Internal Polarization Field Induced Hydroxyl Spillover Effect for Industrial Water Splitting Electrolyzers
Corresponding Author: Bin Dong
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 39
Abstract
The formation of multiple oxygen intermediates supporting efficient oxygen evolution reaction (OER) are affinitive with hydroxyl adsorption. However, ability of the catalyst to capture hydroxyl and maintain the continuous supply at active sits remains a tremendous challenge. Herein, an affordable Ni2P/FeP2 heterostructure is presented to form the internal polarization field (IPF), arising hydroxyl spillover (HOSo) during OER. Facilitated by IPF, the oriented HOSo from FeP2 to Ni2P can activate the Ni site with a new hydroxyl transmission channel and build the optimized reaction path of oxygen intermediates for lower adsorption energy, boosting the OER activity (242 mV vs. RHE at 100 mA cm–2) for least 100 h. More interestingly, for the anion exchange membrane water electrolyzer (AEMWE) with low concentration electrolyte, the advantage of HOSo effect is significantly amplified, delivering 1 A cm–2 at a low cell voltage of 1.88 V with excellent stability for over 50 h.
Highlights:
1 Analyzed the function of internal polarization field in Ni2P/FeP2 via hydroxyl spillover effect.
2 From theoretical design to experimental verification, to optimize adsorption energy of oxygen intermediates on Ni active site, and further boost the xygen evolution reaction process.
3 A hydroxyl spillover effect driven by internal polarization field in Ni2P/FeP2 can be amplified in low concentration alkaline electrolyte environment, and facilitate the application in anion exchange membrane water electrolyzer systems.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S. Stiber, H. Balzer, A. Wierhake, F.J. Wirkert, J. Roth et al., Porous transport layers for proton exchange membrane electrolysis under extreme conditions of current density, temperature, and pressure. Adv. Energy Mater. 11, 2100630 (2021). https://doi.org/10.1002/aenm.202100630
- H. Wang, J. Gao, C. Chen, W. Zhao, Z. Zhang et al., PtNi-W/C with atomically dispersed tungsten sites toward boosted ORR in proton exchange membrane fuel cell devices. Nano-Micro Lett. 15, 143 (2023). https://doi.org/10.1007/s40820-023-01102-9
- K.G. Santos, C.T. Eckert, E. Rossi, R.A. Bariccatti, E.P. Frigo et al., Hydrogen production in the electrolysis of water in Brazil, a review. Renew. Sust. Energ. Rev. 68, 563 (2017). https://www.sciencedirect.com/science//pii/S1364032116306372
- O. Schmidt, A. Gambhir, I. Staffell, A. Hawkes, J. Nelson et al., Future cost and performance of water electrolysis: an expert elicitation study. Int. J. Hydrogen Energy 42(52), 30470 (2017). https://doi.org/10.1016/j.ijhydene.2017.10.045
- P. Thangavel, M. Ha, S. Kumaraguru, A. Meena, A.N. Singh et al., Graphene-nanoplatelets-supported NiFe-MOF: high-efficiency and ultra-stable oxygen electrodes for sustained alkaline anion exchange membrane water electrolysis. Energy Environ. Sci. 13(10), 3447 (2020). https://doi.org/10.1039/D0EE00877J
- Z.W. Seh, J. Kibsgaard, C.F. Dickens, I. Chorkendorff, J.K. Nørskov et al., Combining theory and experiment in electrocatalysis: insights into materials design. Science 355(6321), eaad4998 (2017). https://doi.org/10.1126/science.aad4998
- F. Song, L. Bai, A. Moysiadou, S. Lee, C. Hu et al., Transition metal oxides as electrocatalysts for the oxygen evolution reaction in alkaline solutions: an application-inspired renaissance. J. Am. Chem. Soc. 140(25), 7748 (2018). https://doi.org/10.1021/jacs.8b04546
- B. Guo, Y. Ding, H. Huo, X. Wen, X. Ren et al., Recent advances of transition metal basic salts for electrocatalytic oxygen evolution reaction and overall water electrolysis. Nano-Micro Lett. 15, 57 (2023). https://doi.org/10.1007/s40820-023-01038-0
- Y.P. Zhu, T.Y. Ma, M. Jaroniec, S.Z. Qiao et al., Self-templating synthesis of hollow Co3O4 microtube arrays for highly efficient water electrolysis. Angew. Chem. Int. Ed. 56(5), 1324 (2017). https://doi.org/10.1002/anie.201610413
- J. Li, J. Li, J. Ren, H. Hong, D. Liu et al., Electric-field-treated Ni/Co3O4 film as high-performance bifunctional electrocatalysts for efficient overall water splitting. Nano-Micro Lett. 14, 148 (2022). https://doi.org/10.1007/s40820-022-00889-3
- Q. Zhou, C. Xu, J. Hou, W. Ma, T. Jian et al., Duplex interpenetrating-phase FeNiZn and FeNi3 heterostructure with low-Gibbs free energy interface coupling for highly efficient overall water splitting. Nano-Micro Lett. 15, 95 (2023). https://doi.org/10.1007/s40820-023-01066-w
- A. Lončar, D. Escalera-López, S. Cherevko, N. Hodnik, Inter-relationships between oxygen evolution and Iridium dissolution mechanisms. Angew. Chem. Int. Ed. 61(14), e202114437 (2022). https://doi.org/10.1002/anie.202114437
- C. Wang, Q. Zhang, B. Yan, B. You, J. Zheng et al., Facet engineering of advanced electrocatalysts toward hydrogen/oxygen evolution reactions. Nano-Micro Lett. 15, 52 (2023). https://doi.org/10.1007/s40820-023-01024-6
- J.J. Song, C. Wei, Z.F. Huang, C.T. Liu, X. Wang et al., A review on fundamentals for designing oxygen evolution electrocatalysts. Chem. Soc. Rev. 49(7), 2196 (2020). https://doi.org/10.1039/C9CS00607A
- Z.F. Huang, J. Song, Y. Du, S. Xi, S. Dou et al., Chemical and structural origin of lattice oxygen oxidation in Co–Zn oxyhydroxide oxygen evolution electrocatalysts. Nat. Energy 4(4), 329 (2019). https://doi.org/10.1038/s41560-019-0355-9
- J.T. Li, Oxygen evolution reaction in energy conversion and storage: design strategies under and beyond the energy scaling relationship. Nano-Micro Lett. 14(1), 112 (2022). https://doi.org/10.1007/s40820-022-00857-x
- I. Vincent, A. Kruger, D. Bessarabov, Development of efficient membrane electrode assembly for low cost hydrogen production by anion exchange membrane electrolysis. Int. J. Hydrogen Energy 42(16), 10752 (2017). https://www.sciencedirect.com/science//pii/S036031991730993X
- J. Hnát, M. Plevová, J. Žitka, M. Paidar, K. Bouzek, Anion-selective materials with 1,4-diazabicyclo[2.2.2]octane functional groups for advanced alkaline water electrolysis. electrochim. Acta 248, 547 (2017). https://www.sciencedirect.com/science//pii/S0013468617316031
- T.T. Wang, X. Li, Y.J. Pang, X.R. Gao, Z.K. Kou et al., Unlocking the synergy of interface and oxygen vacancy by core-shell nickel phosphide@oxyhydroxide nanosheets arrays for accelerating alkaline oxygen evolution kinetics. Chem. Eng. J. 425, 131491 (2021). https://www.sciencedirect.com/science//pii/S1385894721030722
- C. Hu, L. Dai, Multifunctional carbon-based metal-free electrocatalysts for simultaneous oxygen reduction, oxygen evolution, and hydrogen evolution. Adv. Mater. 29(9), 1604942 (2017). https://doi.org/10.1002/adma.201604942
- N.U. Hassan, M. Mandal, G. Huang, H.A. Firouzjaie, P.A. Kohl, Achieving high-performance and 2000 h stability in anion exchange membrane fuel cells by manipulating ionomer properties and electrode optimization. Adv. Energy Mater. 10(40), 2001986 (2020). https://doi.org/10.1002/aenm.202001986
- A. Kumar, V.Q. Bui, J. Lee, A.R. Jadhav, Y. Hwang et al., Modulating interfacial charge density of NiP2–FeP2 via coupling with metallic Cu for accelerating alkaline hydrogen evolution. ACS Energy Lett. 6(2), 354 (2021). https://doi.org/10.1021/acsenergylett.0c02498
- D. Li, A.R. Motz, C. Bae, C. Fujimoto, G. Yang et al., Durability of anion exchange membrane water electrolyzers. Energy Environ. Sci. 14(6), 3393 (2021). https://doi.org/10.1039/D0EE04086J
- I.V. Pushkareva, A.S. Pushkarev, S.A. Grigoriev, P. Modisha, D.G. Bessarabov, Comparative study of anion exchange membranes for low-cost water electrolysis. Int. J. Hydrogen Energy 45(49), 26070 (2020). https://www.sciencedirect.com/science//pii/S0360319919341588
- O. Heijden, S. Park, J. Eggebeen, M. Koper, Non-kinetic effects convolute activity and tafel analysis for the alkaline oxygen evolution reaction on NiFeOOH electrocatalysts. Angew. Chem. Int. Ed. 62(7), e202216477 (2022). https://doi.org/10.1002/anie.202216477
- S. Lee, K. Banjac, M. Lingenfelder, X. Hu, Oxygen isotope labeling experiments reveal different reaction sites for the oxygen evolution reaction on nickel and nickel iron oxides. Angew. Chem. Int. Ed. 58(30), 10295 (2019). https://doi.org/10.1002/anie.201903200
- L. An, J. Feng, Y. Zhang, R. Wang, H. Liu et al., Epitaxial heterogeneous interfaces on N-NiMoO4/NiS2 nanowires/nanosheets to boost hydrogen and oxygen production for overall water splitting. Adv. Funct. Mater. 29(1), 1805298 (2019). https://doi.org/10.1002/adfm.201805298
- P. Phonsuksawang, P. Khajondetchairit, T. Butburee, S. Sattayaporn, N. Chanlek et al., Effects of Fe doping on enhancing electrochemical properties of NiCo2S4 supercapacitor electrode. Electrochim. Acta 340, 135939 (2020). https://www.sciencedirect.com/science//pii/S0013468620303315
- D. Liang, C. Lian, Q. Xu, M. Liu, H. Liu et al., Interfacial charge polarization in Co2P2O7@N, P Co-doped carbon nanocages as Mott-Schottky electrocatalysts for accelerating oxygen evolution reaction. Appl. Catal. B 268, 118417 (2020). https://www.sciencedirect.com/science//pii/S0926337319311634
- Y. Liu, Y. Chen, Y. Tian, T. Sakthivel, H. Liu et al., Synergizing hydrogen spillover and deprotonation by the internal polarization field in a MoS2/NiPS3 vertical heterostructure for boosted water electrolysis. Adv. Mater. 34(37), 2203615 (2022). https://doi.org/10.1002/adma.202203615
- C. Lyu, J. Cheng, K. Wu, J. Wu, N. Wang, Interfacial electronic structure modulation of CoP nanowires with FeP nanosheets for enhanced hydrogen evolution under alkaline water/seawater electrolytes. Appl. Catal. B 317, 121799 (2022). https://www.sciencedirect.com/science//pii/S0926337322007408
- X. Wang, X. Zong, B. Liu, G. Long, A. Wang et al., Boosting electrochemical water oxidation on NiFe (oxy) hydroxides by constructing schottky junction toward water electrolysis under industrial conditions. Small 18(4), 2105544 (2022). https://doi.org/10.1002/smll.202105544
- W.J. Sun, H.Q. Ji, L.X. Li, H.Y. Zhang, Z.K. Wang et al., Built-in electric field triggered interfacial accumulation effect for efficient nitrate removal at ultra-low concentration and electroreduction to ammonia. Angew. Chem. Int. Ed. 60(42), 22933 (2021). https://doi.org/10.1002/anie.202109785
- Y. Kim, M. Ha, R. Anand, M. Zafari, J.M. Baik et al., Unveiling a surface electronic descriptor for Fe–Co mixing enhanced the stability and efficiency of perovskite oxygen evolution electrocatalysts. ACS Catal. 12(23), 14698 (2022). https://doi.org/10.1021/acscatal.2c04424
- Q. Wen, K. Yang, D. Huang, G. Cheng, X. Ai et al., Schottky heterojunction nanosheet array achieving high-current-density oxygen evolution for industrial water splitting electrolyzers. Adv. Energy Mater. 11(46), 2102353 (2021). https://doi.org/10.1002/aenm.202102353
- A. Zagalskaya, V. Alexandrov, Role of defects in the interplay between adsorbate evolving and lattice oxygen mechanisms of the oxygen evolution reaction in RuO2 and IrO2. ACS Catal. 10(6), 3650 (2020). https://doi.org/10.1021/acscatal.9b05544
- Y. Lin, Z. Liu, L. Yu, G.R. Zhang, H. Tan et al., Overall oxygen electrocatalysis on nitrogen-modified carbon catalysts: identification of active sites and in situ observation of reactive intermediates. Angew. Chem. Int. Ed. 60(6), 3299 (2021). https://doi.org/10.1002/anie.202012615
- P. Wang, R. Qin, P. Ji, Z. Pu, J. Zhu et al., Synergistic coupling of Ni nanops with Ni3C nanosheets for highly efficient overall water splitting. Small 16(37), 2001642 (2020). https://doi.org/10.1002/smll.202001642
- X. Luo, P. Ji, P. Wang, X. Tan, L. Chen et al., Spherical Ni3S2/Fe–NiPx magic cube with ultrahigh water/seawater oxidation efficiency. Adv. Sci. 9(7), 2104846 (2022). https://doi.org/10.1002/advs.202104846
- T. Wu, S. Zhang, K. Bu, W. Zhao, Q. Bi et al., Nickel nitride–black phosphorus heterostructure nanosheets for boosting the electrocatalytic activity toward the oxygen evolution reaction. J. Mater. Chem. A 7(38), 22063 (2019). https://doi.org/10.1039/C9TA07962A
- Y. Liu, J. Zhang, Y. Li, Q. Qian, Z. Li et al., Realizing the synergy of interface engineering and chemical substitution for Ni3N enables its bifunctionality toward hydrazine oxidation assisted energy-saving hydrogen production. Adv. Funct. Mater. 31(35), 2103673 (2021). https://doi.org/10.1002/adfm.202103673
- C. Kuai, C. Xi, A. Hu, Y. Zhang, Z. Xu et al., Revealing the dynamics and roles of iron incorporation in nickel hydroxide water oxidation catalysts. J. Am. Chem. Soc. 143(44), 18519 (2021). https://doi.org/10.1021/jacs.1c07975
- L. Trotochaud, S.L. Young, J.K. Ranney, S.W. Boettcher, Nickel–iron oxyhydroxide oxygen-evolution electrocatalysts: the role of intentional and incidental iron incorporation. J. Am. Chem. Soc. 136(18), 6744 (2014). https://doi.org/10.1021/ja502379c
- Y. Bai, Y. Wu, X. Zhou, Y. Ye, K. Nie et al., Promoting nickel oxidation state transitions in single-layer NiFeB hydroxide nanosheets for efficient oxygen evolution. Nat. Commun. 13(1), 6094 (2022). https://doi.org/10.1038/s41467-022-33846-0
- Y. Li, C.K. Peng, H. Hu, S.Y. Chen, J.H. Choi et al., Interstitial boron-triggered electron-deficient Os aerogels for enhanced pH-universal hydrogen evolution. Nat. Commun. 13(1), 1143 (2022). https://doi.org/10.1038/s41467-022-28805-8
- Y. Yang, P. Li, X. Zheng, W. Sun, S.X. Dou et al., Anion-exchange membrane water electrolyzers and fuel cells. Chem. Soc. Rev. 51(23), 9620 (2022). https://doi.org/10.1039/D2CS00038E
References
S. Stiber, H. Balzer, A. Wierhake, F.J. Wirkert, J. Roth et al., Porous transport layers for proton exchange membrane electrolysis under extreme conditions of current density, temperature, and pressure. Adv. Energy Mater. 11, 2100630 (2021). https://doi.org/10.1002/aenm.202100630
H. Wang, J. Gao, C. Chen, W. Zhao, Z. Zhang et al., PtNi-W/C with atomically dispersed tungsten sites toward boosted ORR in proton exchange membrane fuel cell devices. Nano-Micro Lett. 15, 143 (2023). https://doi.org/10.1007/s40820-023-01102-9
K.G. Santos, C.T. Eckert, E. Rossi, R.A. Bariccatti, E.P. Frigo et al., Hydrogen production in the electrolysis of water in Brazil, a review. Renew. Sust. Energ. Rev. 68, 563 (2017). https://www.sciencedirect.com/science//pii/S1364032116306372
O. Schmidt, A. Gambhir, I. Staffell, A. Hawkes, J. Nelson et al., Future cost and performance of water electrolysis: an expert elicitation study. Int. J. Hydrogen Energy 42(52), 30470 (2017). https://doi.org/10.1016/j.ijhydene.2017.10.045
P. Thangavel, M. Ha, S. Kumaraguru, A. Meena, A.N. Singh et al., Graphene-nanoplatelets-supported NiFe-MOF: high-efficiency and ultra-stable oxygen electrodes for sustained alkaline anion exchange membrane water electrolysis. Energy Environ. Sci. 13(10), 3447 (2020). https://doi.org/10.1039/D0EE00877J
Z.W. Seh, J. Kibsgaard, C.F. Dickens, I. Chorkendorff, J.K. Nørskov et al., Combining theory and experiment in electrocatalysis: insights into materials design. Science 355(6321), eaad4998 (2017). https://doi.org/10.1126/science.aad4998
F. Song, L. Bai, A. Moysiadou, S. Lee, C. Hu et al., Transition metal oxides as electrocatalysts for the oxygen evolution reaction in alkaline solutions: an application-inspired renaissance. J. Am. Chem. Soc. 140(25), 7748 (2018). https://doi.org/10.1021/jacs.8b04546
B. Guo, Y. Ding, H. Huo, X. Wen, X. Ren et al., Recent advances of transition metal basic salts for electrocatalytic oxygen evolution reaction and overall water electrolysis. Nano-Micro Lett. 15, 57 (2023). https://doi.org/10.1007/s40820-023-01038-0
Y.P. Zhu, T.Y. Ma, M. Jaroniec, S.Z. Qiao et al., Self-templating synthesis of hollow Co3O4 microtube arrays for highly efficient water electrolysis. Angew. Chem. Int. Ed. 56(5), 1324 (2017). https://doi.org/10.1002/anie.201610413
J. Li, J. Li, J. Ren, H. Hong, D. Liu et al., Electric-field-treated Ni/Co3O4 film as high-performance bifunctional electrocatalysts for efficient overall water splitting. Nano-Micro Lett. 14, 148 (2022). https://doi.org/10.1007/s40820-022-00889-3
Q. Zhou, C. Xu, J. Hou, W. Ma, T. Jian et al., Duplex interpenetrating-phase FeNiZn and FeNi3 heterostructure with low-Gibbs free energy interface coupling for highly efficient overall water splitting. Nano-Micro Lett. 15, 95 (2023). https://doi.org/10.1007/s40820-023-01066-w
A. Lončar, D. Escalera-López, S. Cherevko, N. Hodnik, Inter-relationships between oxygen evolution and Iridium dissolution mechanisms. Angew. Chem. Int. Ed. 61(14), e202114437 (2022). https://doi.org/10.1002/anie.202114437
C. Wang, Q. Zhang, B. Yan, B. You, J. Zheng et al., Facet engineering of advanced electrocatalysts toward hydrogen/oxygen evolution reactions. Nano-Micro Lett. 15, 52 (2023). https://doi.org/10.1007/s40820-023-01024-6
J.J. Song, C. Wei, Z.F. Huang, C.T. Liu, X. Wang et al., A review on fundamentals for designing oxygen evolution electrocatalysts. Chem. Soc. Rev. 49(7), 2196 (2020). https://doi.org/10.1039/C9CS00607A
Z.F. Huang, J. Song, Y. Du, S. Xi, S. Dou et al., Chemical and structural origin of lattice oxygen oxidation in Co–Zn oxyhydroxide oxygen evolution electrocatalysts. Nat. Energy 4(4), 329 (2019). https://doi.org/10.1038/s41560-019-0355-9
J.T. Li, Oxygen evolution reaction in energy conversion and storage: design strategies under and beyond the energy scaling relationship. Nano-Micro Lett. 14(1), 112 (2022). https://doi.org/10.1007/s40820-022-00857-x
I. Vincent, A. Kruger, D. Bessarabov, Development of efficient membrane electrode assembly for low cost hydrogen production by anion exchange membrane electrolysis. Int. J. Hydrogen Energy 42(16), 10752 (2017). https://www.sciencedirect.com/science//pii/S036031991730993X
J. Hnát, M. Plevová, J. Žitka, M. Paidar, K. Bouzek, Anion-selective materials with 1,4-diazabicyclo[2.2.2]octane functional groups for advanced alkaline water electrolysis. electrochim. Acta 248, 547 (2017). https://www.sciencedirect.com/science//pii/S0013468617316031
T.T. Wang, X. Li, Y.J. Pang, X.R. Gao, Z.K. Kou et al., Unlocking the synergy of interface and oxygen vacancy by core-shell nickel phosphide@oxyhydroxide nanosheets arrays for accelerating alkaline oxygen evolution kinetics. Chem. Eng. J. 425, 131491 (2021). https://www.sciencedirect.com/science//pii/S1385894721030722
C. Hu, L. Dai, Multifunctional carbon-based metal-free electrocatalysts for simultaneous oxygen reduction, oxygen evolution, and hydrogen evolution. Adv. Mater. 29(9), 1604942 (2017). https://doi.org/10.1002/adma.201604942
N.U. Hassan, M. Mandal, G. Huang, H.A. Firouzjaie, P.A. Kohl, Achieving high-performance and 2000 h stability in anion exchange membrane fuel cells by manipulating ionomer properties and electrode optimization. Adv. Energy Mater. 10(40), 2001986 (2020). https://doi.org/10.1002/aenm.202001986
A. Kumar, V.Q. Bui, J. Lee, A.R. Jadhav, Y. Hwang et al., Modulating interfacial charge density of NiP2–FeP2 via coupling with metallic Cu for accelerating alkaline hydrogen evolution. ACS Energy Lett. 6(2), 354 (2021). https://doi.org/10.1021/acsenergylett.0c02498
D. Li, A.R. Motz, C. Bae, C. Fujimoto, G. Yang et al., Durability of anion exchange membrane water electrolyzers. Energy Environ. Sci. 14(6), 3393 (2021). https://doi.org/10.1039/D0EE04086J
I.V. Pushkareva, A.S. Pushkarev, S.A. Grigoriev, P. Modisha, D.G. Bessarabov, Comparative study of anion exchange membranes for low-cost water electrolysis. Int. J. Hydrogen Energy 45(49), 26070 (2020). https://www.sciencedirect.com/science//pii/S0360319919341588
O. Heijden, S. Park, J. Eggebeen, M. Koper, Non-kinetic effects convolute activity and tafel analysis for the alkaline oxygen evolution reaction on NiFeOOH electrocatalysts. Angew. Chem. Int. Ed. 62(7), e202216477 (2022). https://doi.org/10.1002/anie.202216477
S. Lee, K. Banjac, M. Lingenfelder, X. Hu, Oxygen isotope labeling experiments reveal different reaction sites for the oxygen evolution reaction on nickel and nickel iron oxides. Angew. Chem. Int. Ed. 58(30), 10295 (2019). https://doi.org/10.1002/anie.201903200
L. An, J. Feng, Y. Zhang, R. Wang, H. Liu et al., Epitaxial heterogeneous interfaces on N-NiMoO4/NiS2 nanowires/nanosheets to boost hydrogen and oxygen production for overall water splitting. Adv. Funct. Mater. 29(1), 1805298 (2019). https://doi.org/10.1002/adfm.201805298
P. Phonsuksawang, P. Khajondetchairit, T. Butburee, S. Sattayaporn, N. Chanlek et al., Effects of Fe doping on enhancing electrochemical properties of NiCo2S4 supercapacitor electrode. Electrochim. Acta 340, 135939 (2020). https://www.sciencedirect.com/science//pii/S0013468620303315
D. Liang, C. Lian, Q. Xu, M. Liu, H. Liu et al., Interfacial charge polarization in Co2P2O7@N, P Co-doped carbon nanocages as Mott-Schottky electrocatalysts for accelerating oxygen evolution reaction. Appl. Catal. B 268, 118417 (2020). https://www.sciencedirect.com/science//pii/S0926337319311634
Y. Liu, Y. Chen, Y. Tian, T. Sakthivel, H. Liu et al., Synergizing hydrogen spillover and deprotonation by the internal polarization field in a MoS2/NiPS3 vertical heterostructure for boosted water electrolysis. Adv. Mater. 34(37), 2203615 (2022). https://doi.org/10.1002/adma.202203615
C. Lyu, J. Cheng, K. Wu, J. Wu, N. Wang, Interfacial electronic structure modulation of CoP nanowires with FeP nanosheets for enhanced hydrogen evolution under alkaline water/seawater electrolytes. Appl. Catal. B 317, 121799 (2022). https://www.sciencedirect.com/science//pii/S0926337322007408
X. Wang, X. Zong, B. Liu, G. Long, A. Wang et al., Boosting electrochemical water oxidation on NiFe (oxy) hydroxides by constructing schottky junction toward water electrolysis under industrial conditions. Small 18(4), 2105544 (2022). https://doi.org/10.1002/smll.202105544
W.J. Sun, H.Q. Ji, L.X. Li, H.Y. Zhang, Z.K. Wang et al., Built-in electric field triggered interfacial accumulation effect for efficient nitrate removal at ultra-low concentration and electroreduction to ammonia. Angew. Chem. Int. Ed. 60(42), 22933 (2021). https://doi.org/10.1002/anie.202109785
Y. Kim, M. Ha, R. Anand, M. Zafari, J.M. Baik et al., Unveiling a surface electronic descriptor for Fe–Co mixing enhanced the stability and efficiency of perovskite oxygen evolution electrocatalysts. ACS Catal. 12(23), 14698 (2022). https://doi.org/10.1021/acscatal.2c04424
Q. Wen, K. Yang, D. Huang, G. Cheng, X. Ai et al., Schottky heterojunction nanosheet array achieving high-current-density oxygen evolution for industrial water splitting electrolyzers. Adv. Energy Mater. 11(46), 2102353 (2021). https://doi.org/10.1002/aenm.202102353
A. Zagalskaya, V. Alexandrov, Role of defects in the interplay between adsorbate evolving and lattice oxygen mechanisms of the oxygen evolution reaction in RuO2 and IrO2. ACS Catal. 10(6), 3650 (2020). https://doi.org/10.1021/acscatal.9b05544
Y. Lin, Z. Liu, L. Yu, G.R. Zhang, H. Tan et al., Overall oxygen electrocatalysis on nitrogen-modified carbon catalysts: identification of active sites and in situ observation of reactive intermediates. Angew. Chem. Int. Ed. 60(6), 3299 (2021). https://doi.org/10.1002/anie.202012615
P. Wang, R. Qin, P. Ji, Z. Pu, J. Zhu et al., Synergistic coupling of Ni nanops with Ni3C nanosheets for highly efficient overall water splitting. Small 16(37), 2001642 (2020). https://doi.org/10.1002/smll.202001642
X. Luo, P. Ji, P. Wang, X. Tan, L. Chen et al., Spherical Ni3S2/Fe–NiPx magic cube with ultrahigh water/seawater oxidation efficiency. Adv. Sci. 9(7), 2104846 (2022). https://doi.org/10.1002/advs.202104846
T. Wu, S. Zhang, K. Bu, W. Zhao, Q. Bi et al., Nickel nitride–black phosphorus heterostructure nanosheets for boosting the electrocatalytic activity toward the oxygen evolution reaction. J. Mater. Chem. A 7(38), 22063 (2019). https://doi.org/10.1039/C9TA07962A
Y. Liu, J. Zhang, Y. Li, Q. Qian, Z. Li et al., Realizing the synergy of interface engineering and chemical substitution for Ni3N enables its bifunctionality toward hydrazine oxidation assisted energy-saving hydrogen production. Adv. Funct. Mater. 31(35), 2103673 (2021). https://doi.org/10.1002/adfm.202103673
C. Kuai, C. Xi, A. Hu, Y. Zhang, Z. Xu et al., Revealing the dynamics and roles of iron incorporation in nickel hydroxide water oxidation catalysts. J. Am. Chem. Soc. 143(44), 18519 (2021). https://doi.org/10.1021/jacs.1c07975
L. Trotochaud, S.L. Young, J.K. Ranney, S.W. Boettcher, Nickel–iron oxyhydroxide oxygen-evolution electrocatalysts: the role of intentional and incidental iron incorporation. J. Am. Chem. Soc. 136(18), 6744 (2014). https://doi.org/10.1021/ja502379c
Y. Bai, Y. Wu, X. Zhou, Y. Ye, K. Nie et al., Promoting nickel oxidation state transitions in single-layer NiFeB hydroxide nanosheets for efficient oxygen evolution. Nat. Commun. 13(1), 6094 (2022). https://doi.org/10.1038/s41467-022-33846-0
Y. Li, C.K. Peng, H. Hu, S.Y. Chen, J.H. Choi et al., Interstitial boron-triggered electron-deficient Os aerogels for enhanced pH-universal hydrogen evolution. Nat. Commun. 13(1), 1143 (2022). https://doi.org/10.1038/s41467-022-28805-8
Y. Yang, P. Li, X. Zheng, W. Sun, S.X. Dou et al., Anion-exchange membrane water electrolyzers and fuel cells. Chem. Soc. Rev. 51(23), 9620 (2022). https://doi.org/10.1039/D2CS00038E