All-Climate Aluminum-Ion Batteries Based on Binder-Free MOF-Derived FeS2@C/CNT Cathode
Corresponding Author: Lianzhou Wang
Nano-Micro Letters,
Vol. 13 (2021), Article Number: 159
Abstract
Aluminum-ion batteries (AIBs) are promising next-generation batteries systems because of their features of low cost and abundant aluminum resource. However, the inferior rate capacity and poor all-climate performance, especially the decayed capacity under low temperature, are still critical challenges toward high-specific-capacity AIBs. Herein, we report a binder-free and freestanding metal–organic framework-derived FeS2@C/carbon nanotube (FeS2@C/CNT) as a novel all-climate cathode in AIBs working under a wide temperature window between −25 and 50 °C with exceptional flexibility. The resultant cathode not only drastically suppresses the side reaction and volumetric expansion with high capacity and long-term stability but also greatly enhances the kinetic process in AIBs with remarkable rate capacity (above 151 mAh g−1 at 2 A g−1) at room temperature. More importantly, to break the bottleneck of the inherently low capacity in graphitic material-based all-climate AIBs, the new hierarchical conductive composite FeS2@C/CNT highly promotes the all-climate performance and delivers as high as 117 mAh g−1 capacity even under −25 °C. The well-designed metal sulfide electrode with remarkable performance paves a new way toward all-climate and flexible AIBs.
Highlights:
1 A binder-free and freestanding all-climate cathode FeS2@C/CNT in aluminum-ion batteries working from −25 to 50 °C with exceptional flexibility, enhanced capacity retention (above 117 mAh g−1) and rate capacity even at a low temperature of −25 °C.
2 High rate capacity (above 151 mAh g−1 at 2 A g−1) and robust long-term stability (above 80 mAh g−1 after 2,000 cycles at 1 A g−1) at room temperature.
3 DFT simulation verifies that the well-designed structure restricts FeS2 pulverization and facilitates the kinetic process of active ion.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Q. Zhao, M.J. Zachman, W.I. Al Sadat, J. Zheng, L.F. Kourkoutis et al., Solid electrolyte interphases for high-energy aqueous aluminum electrochemical cells. Sci. Adv. 4(11), eaau8131 (2018). https://doi.org/10.1126/sciadv.aau8131
- M.C. Lin, M. Gong, B. Lu, Y. Wu, D.Y. Wang et al., An ultrafast rechargeable aluminium-ion battery. Nature 520(7547), 325–328 (2015). https://doi.org/10.1038/nature14340
- F. Ambroz, T.J. Macdonald, T. Nann, Trends in aluminium-based intercalation batteries. Adv. Energy Mater. 7(15), 1602093 (2017). https://doi.org/10.1002/aenm.201602093
- Y. Zhang, S. Liu, Y. Ji, J. Ma, H. Yu, Emerging nonaqueous aluminum-ion batteries: Challenges, status, and perspectives. Adv. Mater. 30(38), e1706310 (2018). https://doi.org/10.1002/adma.201706310
- Q. Li, N.J. Bjerrum, Aluminum as anode for energy storage and conversion: a review. J. Power Sources 110(1), 1–10 (2002). https://doi.org/10.1016/S0378-7753(01)01014-X
- G.A. Elia, K. Marquardt, K. Hoeppner, S. Fantini, R. Lin et al., An overview and future perspectives of aluminum batteries. Adv. Mater. 28(35), 7564–7579 (2016). https://doi.org/10.1002/adma.201601357
- Y.X. Hu, D. Sun, B. Luo, L.Z. Wang, Recent progress and future trends of aluminum batteries. Energy Technol. 7(1), 86–106 (2019). https://doi.org/10.1002/ente.201800550
- S.K. Das, S. Mahapatra, H. Lahan, Aluminium-ion batteries: developments and challenges. J. Mater. Chem. A 5(14), 6347–6367 (2017). https://doi.org/10.1039/C7TA00228A
- H. Sun, W. Wang, Z. Yu, Y. Yuan, S. Wang et al., A new aluminium-ion battery with high voltage, high safety and low cost. Chem. Commun. 51(59), 11892–11895 (2015). https://doi.org/10.1039/C5CC00542F
- S. Wang, Z. Yu, J. Tu, J. Wang, D. Tian et al., A novel aluminum-ion battery: Al/AlCl3-[EMIM]Cl/Ni3S2@graphene. Adv. Energy Mater. 6(13), 1600137 (2016). https://doi.org/10.1002/aenm.201600137
- Y. Hu, B. Luo, D. Ye, X. Zhu, M. Lyu et al., An innovative freeze-dried reduced graphene oxide supported SnS2 cathode active material for aluminum-ion batteries. Adv. Mater. 29(48), 1606132 (2017). https://doi.org/10.1002/adma.201606132
- Y. Hu, D. Ye, B. Luo, H. Hu, X. Zhu et al., A binder-free and free-standing cobalt sulfide@carbon nanotube cathode material for aluminum-ion batteries. Adv. Mater. 30(2), 1703824 (2018). https://doi.org/10.1002/adma.201703824
- D.J. Kim, D.-J. Yoo, M.T. Otley, A. Prokofjevs, C. Pezzato et al., Rechargeable aluminium organic batteries. Nat. Energy 4, 51–59 (2018). https://doi.org/10.1038/s41560-018-0291-0
- N.S. Hudak, Chloroaluminate-doped conducting polymers as positive electrodes in rechargeable aluminum batteries. J. Phys. Chem. C 118(10), 5203–5215 (2014). https://doi.org/10.1021/jp500593d
- Y.X. Hu, Y. Bai, B. Luo, S.C. Wang, H. Hu et al., A portable and efficient solar-rechargeable battery with ultrafast photo-charge/discharge rate. Adv. Energy Mater. 9(28), 1900872 (2019). https://doi.org/10.1002/aenm.201900872
- S. Jiao, H. Lei, J. Tu, J. Zhu, J. Wang et al., An industrialized prototype of the rechargeable Al/AlCl3-[EMIM]Cl/graphite battery and recycling of the graphitic cathode into graphene. Carbon 109, 276–281 (2016). https://doi.org/10.1016/j.carbon.2016.08.027
- L. Fu, N. Li, Y. Liu, W. Wang, Y. Zhu et al., Advances of aluminum based energy storage systems. Chin. J. Chem. 35(1), 13–20 (2017). https://doi.org/10.1002/cjoc.201600655
- H. Chen, H. Xu, S. Wang, T. Huang, J. Xi et al., Ultrafast all-climate aluminum-graphene battery with quarter-million cycle life. Sci. Adv. 3(12), eaao7233 (2017). https://doi.org/10.1126/sciadv.aao7233
- Z. Liu, J. Wang, H. Ding, S. Chen, X. Yu et al., Carbon nanoscrolls for aluminum battery. ACS Nano 12(8), 8456–8466 (2018). https://doi.org/10.1021/acsnano.8b03961
- X. Feng, X. He, W. Pu, C. Jiang, C. Wan, Hydrothermal synthesis of FeS2 for lithium batteries. Ionics 13(5), 375–377 (2007). https://doi.org/10.1007/s11581-007-0136-5
- B.Y. Guan, X.Y. Yu, H.B. Wu, X.W. Lou, Complex nanostructures from materials based on metal–organic frameworks for electrochemical energy storage and conversion. Adv. Mater. 29(47), 1703614 (2017). https://doi.org/10.1002/adma.201703614
- X.-Y. Yu, L. Yu, X.W. Lou, Metal sulfide hollow nanostructures for electrochemical energy storage. Adv. Energy Mater. 6(3), 1501333 (2016). https://doi.org/10.1002/aenm.201501333
- Y. Ding, Y. Chen, N. Xu, X. Lian, L. Li et al., Facile synthesis of FePS3 nanosheets@Mxene composite as a high-performance anode material for sodium storage. Nano-Micro Lett. 12(1), 54 (2020). https://doi.org/10.1007/s40820-020-0381-y
- S.S. Zhang, D.T. Tran, Mechanism and solution for the capacity fading of Li/FeS2 battery. J. Electrochem. Soc. 163(5), A792–A797 (2016). https://doi.org/10.1149/2.0041606jes
- M. Walter, T. Zünd, M.V. Kovalenko, Pyrite (FeS2) nanocrystals as inexpensive high-performance lithium-ion cathode and sodium-ion anode materials. Nanoscale 7(20), 9158–9163 (2015). https://doi.org/10.1039/C5NR00398A
- Y. Shao-Horn, S. Osmialowski, Q.C. Horn, Nano- FeS2 for commercial Li/FeS2 primary batteries. J. Electrochem. Soc. 149(11), A1499 (2002). https://doi.org/10.1149/1.1513558
- Z. Hu, Z. Zhu, F. Cheng, K. Zhang, J. Wang et al., Pyrite FeS2 for high-rate and long-life rechargeable sodium batteries. Energy Environ. Sci. 8(4), 1309–1316 (2015). https://doi.org/10.1039/C4EE03759F
- Z. Zhao, Z. Hu, R. Jiao, Z. Tang, P. Dong et al., Tailoring multi-layer architectured FeS2@C hybrids for superior sodium-, potassium- and aluminum-ion storage. Energy Storage Mater. 22, 228–234 (2019). https://doi.org/10.1016/j.ensm.2019.01.022
- P.E. Blöchl, Projector augmented-wave method. Phy. Rev. B 50(24), 17953–17979 (1994). https://doi.org/10.1103/PhysRevB.50.17953
- C.-J. Yao, Z. Wu, J. Xie, F. Yu, W. Guo et al., Two-dimensional (2D) covalent organic framework as efficient cathode for binder-free lithium-ion battery. Chemsuschem 13(9), 2457–2463 (2020). https://doi.org/10.1002/cssc.201903007
- Z. Wu, J. Xie, Z.J. Xu, S. Zhang, Q. Zhang, Recent progress in metal–organic polymers as promising electrodes for lithium/sodium rechargeable batteries. J. Mater. Chem. A 7(9), 4259–4290 (2019). https://doi.org/10.1039/C8TA11994E
- Z. Wu, D. Adekoya, X. Huang, M.J. Kiefel, J. Xie et al., Highly conductive two-dimensional metal–organic frameworks for resilient lithium storage with superb rate capability. ACS Nano 14(9), 12016–12026 (2020). https://doi.org/10.1021/acsnano.0c05200
- Y.-X. Wang, J. Yang, S.-L. Chou, H.K. Liu, W.-X. Zhang et al., Uniform yolk-shell iron sulfide–carbon nanospheres for superior sodium–iron sulfide batteries. Nat. Commun. 6, 8689 (2015). https://doi.org/10.1038/ncomms9689
- L.D. Reed, E. Menke, The roles of V2O5 and stainless steel in rechargeable al-ion batteries. J. Electrochem. Soc. 160(6), A915–A917 (2013). https://doi.org/10.1149/2.114306jes
- Y. Liang, P. Bai, J. Zhou, T. Wang, B. Luo et al., An efficient precursor to synthesize various FeS2 nanostructures via a simple hydrothermal synthesis method. CrystEngComm 18(33), 6262–6271 (2016). https://doi.org/10.1039/C6CE01203E
- D. Shao, X. Wang, J. Li, Y. Huang, X. Ren et al., Reductive immobilization of uranium by PAAM–FeS/Fe3O4 magnetic composites. Environ. Sci-Wat Res. 1(2), 169–176 (2015). https://doi.org/10.1039/C4EW00014E
- T. Mori, Y. Orikasa, K. Nakanishi, C. Kezheng, M. Hattori et al., Discharge/charge reaction mechanisms of FeS2 cathode material for aluminum rechargeable batteries at 55°C. J. Power Sources 313, 9–14 (2016). https://doi.org/10.1016/j.jpowsour.2016.02.062
- S. Peng, F. Gong, L. Li, D. Yu, D. Ji et al., Necklace-like multishelled hollow spinel oxides with oxygen vacancies for efficient water electrolysis. J. Am. Chem. Soc. 140(42), 13644–13653 (2018). https://doi.org/10.1021/jacs.8b05134
- T. Liu, B. Wang, X. Gu, L. Wang, M. Ling et al., All-climate sodium ion batteries based on the nasicon electrode materials. Nano Energy 30, 756–761 (2016). https://doi.org/10.1016/j.nanoen.2016.09.024
- Y. You, H.-R. Yao, S. Xin, Y.-X. Yin, T.-T. Zuo et al., Subzero-temperature cathode for a sodium-ion battery. Adv. Mater. 28(33), 7243–7248 (2016). https://doi.org/10.1002/adma.201600846
- W. Zhang, X. Sun, Y. Tang, H. Xia, Y. Zeng et al., Lowering charge transfer barrier of LiMn2O4 via nickel surface doping to enhance Li+ intercalation kinetics at subzero temperatures. J. Am. Chem. Soc. 141(36), 14038–14042 (2019). https://doi.org/10.1021/jacs.9b05531
- T. Cai, L. Zhao, H. Hu, T. Li, X. Li et al., Stable CoSe2/carbon nanodice@reduced graphene oxide composites for high-performance rechargeable aluminum-ion batteries. Energy Environ. Sci. 11(9), 2341–2347 (2018). https://doi.org/10.1039/C8EE00822A
- C.S. Rustomji, Y. Yang, T.K. Kim, J. Mac, Y.J. Kim et al., Liquefied gas electrolytes for electrochemical energy storage devices. Science 356(6345), eaal4263 (2017). https://doi.org/10.1126/science.aal4263
References
Q. Zhao, M.J. Zachman, W.I. Al Sadat, J. Zheng, L.F. Kourkoutis et al., Solid electrolyte interphases for high-energy aqueous aluminum electrochemical cells. Sci. Adv. 4(11), eaau8131 (2018). https://doi.org/10.1126/sciadv.aau8131
M.C. Lin, M. Gong, B. Lu, Y. Wu, D.Y. Wang et al., An ultrafast rechargeable aluminium-ion battery. Nature 520(7547), 325–328 (2015). https://doi.org/10.1038/nature14340
F. Ambroz, T.J. Macdonald, T. Nann, Trends in aluminium-based intercalation batteries. Adv. Energy Mater. 7(15), 1602093 (2017). https://doi.org/10.1002/aenm.201602093
Y. Zhang, S. Liu, Y. Ji, J. Ma, H. Yu, Emerging nonaqueous aluminum-ion batteries: Challenges, status, and perspectives. Adv. Mater. 30(38), e1706310 (2018). https://doi.org/10.1002/adma.201706310
Q. Li, N.J. Bjerrum, Aluminum as anode for energy storage and conversion: a review. J. Power Sources 110(1), 1–10 (2002). https://doi.org/10.1016/S0378-7753(01)01014-X
G.A. Elia, K. Marquardt, K. Hoeppner, S. Fantini, R. Lin et al., An overview and future perspectives of aluminum batteries. Adv. Mater. 28(35), 7564–7579 (2016). https://doi.org/10.1002/adma.201601357
Y.X. Hu, D. Sun, B. Luo, L.Z. Wang, Recent progress and future trends of aluminum batteries. Energy Technol. 7(1), 86–106 (2019). https://doi.org/10.1002/ente.201800550
S.K. Das, S. Mahapatra, H. Lahan, Aluminium-ion batteries: developments and challenges. J. Mater. Chem. A 5(14), 6347–6367 (2017). https://doi.org/10.1039/C7TA00228A
H. Sun, W. Wang, Z. Yu, Y. Yuan, S. Wang et al., A new aluminium-ion battery with high voltage, high safety and low cost. Chem. Commun. 51(59), 11892–11895 (2015). https://doi.org/10.1039/C5CC00542F
S. Wang, Z. Yu, J. Tu, J. Wang, D. Tian et al., A novel aluminum-ion battery: Al/AlCl3-[EMIM]Cl/Ni3S2@graphene. Adv. Energy Mater. 6(13), 1600137 (2016). https://doi.org/10.1002/aenm.201600137
Y. Hu, B. Luo, D. Ye, X. Zhu, M. Lyu et al., An innovative freeze-dried reduced graphene oxide supported SnS2 cathode active material for aluminum-ion batteries. Adv. Mater. 29(48), 1606132 (2017). https://doi.org/10.1002/adma.201606132
Y. Hu, D. Ye, B. Luo, H. Hu, X. Zhu et al., A binder-free and free-standing cobalt sulfide@carbon nanotube cathode material for aluminum-ion batteries. Adv. Mater. 30(2), 1703824 (2018). https://doi.org/10.1002/adma.201703824
D.J. Kim, D.-J. Yoo, M.T. Otley, A. Prokofjevs, C. Pezzato et al., Rechargeable aluminium organic batteries. Nat. Energy 4, 51–59 (2018). https://doi.org/10.1038/s41560-018-0291-0
N.S. Hudak, Chloroaluminate-doped conducting polymers as positive electrodes in rechargeable aluminum batteries. J. Phys. Chem. C 118(10), 5203–5215 (2014). https://doi.org/10.1021/jp500593d
Y.X. Hu, Y. Bai, B. Luo, S.C. Wang, H. Hu et al., A portable and efficient solar-rechargeable battery with ultrafast photo-charge/discharge rate. Adv. Energy Mater. 9(28), 1900872 (2019). https://doi.org/10.1002/aenm.201900872
S. Jiao, H. Lei, J. Tu, J. Zhu, J. Wang et al., An industrialized prototype of the rechargeable Al/AlCl3-[EMIM]Cl/graphite battery and recycling of the graphitic cathode into graphene. Carbon 109, 276–281 (2016). https://doi.org/10.1016/j.carbon.2016.08.027
L. Fu, N. Li, Y. Liu, W. Wang, Y. Zhu et al., Advances of aluminum based energy storage systems. Chin. J. Chem. 35(1), 13–20 (2017). https://doi.org/10.1002/cjoc.201600655
H. Chen, H. Xu, S. Wang, T. Huang, J. Xi et al., Ultrafast all-climate aluminum-graphene battery with quarter-million cycle life. Sci. Adv. 3(12), eaao7233 (2017). https://doi.org/10.1126/sciadv.aao7233
Z. Liu, J. Wang, H. Ding, S. Chen, X. Yu et al., Carbon nanoscrolls for aluminum battery. ACS Nano 12(8), 8456–8466 (2018). https://doi.org/10.1021/acsnano.8b03961
X. Feng, X. He, W. Pu, C. Jiang, C. Wan, Hydrothermal synthesis of FeS2 for lithium batteries. Ionics 13(5), 375–377 (2007). https://doi.org/10.1007/s11581-007-0136-5
B.Y. Guan, X.Y. Yu, H.B. Wu, X.W. Lou, Complex nanostructures from materials based on metal–organic frameworks for electrochemical energy storage and conversion. Adv. Mater. 29(47), 1703614 (2017). https://doi.org/10.1002/adma.201703614
X.-Y. Yu, L. Yu, X.W. Lou, Metal sulfide hollow nanostructures for electrochemical energy storage. Adv. Energy Mater. 6(3), 1501333 (2016). https://doi.org/10.1002/aenm.201501333
Y. Ding, Y. Chen, N. Xu, X. Lian, L. Li et al., Facile synthesis of FePS3 nanosheets@Mxene composite as a high-performance anode material for sodium storage. Nano-Micro Lett. 12(1), 54 (2020). https://doi.org/10.1007/s40820-020-0381-y
S.S. Zhang, D.T. Tran, Mechanism and solution for the capacity fading of Li/FeS2 battery. J. Electrochem. Soc. 163(5), A792–A797 (2016). https://doi.org/10.1149/2.0041606jes
M. Walter, T. Zünd, M.V. Kovalenko, Pyrite (FeS2) nanocrystals as inexpensive high-performance lithium-ion cathode and sodium-ion anode materials. Nanoscale 7(20), 9158–9163 (2015). https://doi.org/10.1039/C5NR00398A
Y. Shao-Horn, S. Osmialowski, Q.C. Horn, Nano- FeS2 for commercial Li/FeS2 primary batteries. J. Electrochem. Soc. 149(11), A1499 (2002). https://doi.org/10.1149/1.1513558
Z. Hu, Z. Zhu, F. Cheng, K. Zhang, J. Wang et al., Pyrite FeS2 for high-rate and long-life rechargeable sodium batteries. Energy Environ. Sci. 8(4), 1309–1316 (2015). https://doi.org/10.1039/C4EE03759F
Z. Zhao, Z. Hu, R. Jiao, Z. Tang, P. Dong et al., Tailoring multi-layer architectured FeS2@C hybrids for superior sodium-, potassium- and aluminum-ion storage. Energy Storage Mater. 22, 228–234 (2019). https://doi.org/10.1016/j.ensm.2019.01.022
P.E. Blöchl, Projector augmented-wave method. Phy. Rev. B 50(24), 17953–17979 (1994). https://doi.org/10.1103/PhysRevB.50.17953
C.-J. Yao, Z. Wu, J. Xie, F. Yu, W. Guo et al., Two-dimensional (2D) covalent organic framework as efficient cathode for binder-free lithium-ion battery. Chemsuschem 13(9), 2457–2463 (2020). https://doi.org/10.1002/cssc.201903007
Z. Wu, J. Xie, Z.J. Xu, S. Zhang, Q. Zhang, Recent progress in metal–organic polymers as promising electrodes for lithium/sodium rechargeable batteries. J. Mater. Chem. A 7(9), 4259–4290 (2019). https://doi.org/10.1039/C8TA11994E
Z. Wu, D. Adekoya, X. Huang, M.J. Kiefel, J. Xie et al., Highly conductive two-dimensional metal–organic frameworks for resilient lithium storage with superb rate capability. ACS Nano 14(9), 12016–12026 (2020). https://doi.org/10.1021/acsnano.0c05200
Y.-X. Wang, J. Yang, S.-L. Chou, H.K. Liu, W.-X. Zhang et al., Uniform yolk-shell iron sulfide–carbon nanospheres for superior sodium–iron sulfide batteries. Nat. Commun. 6, 8689 (2015). https://doi.org/10.1038/ncomms9689
L.D. Reed, E. Menke, The roles of V2O5 and stainless steel in rechargeable al-ion batteries. J. Electrochem. Soc. 160(6), A915–A917 (2013). https://doi.org/10.1149/2.114306jes
Y. Liang, P. Bai, J. Zhou, T. Wang, B. Luo et al., An efficient precursor to synthesize various FeS2 nanostructures via a simple hydrothermal synthesis method. CrystEngComm 18(33), 6262–6271 (2016). https://doi.org/10.1039/C6CE01203E
D. Shao, X. Wang, J. Li, Y. Huang, X. Ren et al., Reductive immobilization of uranium by PAAM–FeS/Fe3O4 magnetic composites. Environ. Sci-Wat Res. 1(2), 169–176 (2015). https://doi.org/10.1039/C4EW00014E
T. Mori, Y. Orikasa, K. Nakanishi, C. Kezheng, M. Hattori et al., Discharge/charge reaction mechanisms of FeS2 cathode material for aluminum rechargeable batteries at 55°C. J. Power Sources 313, 9–14 (2016). https://doi.org/10.1016/j.jpowsour.2016.02.062
S. Peng, F. Gong, L. Li, D. Yu, D. Ji et al., Necklace-like multishelled hollow spinel oxides with oxygen vacancies for efficient water electrolysis. J. Am. Chem. Soc. 140(42), 13644–13653 (2018). https://doi.org/10.1021/jacs.8b05134
T. Liu, B. Wang, X. Gu, L. Wang, M. Ling et al., All-climate sodium ion batteries based on the nasicon electrode materials. Nano Energy 30, 756–761 (2016). https://doi.org/10.1016/j.nanoen.2016.09.024
Y. You, H.-R. Yao, S. Xin, Y.-X. Yin, T.-T. Zuo et al., Subzero-temperature cathode for a sodium-ion battery. Adv. Mater. 28(33), 7243–7248 (2016). https://doi.org/10.1002/adma.201600846
W. Zhang, X. Sun, Y. Tang, H. Xia, Y. Zeng et al., Lowering charge transfer barrier of LiMn2O4 via nickel surface doping to enhance Li+ intercalation kinetics at subzero temperatures. J. Am. Chem. Soc. 141(36), 14038–14042 (2019). https://doi.org/10.1021/jacs.9b05531
T. Cai, L. Zhao, H. Hu, T. Li, X. Li et al., Stable CoSe2/carbon nanodice@reduced graphene oxide composites for high-performance rechargeable aluminum-ion batteries. Energy Environ. Sci. 11(9), 2341–2347 (2018). https://doi.org/10.1039/C8EE00822A
C.S. Rustomji, Y. Yang, T.K. Kim, J. Mac, Y.J. Kim et al., Liquefied gas electrolytes for electrochemical energy storage devices. Science 356(6345), eaal4263 (2017). https://doi.org/10.1126/science.aal4263