Optimized Electronic Modification of S-Doped CuO Induced by Oxidative Reconstruction for Coupling Glycerol Electrooxidation with Hydrogen Evolution
Corresponding Author: Bin Dong
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 190
Abstract
Glycerol (electrochemical) oxidation reaction (GOR) producing organic small molecule acid and coupling with hydrogen evolution reaction is a critical aspect of ensuring balanced glycerol capacity and promoting hydrogen generation on a large scale. However, the development of highly efficient and selective non-noble metal-based GOR electrocatalysts is still a key problem. Here, an S-doped CuO nanorod array catalyst (S-CuO/CF) constructed by sulfur leaching and oxidative remodeling is used to drive GOR at low potentials: It requires potentials of only 1.23 and 1.33 V versus RHE to provide currents of 100 and 500 mA cm−2, respectively. Moreover, it shows satisfactory comprehensive performance (at 100 mA cm−2, Vcell = 1.37 V) when assembled as the anode in asymmetric coupled electrolytic cell. Furthermore, we propose a detailed cycle reaction pathway (in alkaline environment) of S-doped CuO surface promoting GOR to produce formic acid and glycolic acid. Among them, the C–C bond breaking and lattice oxygen deintercalation steps frequently involved in the reaction pathway are the key factors to determine the catalytic performance and product selectivity. This research provides valuable guidance for the development of transition metal-based electrocatalysts for GOR and valuable insights into the glycerol oxidation cycle reaction pathway.
Highlights:
1 S-doped CuO nanorod arrays (S-CuO/CF) constructed by sulfur leaching and oxidative remodeling strategy require only 1.23 and 1.33 V versus hydrogen evolution reaction (HER) to provide glycerol oxidation currents of 100 and 500 mA cm−2.
2 S-CuO/CF shows satisfactory performance (at 100 mA cm−2, Vcell = 1.37 V) assembled as the anode in asymmetric coupled electrolytic cell of glycerol oxidation reaction and HER.
3 The study identifies the key factors involved in the GOR reaction pathway, which include the C–C bond breaking and lattice oxygen deintercalation steps.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M.L. Yue, H. Lambert, E. Pahon, R. Roche, S. Jemei et al., Hydrogen energy systems: A critical review of technologies, applications, trends and challenges. Renew. Sust. Energy Rev. 146, 111180 (2021). https://doi.org/10.1016/j.rser.2021.111180
- N. Heinemann, J. Alcalde, J.M. Miocic, S.J.T. Hangx et al., Enabling large-scale hydrogen storage in porous media the scientific challenges. Energy Environ. Sci. 14(2), 853–864 (2021). https://doi.org/10.1039/D0EE03536J
- K.W. Wang, K.F. Yu, S.N. Xu, S.S. Yuan, L.J. Xiang et al., Synergizing lattice strain and electron transfer in TMSs@1T-MoS2 in-plane heterostructures for efficient hydrogen evolution reaction. Appl. Catal. B Environ. 328(5), 122445 (2023). https://doi.org/10.1016/j.apcatb.2023.122445
- M.L. Yu, K. Wang, H. Vredenburg, Insights into low-carbon hydrogen production methods: green, blue and aqua hydrogen. Int. J. Hydrogen Energy 46(41), 21261–21273 (2021). https://doi.org/10.1016/j.ijhydene.2021.04.016
- S.Y. Tee, K.Y. Win, W.S. Teo, L.D. Koh, S.H. Liu, C.P. Teng, M.Y. Han, Recent progress in energy-driven water splitting. Adv. Sci. 4(5), 1600337 (2017). https://doi.org/10.1002/advs.201600337
- S.L. Jiao, X.W. Fu, S.Y. Wang, Y. Zhao, Perfecting electrocatalysts via imperfections: towards the large-scale deployment of water electrolysis technology. Energy Environ. Sci. 14(4), 1722–1770 (2021). https://doi.org/10.1039/D0EE03635H
- S. Wang, A. Lu, C.J. Zhong, Hydrogen production from water electrolysis: role of catalysts. Nano Converg. 8(1), 4 (2021). https://doi.org/10.1186/s40580-021-00254-x
- J. Wang, S.J. Kim, J.P. Liu, Y. Gao, S. Choi et al., Redirecting dynamic surface restructuring of a layered transition metal oxide catalyst for superior water oxidation. Nat. Catal. 4(3), 212–222 (2021). https://doi.org/10.1038/s41929-021-00578-1
- J.J. Song, C. Wei, Z.F. Huang, C.T. Liu, L. Zeng et al., A review on fundamentals for designing oxygen evolution electrocatalysts. Chem. Soc. Rev. 49(7), 2196–2214 (2020). https://doi.org/10.1039/C9CS00607A
- R.Y. Fan, J.Y. Xie, H.J. Liu, H.Y. Wang, M.X. Li et al., Directional regulating dynamic equilibrium to continuously update electrocatalytic interface for oxygen evolution reaction. Chem. Eng. J. 431(2), 134040 (2022). https://doi.org/10.1016/j.cej.2021.134040
- H.A. Miller, K. Bouzek, J. Hnat, S. Loos, C.I. Bernacker et al., Green hydrogen from anion exchange membrane water electrolysis: a review of recent developments in critical materials and operating conditions. Sustain. Energy Fuels 4(5), 2114–2133 (2020). https://doi.org/10.1039/C9SE01240K
- B. You, X. Liu, N. Jiang, Y. Sun, A general strategy for decoupled hydrogenproduction from water splitting by integrating oxidative biomass valorization. J. Am. Chem. Soc. 138(41), 13639–13646 (2016). https://doi.org/10.1021/jacs.6b07127
- B. Rausch, M.D. Symes, G. Chisholm, L. Cronin, Decoupled catalytic hydrogen evolution from a molecular metal oxide redox mediator in water splitting. Science 345(6202), 1326–1330 (2014). https://doi.org/10.1126/science.1257443
- R.J. Quimet, J.R. Glenn, D.D. Porcellinis, A.R. Motz, M. Carmo et al., The role of electrocatalysts in the development of gigawatt-scale PEM electrolyzers. ACS Catal. 12(10), 6159–6171 (2022). https://doi.org/10.1021/acscatal.2c00570
- H.Y. Jin, X.S. Wang, C. Tang, A. Vasileff, L.Q. Li et al., Stable and highly efficient hydrogen evolution from seawater enabled by an unsaturated nickel surface nitride. Adv. Mater. 33(13), 2007508 (2021). https://doi.org/10.1002/adma.202007508
- W. Chen, L.T. Xu, X.R. Zhu, Y.C. Huang, W. Zhou et al., Unveiling the electrooxidation of urea: intramolecular coupling of the N–N bond. Angew. Chem. Int. Ed. 60(13), 7297–7307 (2021). https://doi.org/10.1002/anie.202015773
- X. Liu, Y. Han, Y. Guo, X.T. Zhao, D. Pan et al., Electrochemical hydrogen generation by oxygen evolution reaction-alternative anodic oxidation reactions. Adv. Energy Sustain. Res. 3(7), 2200005 (2022). https://doi.org/10.1002/aesr.202200005
- S.K. Geng, Y. Zheng, S.Q. Li, H. Su, X. Zhao et al., Nickel ferrocyanide as a high-performance urea oxidation electrocatalyst. Nat. Energy 6(9), 904–912 (2021). https://doi.org/10.1038/s41560-021-00899-2
- B.J. Zhu, Z.B. Liang, R.Q. Zou, Designing advanced catalysts for energy conversion based on urea oxidation reaction. Small 16(7), 1906133 (2020). https://doi.org/10.1002/smll.201906133
- P. Zhou, X.S. Lv, S.S. Tao, J.C. Wu, H.F. Wang et al., Heterogeneous-interface-enhanced adsorption of organic and hydroxyl for biomass electrooxidation. Adv. Mater. 34(42), 2204089 (2022). https://doi.org/10.1002/adma.202204089
- T.H. Wang, Z.F. Huang, T.Y. Liu, L. Tao, J. Tian et al., Transforming electrocatalytic biomass upgrading and hydrogen production from electricity input to electricity output. Angew. Chem. Int. Ed. 61(12), 2115636 (2022). https://doi.org/10.1002/anie.202115636
- X.D. Li, P. Jia, T.F. Wang, Furfural: a promising platform compound for sustainable production of C4 and C5 Chemicals. ACS Catal. 6, 7621–7640 (2016). https://doi.org/10.1021/acscatal.6b01838
- C.A.G. Quispe, C.J.R. Coronado, J.A. Carvalho, Glycerol: production, consumption, prices, characterization and new trends in combustion. Renew. Sust. Energ. Rev. 27(11), 475–493 (2013). https://doi.org/10.1021/acscatal.6b01838
- J.J. Bozell, G.R. Petersen, Technology development for the production of biobased products from biorefinery carbohydrates-the US Department of Energy’s “Top 10” revisited. Green Chem. 12(4), 539–554 (2010). https://doi.org/10.1039/B922014C
- S. Bagheri, N.M. Julkapli, W.A. Yehye, Catalytic conversion of biodiesel derived raw glycerol to value added products. Renew. Sust. Energ. Rev. 41, 113–127 (2015). https://doi.org/10.1016/j.rser.2014.08.031
- G. Dodekatos, S. Schunemann, H. Tuysuz, Recent advances in thermo-, photo-, and electrocatalytic glycerol oxidation. ACS Catal. 8(7), 6301–6333 (2018). https://doi.org/10.1021/acscatal.8b01317
- L. Luo, W.S. Chen, S.M. Xu, J.R. Yang, M. Li et al., Selective photoelectrocatalytic glycerol oxidation to dihydroxyacetone via enhanced middle hydroxyl adsorption over a Bi2O3-incorporated catalyst. J. Am. Chem. Soc. 144(17), 7720–7730 (2022). https://doi.org/10.1021/jacs.2c00465
- Z.Y. He, J. Hwang, Z.H. Gong, M.Z. Zhou, N. Zhang et al., Promoting biomass electrooxidation via modulating proton and oxygen anion deintercalation in hydroxide. Nat. Commun. 13(1), 3777 (2022). https://doi.org/10.1038/s41467-022-31484-0
- X.T. Han, H.Y. Sheng, C. Yu, T.W. Walker, G.W. Huber et al., Electrocatalytic oxidation of glycerol to formic acid by CuCo2O4 spinel oxide nanostructure catalysts. ACS Catal. 10(12), 6741–6752 (2020). https://doi.org/10.1021/acscatal.0c01498
- Y. Li, X.F. Wei, L.S. Chen, J.L. Shi, M.Y. He, Nickel-molybdenum nitride nanoplate electrocatalysts for concurrent electrolytic hydrogen and formate productions. Nat. Commun. 10, 5335 (2019). https://doi.org/10.1038/s41467-019-13375-z
- E. Kociolek-Balawejder, E. Stanislawska, I. Jacukowicz-Sobala, P. Mazur, Cuprite-doped macroreticular anion exchanger obtained by reduction of the Cu(OH)2 deposit. J. Environ. Chem. Eng. 7(3), 103198 (2019). https://doi.org/10.1016/j.jece.2019.103198
- B. Peng, T.T. Song, T. Wang, L.Y. Chai, W.C. Yang et al., Facile synthesis of Fe3O4@Cu(OH)2 composites and their arsenic adsorption application. Chem. Eng. J. 299(1), 15–22 (2016). https://doi.org/10.1016/j.cej.2016.03.135
- Y.L. Deng, A.D. Handoko, Y.H. Du, S.B. Xi, B.S. Yeo, In situ raman spectroscopy of copper and copper oxide surfaces during electrochemical oxygen evolution reaction: Identification of CuIII oxides as catalytically active species. ACS Catal. 6(4), 2473–2481 (2016). https://doi.org/10.1021/acscatal.6b00205
- J.Y. Sun, H.B. Zhou, P. Song, Y.J. Liu, X.Y. Wang et al., Cuprous sulfide derived CuO nanowires as effective electrocatalyst for oxygen evolution. Appl. Surf. Sci. 547, 149235 (2021). https://doi.org/10.1016/j.apsusc.2021.149235
- L. Meda, G.F. Cerofolini, A decomposition procedure for the determination of copper oxidation states in Cu-zeolites by XPS. Surf. Interface Anal. 36(8), 756–759 (2004). https://doi.org/10.1002/sia.1757
- M.C. Biesinger, L.W.M. Lau, A.R. Gerson, R.S.C. Smart, Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn. Appl. Surf. Sci. 257(3), 887–898 (2010). https://doi.org/10.1016/j.apsusc.2010.07.086
- J.Y. Kim, D. Hong, J.C. Lee, H.G. Kim, S. Lee et al., Quasi-graphitic carbon shell-induced Cu confinement promotes electrocatalytic CO2 reduction toward C2+ products. Nat. Commun. 12(1), 3765 (2021). https://doi.org/10.1016/10.1038/s41467-021-24105-9
- M. Chauhan, K.P. Reddy, C.S. Gopinath, S. Deka, Copper cobalt sulfide nanosheets Realizing a promising electrocatalytic oxygen evolution reaction. ACS Catal. 7(9), 5871–5879 (2017). https://doi.org/10.1021/acscatal.7b01831
- D.T. Chen, L.H. Zhang, J. Du, H.H. Wang, J.Y. Guo et al., A tandem strategy for enhancing electrochemical CO2 reduction activity of single-atom Cu–S1N3 catalysts via integration with Cu nanoclusters. Angew. Chem. Int. Ed. 60(45), 24022–24027 (2021). https://doi.org/10.1002/anie.202109579
- Y. Xu, T.T. Liu, K.K. Shi, H.J. Yu, K. Deng et al., Ru-doping induced lattice strain in hetero-phase Ni2P-Ni12P5 arrays enables simultaneous efficient energy-saving hydrogen generation and formate electrosynthesis. J. Mater. Chem. A 10(38), 20365–20374 (2022). https://doi.org/10.1039/D2TA05151F
- M.R. Rizk, M.G.A. El-Moghny, H.H. Abdelhady, W.M. Ragheb, A.H. Mohamed et al., Tailor-designed bimetallic Co/Ni macroporous electrocatalyst for efficient glycerol oxidation and water electrolysis. Int. J. Hydrogen Energy 47(75), 32145–32157 (2022). https://doi.org/10.1016/j.ijhydene.2022.07.129
- G. Ma, N. Yang, G.F. Zhou, X. Wang, The electrochemical reforming of glycerol at Pd nanocrystals modified ultrathin NiO nanoplates hybrids: An efficient system for glyceraldehyde and hydrogen coproduction. Nano Res. 15(3), 1934–1941 (2022). https://doi.org/10.1007/s12274-021-3829-6
- Z.J. Ke, N. Williams, X.X. Yan, S. Younan, D. He et al., Solar-assisted co-electrolysis of glycerol and water for concurrent production of formic acid and hydrogen. J. Mater. Chem. A 9(35), 19975–19983 (2021). https://doi.org/10.1039/D1TA02654B
- L.S. Oh, M. Park, Y.S. Park, Y. Kim, W. Yoon et al., How to change the reaction chemistry on nonprecious metal oxide nanostructure materials for electrocatalytic oxidation of biomass-derived glycerol to renewable chemicals. Adv. Mater. 35(4), 2203285 (2023). https://doi.org/10.1002/adma.202203285
- Y. Zhu, Q.Z. Qian, Y.X. Chen, X.Y. He, X.W. Shi et al., Biphasic transition metal nitride electrode promotes nucleophile oxidation reaction for practicable hybrid water electrocatalysis. Adv. Funct. Mater. (2023). https://doi.org/10.1002/adfm.202300547
- B.W. Liu, G.X. Wang, X. Feng, L. Dai, Z.H. Wen et al., Energy-saving H2 production from a hybrid acid/alkali electrolyzer assisted by anodic glycerol oxidation. Nanoscale 14, 12841–12848 (2022). https://doi.org/10.1039/D2NR02689A
- J.W. Du, Y. Qin, T. Dou, J.M. Ge, Y.P. Wang et al., Copper nanops dotted on copper sulfide nanosheets for selective electrocatalytic oxidation of glycerol to formate. ACS Appl. Nano Mater. 5(8), 10174–10182 (2022). https://doi.org/10.1021/acsanm.2c00323
- W. Chen, C. Xie, Y.Y. Wang, Y.Q. Zou, C.L. Dong et al., Activity origins and design principles of nickel-based catalysts for nucleophile electrooxidation. Chem 6(11), 2974–2993 (2020). https://doi.org/10.1016/j.chempr.2020.07.022
- X. Liu, Z.Y. Fang, X. Teng, Y.L. Niu, S.Q. Gong et al., Paired formate and H2 productions via efficient bifunctional Ni–Mo nitride nanowire electrocatalysts. J. Energy Chem. 72, 432–441 (2022). https://doi.org/10.1016/j.jechem.2022.04.040
- J.X. Wu, J.L. Li, Y.F. Li, X.Y. Ma, W.Y. Zhang et al., Steering the glycerol electro-reforming selectivity via cation–intermediate interactions. Angew. Chem. Int. Ed. 61(11), 202113362 (2022). https://doi.org/10.1002/anie.202113362
- F. Yang, J.Y. Ye, Q. Yuan, X.T. Yang, Z.X. Xie et al., Ultrasmall Pd–Cu–Pt trimetallic twin Iicosahedrons boost the electrocatalytic performance of glycerol oxidation at the operating temperature of fuel cells. Adv. Funct. Mater. 30(11), 1908235 (2020). https://doi.org/10.1002/adfm.201908235
References
M.L. Yue, H. Lambert, E. Pahon, R. Roche, S. Jemei et al., Hydrogen energy systems: A critical review of technologies, applications, trends and challenges. Renew. Sust. Energy Rev. 146, 111180 (2021). https://doi.org/10.1016/j.rser.2021.111180
N. Heinemann, J. Alcalde, J.M. Miocic, S.J.T. Hangx et al., Enabling large-scale hydrogen storage in porous media the scientific challenges. Energy Environ. Sci. 14(2), 853–864 (2021). https://doi.org/10.1039/D0EE03536J
K.W. Wang, K.F. Yu, S.N. Xu, S.S. Yuan, L.J. Xiang et al., Synergizing lattice strain and electron transfer in TMSs@1T-MoS2 in-plane heterostructures for efficient hydrogen evolution reaction. Appl. Catal. B Environ. 328(5), 122445 (2023). https://doi.org/10.1016/j.apcatb.2023.122445
M.L. Yu, K. Wang, H. Vredenburg, Insights into low-carbon hydrogen production methods: green, blue and aqua hydrogen. Int. J. Hydrogen Energy 46(41), 21261–21273 (2021). https://doi.org/10.1016/j.ijhydene.2021.04.016
S.Y. Tee, K.Y. Win, W.S. Teo, L.D. Koh, S.H. Liu, C.P. Teng, M.Y. Han, Recent progress in energy-driven water splitting. Adv. Sci. 4(5), 1600337 (2017). https://doi.org/10.1002/advs.201600337
S.L. Jiao, X.W. Fu, S.Y. Wang, Y. Zhao, Perfecting electrocatalysts via imperfections: towards the large-scale deployment of water electrolysis technology. Energy Environ. Sci. 14(4), 1722–1770 (2021). https://doi.org/10.1039/D0EE03635H
S. Wang, A. Lu, C.J. Zhong, Hydrogen production from water electrolysis: role of catalysts. Nano Converg. 8(1), 4 (2021). https://doi.org/10.1186/s40580-021-00254-x
J. Wang, S.J. Kim, J.P. Liu, Y. Gao, S. Choi et al., Redirecting dynamic surface restructuring of a layered transition metal oxide catalyst for superior water oxidation. Nat. Catal. 4(3), 212–222 (2021). https://doi.org/10.1038/s41929-021-00578-1
J.J. Song, C. Wei, Z.F. Huang, C.T. Liu, L. Zeng et al., A review on fundamentals for designing oxygen evolution electrocatalysts. Chem. Soc. Rev. 49(7), 2196–2214 (2020). https://doi.org/10.1039/C9CS00607A
R.Y. Fan, J.Y. Xie, H.J. Liu, H.Y. Wang, M.X. Li et al., Directional regulating dynamic equilibrium to continuously update electrocatalytic interface for oxygen evolution reaction. Chem. Eng. J. 431(2), 134040 (2022). https://doi.org/10.1016/j.cej.2021.134040
H.A. Miller, K. Bouzek, J. Hnat, S. Loos, C.I. Bernacker et al., Green hydrogen from anion exchange membrane water electrolysis: a review of recent developments in critical materials and operating conditions. Sustain. Energy Fuels 4(5), 2114–2133 (2020). https://doi.org/10.1039/C9SE01240K
B. You, X. Liu, N. Jiang, Y. Sun, A general strategy for decoupled hydrogenproduction from water splitting by integrating oxidative biomass valorization. J. Am. Chem. Soc. 138(41), 13639–13646 (2016). https://doi.org/10.1021/jacs.6b07127
B. Rausch, M.D. Symes, G. Chisholm, L. Cronin, Decoupled catalytic hydrogen evolution from a molecular metal oxide redox mediator in water splitting. Science 345(6202), 1326–1330 (2014). https://doi.org/10.1126/science.1257443
R.J. Quimet, J.R. Glenn, D.D. Porcellinis, A.R. Motz, M. Carmo et al., The role of electrocatalysts in the development of gigawatt-scale PEM electrolyzers. ACS Catal. 12(10), 6159–6171 (2022). https://doi.org/10.1021/acscatal.2c00570
H.Y. Jin, X.S. Wang, C. Tang, A. Vasileff, L.Q. Li et al., Stable and highly efficient hydrogen evolution from seawater enabled by an unsaturated nickel surface nitride. Adv. Mater. 33(13), 2007508 (2021). https://doi.org/10.1002/adma.202007508
W. Chen, L.T. Xu, X.R. Zhu, Y.C. Huang, W. Zhou et al., Unveiling the electrooxidation of urea: intramolecular coupling of the N–N bond. Angew. Chem. Int. Ed. 60(13), 7297–7307 (2021). https://doi.org/10.1002/anie.202015773
X. Liu, Y. Han, Y. Guo, X.T. Zhao, D. Pan et al., Electrochemical hydrogen generation by oxygen evolution reaction-alternative anodic oxidation reactions. Adv. Energy Sustain. Res. 3(7), 2200005 (2022). https://doi.org/10.1002/aesr.202200005
S.K. Geng, Y. Zheng, S.Q. Li, H. Su, X. Zhao et al., Nickel ferrocyanide as a high-performance urea oxidation electrocatalyst. Nat. Energy 6(9), 904–912 (2021). https://doi.org/10.1038/s41560-021-00899-2
B.J. Zhu, Z.B. Liang, R.Q. Zou, Designing advanced catalysts for energy conversion based on urea oxidation reaction. Small 16(7), 1906133 (2020). https://doi.org/10.1002/smll.201906133
P. Zhou, X.S. Lv, S.S. Tao, J.C. Wu, H.F. Wang et al., Heterogeneous-interface-enhanced adsorption of organic and hydroxyl for biomass electrooxidation. Adv. Mater. 34(42), 2204089 (2022). https://doi.org/10.1002/adma.202204089
T.H. Wang, Z.F. Huang, T.Y. Liu, L. Tao, J. Tian et al., Transforming electrocatalytic biomass upgrading and hydrogen production from electricity input to electricity output. Angew. Chem. Int. Ed. 61(12), 2115636 (2022). https://doi.org/10.1002/anie.202115636
X.D. Li, P. Jia, T.F. Wang, Furfural: a promising platform compound for sustainable production of C4 and C5 Chemicals. ACS Catal. 6, 7621–7640 (2016). https://doi.org/10.1021/acscatal.6b01838
C.A.G. Quispe, C.J.R. Coronado, J.A. Carvalho, Glycerol: production, consumption, prices, characterization and new trends in combustion. Renew. Sust. Energ. Rev. 27(11), 475–493 (2013). https://doi.org/10.1021/acscatal.6b01838
J.J. Bozell, G.R. Petersen, Technology development for the production of biobased products from biorefinery carbohydrates-the US Department of Energy’s “Top 10” revisited. Green Chem. 12(4), 539–554 (2010). https://doi.org/10.1039/B922014C
S. Bagheri, N.M. Julkapli, W.A. Yehye, Catalytic conversion of biodiesel derived raw glycerol to value added products. Renew. Sust. Energ. Rev. 41, 113–127 (2015). https://doi.org/10.1016/j.rser.2014.08.031
G. Dodekatos, S. Schunemann, H. Tuysuz, Recent advances in thermo-, photo-, and electrocatalytic glycerol oxidation. ACS Catal. 8(7), 6301–6333 (2018). https://doi.org/10.1021/acscatal.8b01317
L. Luo, W.S. Chen, S.M. Xu, J.R. Yang, M. Li et al., Selective photoelectrocatalytic glycerol oxidation to dihydroxyacetone via enhanced middle hydroxyl adsorption over a Bi2O3-incorporated catalyst. J. Am. Chem. Soc. 144(17), 7720–7730 (2022). https://doi.org/10.1021/jacs.2c00465
Z.Y. He, J. Hwang, Z.H. Gong, M.Z. Zhou, N. Zhang et al., Promoting biomass electrooxidation via modulating proton and oxygen anion deintercalation in hydroxide. Nat. Commun. 13(1), 3777 (2022). https://doi.org/10.1038/s41467-022-31484-0
X.T. Han, H.Y. Sheng, C. Yu, T.W. Walker, G.W. Huber et al., Electrocatalytic oxidation of glycerol to formic acid by CuCo2O4 spinel oxide nanostructure catalysts. ACS Catal. 10(12), 6741–6752 (2020). https://doi.org/10.1021/acscatal.0c01498
Y. Li, X.F. Wei, L.S. Chen, J.L. Shi, M.Y. He, Nickel-molybdenum nitride nanoplate electrocatalysts for concurrent electrolytic hydrogen and formate productions. Nat. Commun. 10, 5335 (2019). https://doi.org/10.1038/s41467-019-13375-z
E. Kociolek-Balawejder, E. Stanislawska, I. Jacukowicz-Sobala, P. Mazur, Cuprite-doped macroreticular anion exchanger obtained by reduction of the Cu(OH)2 deposit. J. Environ. Chem. Eng. 7(3), 103198 (2019). https://doi.org/10.1016/j.jece.2019.103198
B. Peng, T.T. Song, T. Wang, L.Y. Chai, W.C. Yang et al., Facile synthesis of Fe3O4@Cu(OH)2 composites and their arsenic adsorption application. Chem. Eng. J. 299(1), 15–22 (2016). https://doi.org/10.1016/j.cej.2016.03.135
Y.L. Deng, A.D. Handoko, Y.H. Du, S.B. Xi, B.S. Yeo, In situ raman spectroscopy of copper and copper oxide surfaces during electrochemical oxygen evolution reaction: Identification of CuIII oxides as catalytically active species. ACS Catal. 6(4), 2473–2481 (2016). https://doi.org/10.1021/acscatal.6b00205
J.Y. Sun, H.B. Zhou, P. Song, Y.J. Liu, X.Y. Wang et al., Cuprous sulfide derived CuO nanowires as effective electrocatalyst for oxygen evolution. Appl. Surf. Sci. 547, 149235 (2021). https://doi.org/10.1016/j.apsusc.2021.149235
L. Meda, G.F. Cerofolini, A decomposition procedure for the determination of copper oxidation states in Cu-zeolites by XPS. Surf. Interface Anal. 36(8), 756–759 (2004). https://doi.org/10.1002/sia.1757
M.C. Biesinger, L.W.M. Lau, A.R. Gerson, R.S.C. Smart, Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn. Appl. Surf. Sci. 257(3), 887–898 (2010). https://doi.org/10.1016/j.apsusc.2010.07.086
J.Y. Kim, D. Hong, J.C. Lee, H.G. Kim, S. Lee et al., Quasi-graphitic carbon shell-induced Cu confinement promotes electrocatalytic CO2 reduction toward C2+ products. Nat. Commun. 12(1), 3765 (2021). https://doi.org/10.1016/10.1038/s41467-021-24105-9
M. Chauhan, K.P. Reddy, C.S. Gopinath, S. Deka, Copper cobalt sulfide nanosheets Realizing a promising electrocatalytic oxygen evolution reaction. ACS Catal. 7(9), 5871–5879 (2017). https://doi.org/10.1021/acscatal.7b01831
D.T. Chen, L.H. Zhang, J. Du, H.H. Wang, J.Y. Guo et al., A tandem strategy for enhancing electrochemical CO2 reduction activity of single-atom Cu–S1N3 catalysts via integration with Cu nanoclusters. Angew. Chem. Int. Ed. 60(45), 24022–24027 (2021). https://doi.org/10.1002/anie.202109579
Y. Xu, T.T. Liu, K.K. Shi, H.J. Yu, K. Deng et al., Ru-doping induced lattice strain in hetero-phase Ni2P-Ni12P5 arrays enables simultaneous efficient energy-saving hydrogen generation and formate electrosynthesis. J. Mater. Chem. A 10(38), 20365–20374 (2022). https://doi.org/10.1039/D2TA05151F
M.R. Rizk, M.G.A. El-Moghny, H.H. Abdelhady, W.M. Ragheb, A.H. Mohamed et al., Tailor-designed bimetallic Co/Ni macroporous electrocatalyst for efficient glycerol oxidation and water electrolysis. Int. J. Hydrogen Energy 47(75), 32145–32157 (2022). https://doi.org/10.1016/j.ijhydene.2022.07.129
G. Ma, N. Yang, G.F. Zhou, X. Wang, The electrochemical reforming of glycerol at Pd nanocrystals modified ultrathin NiO nanoplates hybrids: An efficient system for glyceraldehyde and hydrogen coproduction. Nano Res. 15(3), 1934–1941 (2022). https://doi.org/10.1007/s12274-021-3829-6
Z.J. Ke, N. Williams, X.X. Yan, S. Younan, D. He et al., Solar-assisted co-electrolysis of glycerol and water for concurrent production of formic acid and hydrogen. J. Mater. Chem. A 9(35), 19975–19983 (2021). https://doi.org/10.1039/D1TA02654B
L.S. Oh, M. Park, Y.S. Park, Y. Kim, W. Yoon et al., How to change the reaction chemistry on nonprecious metal oxide nanostructure materials for electrocatalytic oxidation of biomass-derived glycerol to renewable chemicals. Adv. Mater. 35(4), 2203285 (2023). https://doi.org/10.1002/adma.202203285
Y. Zhu, Q.Z. Qian, Y.X. Chen, X.Y. He, X.W. Shi et al., Biphasic transition metal nitride electrode promotes nucleophile oxidation reaction for practicable hybrid water electrocatalysis. Adv. Funct. Mater. (2023). https://doi.org/10.1002/adfm.202300547
B.W. Liu, G.X. Wang, X. Feng, L. Dai, Z.H. Wen et al., Energy-saving H2 production from a hybrid acid/alkali electrolyzer assisted by anodic glycerol oxidation. Nanoscale 14, 12841–12848 (2022). https://doi.org/10.1039/D2NR02689A
J.W. Du, Y. Qin, T. Dou, J.M. Ge, Y.P. Wang et al., Copper nanops dotted on copper sulfide nanosheets for selective electrocatalytic oxidation of glycerol to formate. ACS Appl. Nano Mater. 5(8), 10174–10182 (2022). https://doi.org/10.1021/acsanm.2c00323
W. Chen, C. Xie, Y.Y. Wang, Y.Q. Zou, C.L. Dong et al., Activity origins and design principles of nickel-based catalysts for nucleophile electrooxidation. Chem 6(11), 2974–2993 (2020). https://doi.org/10.1016/j.chempr.2020.07.022
X. Liu, Z.Y. Fang, X. Teng, Y.L. Niu, S.Q. Gong et al., Paired formate and H2 productions via efficient bifunctional Ni–Mo nitride nanowire electrocatalysts. J. Energy Chem. 72, 432–441 (2022). https://doi.org/10.1016/j.jechem.2022.04.040
J.X. Wu, J.L. Li, Y.F. Li, X.Y. Ma, W.Y. Zhang et al., Steering the glycerol electro-reforming selectivity via cation–intermediate interactions. Angew. Chem. Int. Ed. 61(11), 202113362 (2022). https://doi.org/10.1002/anie.202113362
F. Yang, J.Y. Ye, Q. Yuan, X.T. Yang, Z.X. Xie et al., Ultrasmall Pd–Cu–Pt trimetallic twin Iicosahedrons boost the electrocatalytic performance of glycerol oxidation at the operating temperature of fuel cells. Adv. Funct. Mater. 30(11), 1908235 (2020). https://doi.org/10.1002/adfm.201908235