Facile Synthesis of FePS3 Nanosheets@MXene Composite as a High-Performance Anode Material for Sodium Storage
Corresponding Author: Shengjie Peng
Nano-Micro Letters,
Vol. 12 (2020), Article Number: 54
Abstract
Searching for advanced anode materials with excellent electrochemical properties in sodium-ion battery is essential and imperative for next-generation energy storage system to solve the energy shortage problem. In this work, two-dimensional (2D) ultrathin FePS3 nanosheets, a typical ternary metal phosphosulfide, are first prepared by ultrasonic exfoliation. The novel 2D/2D heterojunction of FePS3 nanosheets@MXene composite is then successfully synthesized by in situ mixing ultrathin MXene nanosheets with FePS3 nanosheets. The resultant FePS3 nanosheets@MXene hybrids can increase the electronic conductivity and specific surface area, assuring excellent surface and interfacial charge transfer abilities. Furthermore, the unique heterojunction endows FePS3 nanosheets@MXene composite to promote the diffusion of Na+ and alleviate the drastic change in volume in the cyclic process, enhancing the sodium storage capability. Consequently, the few-layered FePS3 nanosheets uniformly coated by ultrathin MXene provide an exceptional reversible capacity of 676.1 mAh g−1 at the current of 100 mA g−1 after 90 cycles, which is equivalent to around 90.6% of the second-cycle capacity (746.4 mAh g−1). This work provides an original protocol for constructing 2D/2D material and demonstrates the FePS3@MXene composite as a potential anode material with excellent property for sodium-ion batteries.
Highlights:
1 Few-layered FePS3 nanosheets and ultrathin MXene are obtained by liquid ultrasonic exfoliation.
2 The novel 2D/2D heterojunction of FePS3 nanosheets@MXene composite is synthesized by in situ mixing MXene ultrathin nanosheets with FePS3 nanosheets.
3 Such unique nanostructure can promote rapid reaction kinetics, prevents electrode pulverization and agglomeration for the volume expansion, and provides the pseudocapacitive contribution.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- V.S. Arunachalam, E.L. Fleischer, Harnessing materials for energy—preface. MRS Bull. 33(4), 261–263 (2008). https://doi.org/10.1557/mrs2008.60
- Z.G. Yang, J.L. Zhang, M.C.W. Kintner-Meyer, X.C. Lu, D.W. Choi, J.P. Lemmon, J. Liu, Electrochemical energy storage for green grid. Chem. Rev. 111(5), 3577–3613 (2011). https://doi.org/10.1021/cr100290v
- M. Armand, J.M. Tarascon, Building better batteries. Nature 451(7179), 652–657 (2008). https://doi.org/10.1038/451652a
- B. Dunn, H. Kamath, J.M. Tarascon, Electrical energy storage for the grid: a battery of choices. Science 334(6058), 928–935 (2011). https://doi.org/10.1126/science.1212741
- J.M. Tarascon, Is lithium the new gold? Nat. Chem. 2(6), 510–510 (2010). https://doi.org/10.1038/nchem.680
- V. Palomares, P. Serras, I. Villaluenga, K.B. Hueso, J. Carretero-Gonzalez, T. Rojo, Na-ion batteries, recent advances and present challenges to become low cost energy storage systems. Energy Environ. Sci. 5(3), 5884–5901 (2012). https://doi.org/10.1039/c2ee02781j
- M.D. Slater, D. Kim, E. Lee, C.S. Johnson, Sodium-ion batteries. Adv. Funct. Mater. 23(8), 947–958 (2013). https://doi.org/10.1002/adfm.201200691
- X.J. Pu, H.M. Wang, D. Zhao, H.X. Yang, X.P. Ai et al., Recent progress in rechargeable sodium-ion batteries: toward high-power applications. Small 15(32), 1805427 (2019). https://doi.org/10.1002/smll.201805427
- P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J.M. Tarascon, Nano-sized transition-metaloxides as negative-electrode materials for lithium-ion batteries. Nature 407(6803), 496–499 (2000). https://doi.org/10.1038/35035045
- G.R. Yang, P.R. Ilango, S.L. Wang, M.S. Nasir, L.L. Li et al., Carbon-based alloy-type composite anode materials toward sodium-ion batteries. Small 15(22), 1900628 (2019). https://doi.org/10.1002/smll.201900628
- H.Q. Liu, K.Z. Cao, X.H. Xu, L.F. Jiao, Y.J. Wang, H.T. Yuan, Ultrasmall TiO2 nanoparticles in situ growth on graphene hybrid as superior anode material for sodium/lithium ion batteries. ACS Appl. Mater. Interfaces 7(21), 11239–11245 (2015). https://doi.org/10.1021/acsami.5b02724
- S.A. Liu, Z.Y. Cai, J. Zhou, A.Q. Pan, S.Q. Liang, Nitrogen-doped TiO2 nanospheres for advanced sodium-ion battery and sodium-ion capacitor applications. J. Mater. Chem. A 4(47), 18278–18283 (2016). https://doi.org/10.1039/c6ta08472a
- B.F. Wang, F. Zhao, G.D. Du, S. Porter, Y. Liu et al., Boron-doped anatase TiO2 as a high-performance anode material for sodium-ion batteries. ACS Appl. Mater. Interfaces 8(25), 16009–16015 (2016). https://doi.org/10.1021/acsami.6b03270
- Y. Zhang, C.W. Foster, C.E. Banks, L.D. Shao, H.S. Hou et al., Graphene-rich wrapped petal-like rutile TiO2 tuned by carbon dots for high-performance sodium storage. Adv. Mater. 28(42), 9391–9399 (2016). https://doi.org/10.1002/adma.201601621
- L. Wang, G.R. Yang, J.N. Wang, S.L. Wang, C.Y. Wang, S.J. Peng, W. Yan, S. Ramakrishna, In situ fabrication of branched TiO2/C nanofibers as binder-free and free-standing anodes for high-performance sodium-ion batteries. Small 15(30), 1901584 (2019). https://doi.org/10.1002/smll.201901584
- X. Li, X.C. Hu, L. Zhou, R. Wen, X. Xu et al., A S/N-doped high-capacity mesoporous carbon anode for Na-ion batteries. J. Mater. Chem. A 7(19), 11976–11984 (2019). https://doi.org/10.1039/C9TA01615E
- F.X. Wu, C.L. Zhao, S.Q. Chen, Y.X. Lu, Y.L. Hou, Y.S. Hu, J. Maier, Y. Yu, Multi-electron reaction materials for sodium-based batteries. Mater. Today 21(9), 960–973 (2018). https://doi.org/10.1016/j.mattod.2018.03.004
- J.H. Kim, Y.C. Kang, Yolk–shell-structured (Fe0.5Ni0.5)9S8 solid-solution powders: Synthesis and application as anode materials for Na-ion batteries. Nano Res. 10(9), 3178–3188 (2017). https://doi.org/10.1007/s12274-017-1535-1
- Y. Liu, F. Wang, L.-Z. Fan, Self-standing na-storage anode of Fe2O3 nanodots encapsulated in porous n-doped carbon nanofibers with ultra-high cyclic stability. Nano Res. 11(8), 4026–4037 (2018). https://doi.org/10.1007/s12274-018-1985-0
- D. Zhou, L.Z. Fan, Co2p nanoparticles encapsulated in 3D porous n-doped carbon nanosheet networks as an anode for high-performance sodium-ion batteries. J. Mater. Chem. A 6(5), 2139–2147 (2018). https://doi.org/10.1039/c7ta09609g
- H. Yang, M. Wang, X.W. Liu, Y. Jiang, Y. Yu, MoS2 embedded in 3D interconnected carbon nanofiber film as a free-standing anode for sodium-ion batteries. Nano Res. 11(7), 3844–3853 (2018). https://doi.org/10.1007/s12274-017-1958-8
- D. Yang, W.H. Chen, X.X. Zhang, L.W. Mi, C.T. Liu et al., Facile and scalable synthesis of low-cost FeS@c as long-cycle anodes for sodium-ion batteries. J. Mater. Chem. A 7(34), 19709–19718 (2019). https://doi.org/10.1039/C9TA05664E
- Q.B. Xia, W.J. Li, Z.C. Miao, S.L. Chou, H.K. Liu, Phosphorus and phosphide nanomaterials for sodium-ion batteries. Nano Res. 10(12), 4055–4081 (2017). https://doi.org/10.1007/s12274-017-1671-7
- D. Mukherjee, P.M. Austeria, S. Sampath, Two-dimensional, few-layer phosphochalcogenide, FePS3: a new catalyst for electrochemical hydrogen evolution over wide ph range. ACS Energy Lett. 1(2), 367–372 (2016). https://doi.org/10.1021/acsenergylett.6b00184
- W. Zhu, W. Gan, Z. Muhammad, C. Wang, C. Wu et al., Exfoliation of ultrathin FePS3 layers as a promising electrocatalyst for the oxygen evolution reaction. Chem. Commun. 54(35), 4481–4484 (2018). https://doi.org/10.1039/c8cc01076e
- B. Song, K. Li, Y. Yin, T. Wu, L. Dang et al., Tuning mixed nickel iron phosphosulfide nanosheet electrocatalysts for enhanced hydrogen and oxygen evolution. ACS Catal. 7(12), 8549–8557 (2017). https://doi.org/10.1021/acscatal.7b02575
- Z. Cheng, T.A. Shifa, F. Wang, Y. Gao, P. He et al., High-yield production of monolayer FePS3 quantum sheets via chemical exfoliation for efficient photocatalytic hydrogen evolution. Adv. Mater. 30(26), e1707433 (2018). https://doi.org/10.1002/adma.201707433
- Z.F. Dai, H.B. Geng, J. Wang, Y.B. Luo, B. Li et al., Hexagonal-phase cobalt monophosphosulfide for highly efficient overall water splitting. ACS Nano 11(11), 11031–11040 (2017). https://doi.org/10.1021/acsnano.7b05050
- Q.H. Liang, L.X. Zhong, C.F. Du, Y.B. Luo, Y. Zheng, S.Z. Li, Q.Y. Yan, Achieving highly efficient electrocatalytic oxygen evolution with ultrathin 2D Fe-doped nickel thiophosphate nanosheets. Nano Energy 47, 257–265 (2018). https://doi.org/10.1016/j.nanoen.2018.02.048
- R. Dangol, Z.F. Dai, A. Chaturvedi, Y. Zheng, Y. Zhang et al., Few-layer NiPS3 nanosheets as bifunctional materials for li-ion storage and oxygen evolution reaction. Nanoscale 10(10), 4890–4896 (2018). https://doi.org/10.1039/C7NR08745D
- C.L. Tan, X.H. Cao, X.J. Wu, Q.Y. He, J. Yang et al., Recent advances in ultrathin two-dimensional nanomaterials. Chem. Rev. 117(9), 6225–6331 (2017). https://doi.org/10.1021/acs.chemrev.6b00558
- K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004). https://doi.org/10.1126/science.1102896
- W.J. Ong, L.L. Tan, Y.H. Ng, S.T. Yong, S.P. Chai, Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: are we a step closer to achieving sustainability? Chem. Rev. 116(12), 7159–7329 (2016). https://doi.org/10.1021/acs.chemrev.6b00075
- Q.H. Weng, X.B. Wang, X. Wang, Y. Bando, D. Golberg, Functionalized hexagonal boron nitride nanomaterials: emerging properties and applications. Chem. Soc. Rev. 45(14), 3989–4012 (2016). https://doi.org/10.1039/c5cs00869g
- X. Huang, Z.Y. Zeng, H. Zhang, Metal dichalcogenide nanosheets: preparation, properties and applications. Chem. Soc. Rev. 42(5), 1934–1946 (2013). https://doi.org/10.1039/C2CS35387C
- Y. Zhang, W.P. Sun, Z.Z. Luo, Y. Zheng, Z.W. Yu et al., Functionalized few-layer black phosphorus with super-wettability towards enhanced reaction kinetics for rechargeable batteries. Nano Energy 40, 576–586 (2017). https://doi.org/10.1016/j.nanoen.2017.09.002
- Z.D. Huang, H.S. Hou, Y. Zhang, C. Wang, X.Q. Qiu, X.B. Ji, Layer-tunable phosphorene modulated by the cation insertion rate as a sodium-storage anode. Adv. Mater. 29(34), 1702372 (2017). https://doi.org/10.1002/adma.201702372
- M. Naguib, V.N. Mochalin, M.W. Barsoum, Y. Gogotsi, 25th anniversary article: Mxenes: a new family of two-dimensional materials. Adv. Mater. 26(7), 992–1005 (2014). https://doi.org/10.1002/adma.201304138
- X. Zhang, Z.H. Zhang, Z. Zhou, MXene-based materials for electrochemical energy storage. J. Energy Chem. 27(1), 73–85 (2018). https://doi.org/10.1016/j.jechem.2017.08.004
- X. Xie, C. Chen, N. Zhang, Z.-R. Tang, J. Jiang, Y.-J. Xu, Microstructure and surface control of MXene films for water purification. Nat. Sustain. 2(9), 856–862 (2019). https://doi.org/10.1038/s41893-019-0373-4
- X.Q. Xie, N. Zhang, Z.R. Tang, M. Anpo, Y.J. Xu, Ti3C2Tx MXene as a Janus cocatalyst for concurrent promoted photoactivity and inhibited photocorrosion. Appl. Catal. B 237, 43–49 (2018). https://doi.org/10.1016/j.apcatb.2018.05.070
- Y.F. Sun, S. Gao, Y. Xie, Atomically-thick two-dimensional crystals: electronic structure regulation and energy device construction. Chem. Soc. Rev. 43(2), 530–546 (2014). https://doi.org/10.1039/C3CS60231A
- D.B. Xiong, X.F. Li, Z.M. Bai, S.G. Lu, Recent advances in layered Ti3C2Tx MXene for electrochemical energy storage. Small 14(17), 1703419 (2018). https://doi.org/10.1002/smll.201703419
- H. Yu, Y.H. Wang, Y. Jing, J.M. Ma, C.F. Du, Q.Y. Yan, Surface modified MXene-based nanocomposites for electrochemical energy conversion and storage. Small 15(25), 1970133 (2019). https://doi.org/10.1002/smll.201970133
- C. Chen, X.Q. Xie, B. Anasori, A. Sarycheva, T. Makaryan et al., MoS2-on-MXene heterostructures as highly reversible anode materials for lithium-ion batteries. Angew. Chem. Int. Ed. 57(7), 1846–1850 (2018). https://doi.org/10.1002/anie.201710616
- K.Z. Du, X.Z. Wang, Y. Liu, P. Hu, M.I. Utama et al., Weak van der Waals stacking, wide-range band gap, and Raman study on ultrathin layers of metal phosphorus trichalcogenides. ACS Nano 10(2), 1738–1743 (2016). https://doi.org/10.1021/acsnano.5b05927
- M. Ghidiu, M.R. Lukatskaya, M.Q. Zhao, Y. Gogotsi, M.W. Barsoum, Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance. Nature 516(7529), 78–81 (2014). https://doi.org/10.1038/nature13970
- C.F. Du, K.N. Dinh, Q.H. Liang, Y. Zheng, Y.B. Luo, J.L. Zhang, Q.Y. Yan, Self-assemble and in situ formation of Ni1−xFexPS3 nanomosaic-decorated MXene hybrids for overall water splitting. Adv. Energy Mater. 8(26), 1801127 (2018). https://doi.org/10.1002/aenm.201801127
- J.M. Luo, J.H. Zheng, J.W. Nai, C.B. Jin, H.D. Yuan et al., Atomic sulfur covalently engineered interlayers of Ti3C2 MXene for ultra-fast sodium-ion storage by enhanced pseudocapacitance. Adv. Funct. Mater. 29(10), 1808107 (2019). https://doi.org/10.1002/adfm.201808107
- Q. Liang, Y. Zheng, C. Du, Y. Luo, J. Zhang, B. Li, Y. Zong, Q. Yan, General and scalable solid-state synthesis of 2D MpS3 (M = Fe Co, Ni) nanosheets and tuning their Li/Na storage properties. Small Methods 1(12), 1700304 (2017). https://doi.org/10.1002/smtd.201700304
- C.-Y. Fan, X.-H. Zhang, Y.-H. Shi, H.-Y. Xu, J.-P. Zhang, X.-L. Wu, 2D few-layer iron phosphosulfide: a self-buffer heterophase structure induced by irreversible breakage of p–s bonds for high-performance lithium/sodium storage. J. Mater Chem. A 7(4), 1529–1538 (2019). https://doi.org/10.1039/c8ta09057b
- G.Q. Li, D.L. Jiang, H. Wang, X.Z. Lan, H.H. Zhong, Y. Jiang, Glucose-assisted synthesis of Na3V2(PO4)(3)/C composite as an electrode material for high-performance sodium-ion batteries. J. Power Sources 265, 325–334 (2014). https://doi.org/10.1016/j.jpowsour.2014.04.054
References
V.S. Arunachalam, E.L. Fleischer, Harnessing materials for energy—preface. MRS Bull. 33(4), 261–263 (2008). https://doi.org/10.1557/mrs2008.60
Z.G. Yang, J.L. Zhang, M.C.W. Kintner-Meyer, X.C. Lu, D.W. Choi, J.P. Lemmon, J. Liu, Electrochemical energy storage for green grid. Chem. Rev. 111(5), 3577–3613 (2011). https://doi.org/10.1021/cr100290v
M. Armand, J.M. Tarascon, Building better batteries. Nature 451(7179), 652–657 (2008). https://doi.org/10.1038/451652a
B. Dunn, H. Kamath, J.M. Tarascon, Electrical energy storage for the grid: a battery of choices. Science 334(6058), 928–935 (2011). https://doi.org/10.1126/science.1212741
J.M. Tarascon, Is lithium the new gold? Nat. Chem. 2(6), 510–510 (2010). https://doi.org/10.1038/nchem.680
V. Palomares, P. Serras, I. Villaluenga, K.B. Hueso, J. Carretero-Gonzalez, T. Rojo, Na-ion batteries, recent advances and present challenges to become low cost energy storage systems. Energy Environ. Sci. 5(3), 5884–5901 (2012). https://doi.org/10.1039/c2ee02781j
M.D. Slater, D. Kim, E. Lee, C.S. Johnson, Sodium-ion batteries. Adv. Funct. Mater. 23(8), 947–958 (2013). https://doi.org/10.1002/adfm.201200691
X.J. Pu, H.M. Wang, D. Zhao, H.X. Yang, X.P. Ai et al., Recent progress in rechargeable sodium-ion batteries: toward high-power applications. Small 15(32), 1805427 (2019). https://doi.org/10.1002/smll.201805427
P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J.M. Tarascon, Nano-sized transition-metaloxides as negative-electrode materials for lithium-ion batteries. Nature 407(6803), 496–499 (2000). https://doi.org/10.1038/35035045
G.R. Yang, P.R. Ilango, S.L. Wang, M.S. Nasir, L.L. Li et al., Carbon-based alloy-type composite anode materials toward sodium-ion batteries. Small 15(22), 1900628 (2019). https://doi.org/10.1002/smll.201900628
H.Q. Liu, K.Z. Cao, X.H. Xu, L.F. Jiao, Y.J. Wang, H.T. Yuan, Ultrasmall TiO2 nanoparticles in situ growth on graphene hybrid as superior anode material for sodium/lithium ion batteries. ACS Appl. Mater. Interfaces 7(21), 11239–11245 (2015). https://doi.org/10.1021/acsami.5b02724
S.A. Liu, Z.Y. Cai, J. Zhou, A.Q. Pan, S.Q. Liang, Nitrogen-doped TiO2 nanospheres for advanced sodium-ion battery and sodium-ion capacitor applications. J. Mater. Chem. A 4(47), 18278–18283 (2016). https://doi.org/10.1039/c6ta08472a
B.F. Wang, F. Zhao, G.D. Du, S. Porter, Y. Liu et al., Boron-doped anatase TiO2 as a high-performance anode material for sodium-ion batteries. ACS Appl. Mater. Interfaces 8(25), 16009–16015 (2016). https://doi.org/10.1021/acsami.6b03270
Y. Zhang, C.W. Foster, C.E. Banks, L.D. Shao, H.S. Hou et al., Graphene-rich wrapped petal-like rutile TiO2 tuned by carbon dots for high-performance sodium storage. Adv. Mater. 28(42), 9391–9399 (2016). https://doi.org/10.1002/adma.201601621
L. Wang, G.R. Yang, J.N. Wang, S.L. Wang, C.Y. Wang, S.J. Peng, W. Yan, S. Ramakrishna, In situ fabrication of branched TiO2/C nanofibers as binder-free and free-standing anodes for high-performance sodium-ion batteries. Small 15(30), 1901584 (2019). https://doi.org/10.1002/smll.201901584
X. Li, X.C. Hu, L. Zhou, R. Wen, X. Xu et al., A S/N-doped high-capacity mesoporous carbon anode for Na-ion batteries. J. Mater. Chem. A 7(19), 11976–11984 (2019). https://doi.org/10.1039/C9TA01615E
F.X. Wu, C.L. Zhao, S.Q. Chen, Y.X. Lu, Y.L. Hou, Y.S. Hu, J. Maier, Y. Yu, Multi-electron reaction materials for sodium-based batteries. Mater. Today 21(9), 960–973 (2018). https://doi.org/10.1016/j.mattod.2018.03.004
J.H. Kim, Y.C. Kang, Yolk–shell-structured (Fe0.5Ni0.5)9S8 solid-solution powders: Synthesis and application as anode materials for Na-ion batteries. Nano Res. 10(9), 3178–3188 (2017). https://doi.org/10.1007/s12274-017-1535-1
Y. Liu, F. Wang, L.-Z. Fan, Self-standing na-storage anode of Fe2O3 nanodots encapsulated in porous n-doped carbon nanofibers with ultra-high cyclic stability. Nano Res. 11(8), 4026–4037 (2018). https://doi.org/10.1007/s12274-018-1985-0
D. Zhou, L.Z. Fan, Co2p nanoparticles encapsulated in 3D porous n-doped carbon nanosheet networks as an anode for high-performance sodium-ion batteries. J. Mater. Chem. A 6(5), 2139–2147 (2018). https://doi.org/10.1039/c7ta09609g
H. Yang, M. Wang, X.W. Liu, Y. Jiang, Y. Yu, MoS2 embedded in 3D interconnected carbon nanofiber film as a free-standing anode for sodium-ion batteries. Nano Res. 11(7), 3844–3853 (2018). https://doi.org/10.1007/s12274-017-1958-8
D. Yang, W.H. Chen, X.X. Zhang, L.W. Mi, C.T. Liu et al., Facile and scalable synthesis of low-cost FeS@c as long-cycle anodes for sodium-ion batteries. J. Mater. Chem. A 7(34), 19709–19718 (2019). https://doi.org/10.1039/C9TA05664E
Q.B. Xia, W.J. Li, Z.C. Miao, S.L. Chou, H.K. Liu, Phosphorus and phosphide nanomaterials for sodium-ion batteries. Nano Res. 10(12), 4055–4081 (2017). https://doi.org/10.1007/s12274-017-1671-7
D. Mukherjee, P.M. Austeria, S. Sampath, Two-dimensional, few-layer phosphochalcogenide, FePS3: a new catalyst for electrochemical hydrogen evolution over wide ph range. ACS Energy Lett. 1(2), 367–372 (2016). https://doi.org/10.1021/acsenergylett.6b00184
W. Zhu, W. Gan, Z. Muhammad, C. Wang, C. Wu et al., Exfoliation of ultrathin FePS3 layers as a promising electrocatalyst for the oxygen evolution reaction. Chem. Commun. 54(35), 4481–4484 (2018). https://doi.org/10.1039/c8cc01076e
B. Song, K. Li, Y. Yin, T. Wu, L. Dang et al., Tuning mixed nickel iron phosphosulfide nanosheet electrocatalysts for enhanced hydrogen and oxygen evolution. ACS Catal. 7(12), 8549–8557 (2017). https://doi.org/10.1021/acscatal.7b02575
Z. Cheng, T.A. Shifa, F. Wang, Y. Gao, P. He et al., High-yield production of monolayer FePS3 quantum sheets via chemical exfoliation for efficient photocatalytic hydrogen evolution. Adv. Mater. 30(26), e1707433 (2018). https://doi.org/10.1002/adma.201707433
Z.F. Dai, H.B. Geng, J. Wang, Y.B. Luo, B. Li et al., Hexagonal-phase cobalt monophosphosulfide for highly efficient overall water splitting. ACS Nano 11(11), 11031–11040 (2017). https://doi.org/10.1021/acsnano.7b05050
Q.H. Liang, L.X. Zhong, C.F. Du, Y.B. Luo, Y. Zheng, S.Z. Li, Q.Y. Yan, Achieving highly efficient electrocatalytic oxygen evolution with ultrathin 2D Fe-doped nickel thiophosphate nanosheets. Nano Energy 47, 257–265 (2018). https://doi.org/10.1016/j.nanoen.2018.02.048
R. Dangol, Z.F. Dai, A. Chaturvedi, Y. Zheng, Y. Zhang et al., Few-layer NiPS3 nanosheets as bifunctional materials for li-ion storage and oxygen evolution reaction. Nanoscale 10(10), 4890–4896 (2018). https://doi.org/10.1039/C7NR08745D
C.L. Tan, X.H. Cao, X.J. Wu, Q.Y. He, J. Yang et al., Recent advances in ultrathin two-dimensional nanomaterials. Chem. Rev. 117(9), 6225–6331 (2017). https://doi.org/10.1021/acs.chemrev.6b00558
K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004). https://doi.org/10.1126/science.1102896
W.J. Ong, L.L. Tan, Y.H. Ng, S.T. Yong, S.P. Chai, Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: are we a step closer to achieving sustainability? Chem. Rev. 116(12), 7159–7329 (2016). https://doi.org/10.1021/acs.chemrev.6b00075
Q.H. Weng, X.B. Wang, X. Wang, Y. Bando, D. Golberg, Functionalized hexagonal boron nitride nanomaterials: emerging properties and applications. Chem. Soc. Rev. 45(14), 3989–4012 (2016). https://doi.org/10.1039/c5cs00869g
X. Huang, Z.Y. Zeng, H. Zhang, Metal dichalcogenide nanosheets: preparation, properties and applications. Chem. Soc. Rev. 42(5), 1934–1946 (2013). https://doi.org/10.1039/C2CS35387C
Y. Zhang, W.P. Sun, Z.Z. Luo, Y. Zheng, Z.W. Yu et al., Functionalized few-layer black phosphorus with super-wettability towards enhanced reaction kinetics for rechargeable batteries. Nano Energy 40, 576–586 (2017). https://doi.org/10.1016/j.nanoen.2017.09.002
Z.D. Huang, H.S. Hou, Y. Zhang, C. Wang, X.Q. Qiu, X.B. Ji, Layer-tunable phosphorene modulated by the cation insertion rate as a sodium-storage anode. Adv. Mater. 29(34), 1702372 (2017). https://doi.org/10.1002/adma.201702372
M. Naguib, V.N. Mochalin, M.W. Barsoum, Y. Gogotsi, 25th anniversary article: Mxenes: a new family of two-dimensional materials. Adv. Mater. 26(7), 992–1005 (2014). https://doi.org/10.1002/adma.201304138
X. Zhang, Z.H. Zhang, Z. Zhou, MXene-based materials for electrochemical energy storage. J. Energy Chem. 27(1), 73–85 (2018). https://doi.org/10.1016/j.jechem.2017.08.004
X. Xie, C. Chen, N. Zhang, Z.-R. Tang, J. Jiang, Y.-J. Xu, Microstructure and surface control of MXene films for water purification. Nat. Sustain. 2(9), 856–862 (2019). https://doi.org/10.1038/s41893-019-0373-4
X.Q. Xie, N. Zhang, Z.R. Tang, M. Anpo, Y.J. Xu, Ti3C2Tx MXene as a Janus cocatalyst for concurrent promoted photoactivity and inhibited photocorrosion. Appl. Catal. B 237, 43–49 (2018). https://doi.org/10.1016/j.apcatb.2018.05.070
Y.F. Sun, S. Gao, Y. Xie, Atomically-thick two-dimensional crystals: electronic structure regulation and energy device construction. Chem. Soc. Rev. 43(2), 530–546 (2014). https://doi.org/10.1039/C3CS60231A
D.B. Xiong, X.F. Li, Z.M. Bai, S.G. Lu, Recent advances in layered Ti3C2Tx MXene for electrochemical energy storage. Small 14(17), 1703419 (2018). https://doi.org/10.1002/smll.201703419
H. Yu, Y.H. Wang, Y. Jing, J.M. Ma, C.F. Du, Q.Y. Yan, Surface modified MXene-based nanocomposites for electrochemical energy conversion and storage. Small 15(25), 1970133 (2019). https://doi.org/10.1002/smll.201970133
C. Chen, X.Q. Xie, B. Anasori, A. Sarycheva, T. Makaryan et al., MoS2-on-MXene heterostructures as highly reversible anode materials for lithium-ion batteries. Angew. Chem. Int. Ed. 57(7), 1846–1850 (2018). https://doi.org/10.1002/anie.201710616
K.Z. Du, X.Z. Wang, Y. Liu, P. Hu, M.I. Utama et al., Weak van der Waals stacking, wide-range band gap, and Raman study on ultrathin layers of metal phosphorus trichalcogenides. ACS Nano 10(2), 1738–1743 (2016). https://doi.org/10.1021/acsnano.5b05927
M. Ghidiu, M.R. Lukatskaya, M.Q. Zhao, Y. Gogotsi, M.W. Barsoum, Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance. Nature 516(7529), 78–81 (2014). https://doi.org/10.1038/nature13970
C.F. Du, K.N. Dinh, Q.H. Liang, Y. Zheng, Y.B. Luo, J.L. Zhang, Q.Y. Yan, Self-assemble and in situ formation of Ni1−xFexPS3 nanomosaic-decorated MXene hybrids for overall water splitting. Adv. Energy Mater. 8(26), 1801127 (2018). https://doi.org/10.1002/aenm.201801127
J.M. Luo, J.H. Zheng, J.W. Nai, C.B. Jin, H.D. Yuan et al., Atomic sulfur covalently engineered interlayers of Ti3C2 MXene for ultra-fast sodium-ion storage by enhanced pseudocapacitance. Adv. Funct. Mater. 29(10), 1808107 (2019). https://doi.org/10.1002/adfm.201808107
Q. Liang, Y. Zheng, C. Du, Y. Luo, J. Zhang, B. Li, Y. Zong, Q. Yan, General and scalable solid-state synthesis of 2D MpS3 (M = Fe Co, Ni) nanosheets and tuning their Li/Na storage properties. Small Methods 1(12), 1700304 (2017). https://doi.org/10.1002/smtd.201700304
C.-Y. Fan, X.-H. Zhang, Y.-H. Shi, H.-Y. Xu, J.-P. Zhang, X.-L. Wu, 2D few-layer iron phosphosulfide: a self-buffer heterophase structure induced by irreversible breakage of p–s bonds for high-performance lithium/sodium storage. J. Mater Chem. A 7(4), 1529–1538 (2019). https://doi.org/10.1039/c8ta09057b
G.Q. Li, D.L. Jiang, H. Wang, X.Z. Lan, H.H. Zhong, Y. Jiang, Glucose-assisted synthesis of Na3V2(PO4)(3)/C composite as an electrode material for high-performance sodium-ion batteries. J. Power Sources 265, 325–334 (2014). https://doi.org/10.1016/j.jpowsour.2014.04.054