial oxygen atom modification of a PdSn alloy to boost oxygen reduction in zinc-air batteries. J. Colloid Interface Sci. 659, 257–266 (2024). https://doi.org/10.1016/j.jcis.2023.12.168
Z. Li, W. Kang, J. Lin, R. Li, K. Qu et al., Single-atom co meets remote Fe for a synergistic boost in oxygen electrocatalysis. Adv. Energy Mater. (2025). https://doi.org/10.1002/aenm.202500617
J. Han, H. Wang, Y. Wang, H. Zhang, J. Li et al., Lattice oxygen activation through deep oxidation of Co4N by jahn–teller–active dopants for improved electrocatalytic oxygen evolution. Angew. Chem. Int. Ed. 63(33), e202405839 (2024). https://doi.org/10.1002/anie.202405839