Recent Progress in Nanoscale Covalent Organic Frameworks for Cancer Diagnosis and Therapy
Corresponding Author: Linlin Li
Nano-Micro Letters,
Vol. 13 (2021), Article Number: 176
Abstract
Covalent organic frameworks (COFs) as a type of porous and crystalline covalent organic polymer are built up from covalently linked and periodically arranged organic molecules. Their precise assembly, well-defined coordination network, and tunable porosity endow COFs with diverse characteristics such as low density, high crystallinity, porous structure, and large specific-surface area, as well as versatile functions and active sites that can be tuned at molecular and atomic level. These unique properties make them excellent candidate materials for biomedical applications, such as drug delivery, diagnostic imaging, and disease therapy. To realize these functions, the components, dimensions, and guest molecule loading into COFs have a great influence on their performance in various applications. In this review, we first introduce the influence of dimensions, building blocks, and synthetic conditions on the chemical stability, pore structure, and chemical interaction with guest molecules of COFs. Next, the applications of COFs in cancer diagnosis and therapy are summarized. Finally, some challenges for COFs in cancer therapy are noted and the problems to be solved in the future are proposed.
Highlights:
1 Recent progress in nanoscale covalent organic frameworks (COFs)-mediated nanomedicines for cancer diagnosis and therapy is comprehensively summarized in this review.
2 Future perspectives and challenges regarding COFs-mediated nanomedicines for diagnosis and therapy are discussed, with particular emphasis on possible clinical translation.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- C.S. Diercks, O.M. Yaghi, The atom, the molecule, and the covalent organic framework. Science 355, eaal1585 (2017). https://doi.org/10.1126/science.aal1585
- C. Hu, Z. Zhang, S. Liu, X. Liu, M. Pang, Monodispersed cuse sensitized covalent organic framework photosensitizer with an enhanced photodynamic and photothermal effect for cancer therapy. ACS Appl. Mater. Interf. 11, 23072–23082 (2019). https://doi.org/10.1021/acsami.9b08394
- Y. Shi, S. Liu, Y. Liu, C. Sun, M. Chang et al., Facile fabrication of nanoscale porphyrinic covalent organic polymers for combined photodynamic and photothermal cancer therapy. ACS Appl. Mater. Interf. 11, 12321–12326 (2019). https://doi.org/10.1021/acsami.9b00361
- X. Liu, H. Pang, X. Liu, Q. Li, N. Zhang et al., Orderly porous covalent organic frameworks-based materials: superior adsorbents for pollutants removal from aqueous solutions. Innovation 2, 100076 (2021). https://doi.org/10.1016/j.xinn.2021.100076
- S. Bhunia, K.A. Deo, A.K. Gaharwar, 2D covalent organic frameworks for biomedical applications. Adv. Funct. Mater. 30, 2002046 (2020). https://doi.org/10.1002/adfm.202002046
- S.S. Chui, S.M. Lo, J.P. Charmant, A.G. Orpen, I.D. Williams, A chemically functionalizable nanoporous material. Science 283, 1148–1150 (1999). https://doi.org/10.1126/science.283.5405.1148
- A.P. Cote, A.I. Benin, N.W. Ockwig, M. O’Keeffe, A.J. Matzger et al., Porous, crystalline, covalent organic frameworks. Science 310, 1166–1170 (2005). https://doi.org/10.1126/science.1120411
- E. Jin, J. Li, K. Geng, Q. Jiang, H. Xu et al., Designed synthesis of stable light-emitting two-dimensional sp(2) carbon-conjugated covalent organic frameworks. Nat. Commun. 9, 4143 (2018). https://doi.org/10.1038/s41467-018-06719-8
- X. Li, Q. Gao, J. Wang, Y. Chen, Z.H. Chen et al., Tuneable near white-emissive two-dimensional covalent organic frameworks. Nat. Commun. 9, 2335 (2018). https://doi.org/10.1038/s41467-018-04769-6
- C. Liu, E. Park, Y. Jin, J. Liu, Y. Yu et al., Separation of arylenevinylene macrocycles with a surface-confined two-dimensional covalent organic framework. Angew. Chem. Int. Ed. 57, 8984–8988 (2018). https://doi.org/10.1002/anie.201803937
- C. Jiang, M. Tang, S. Zhu, J. Zhang, Y. Wu et al., Constructing universal ionic sieves via alignment of two-dimensional covalent organic frameworks (COFs). Angew. Chem. Int. Ed. 57, 16072–16076 (2018). https://doi.org/10.1002/anie.201809907
- R.R. Liang, A. Ru-Han, S.Q. Xu, Q.Y. Qi, X. Zhao, Fabricating organic nanotubes through selective disassembly of two-dimensional covalent organic frameworks. J. Am. Chem. Soc. 142, 70–74 (2020). https://doi.org/10.1021/jacs.9b11401
- V. Lakshmi, C.H. Liu, M. Rajeswara Rao, Y. Chen, Y. Fang et al., A two-dimensional poly(azatriangulene) covalent organic framework with semiconducting and paramagnetic states. J. Am. Chem. Soc. 142, 2155–2160 (2020). https://doi.org/10.1021/jacs.9b11528
- H. Li, A.M. Evans, I. Castano, M.J. Strauss, W.R. Dichtel et al., Nucleation-elongation dynamics of two-dimensional covalent organic frameworks. J. Am. Chem. Soc. 142, 1367–1374 (2020). https://doi.org/10.1021/jacs.9b10869
- Q. Hao, Z.J. Li, C. Lu, B. Sun, Y.W. Zhong et al., Oriented two-dimensional covalent organic framework films for near-infrared electrochromic application. J. Am. Chem. Soc. 141, 19831–19838 (2019). https://doi.org/10.1021/jacs.9b09956
- J.W. Colson, A.R. Woll, A. Mukherjee, M.P. Levendorf, E.L. Spitler et al., Oriented 2D covalent organic framework thin films on single-layer graphene. Science 332, 228–231 (2011). https://doi.org/10.1126/science.1202747
- J.-T. Yu, Z. Chen, J. Sun, Z.-T. Huang, Q.-Y. Zheng, Cyclotricatechylene based porous crystalline material: synthesis and applications in gas storage. J. Mater. Chem. 22, 5369 (2012). https://doi.org/10.1039/c2jm15159f
- S.S. Han, H. Furukawa, O.M. Yaghi, W.A. Goddard, Covalent organic frameworks as exceptional hydrogen storage materials. J. Am. Chem. Soc. 130, 11580–11581 (2008). https://doi.org/10.1021/ja803247y
- H. Furukawa, O.M. Yaghi, Storage of hydrogen, methane, and carbon dioxide in highly porous covalent organic frameworks for clean energy applications. J. Am. Chem. Soc. 131, 8875–8883 (2009). https://doi.org/10.1021/ja9015765
- S. Lin, C.S. Diercks, Y.-B. Zhang, N. Kornienko, E.M. Nichols et al., Covalent organic frameworks comprising cobalt porphyrins for catalytic CO2 reduction in water. Science 349, 1208–1213 (2015). https://doi.org/10.1126/science.aac8343
- L. Stegbauer, K. Schwinghammer, B.V. Lotsch, A hydrazone-based covalent organic framework for photocatalytic hydrogen production. Chem. Sci. 5, 2789–2793 (2014). https://doi.org/10.1039/c4sc00016a
- S.Y. Ding, J. Gao, Q. Wang, Y. Zhang, W.G. Song et al., Construction of covalent organic framework for catalysis: Pd/COF-LZU1 in Suzuki-Miyaura coupling reaction. J. Am. Chem. Soc. 133, 19816–19822 (2011). https://doi.org/10.1021/ja206846p
- N. Huang, X. Ding, J. Kim, H. Ihee, D. Jiang, A photoresponsive smart covalent organic framework. Angew. Chem. Int. Ed. 54, 8704–8707 (2015). https://doi.org/10.1002/anie.201503902
- M. Dogru, T. Bein, On the road towards electroactive covalent organic frameworks. Chem. Commun. 50, 5531–5546 (2014). https://doi.org/10.1039/c3cc46767h
- L. Chen, K. Furukawa, J. Gao, A. Nagai, T. Nakamura et al., Photoelectric covalent organic frameworks: converting open lattices into ordered donor-acceptor heterojunctions. J. Am. Chem. Soc. 136, 9806–9809 (2014). https://doi.org/10.1021/ja502692w
- M. Calik, F. Auras, L.M. Salonen, K. Bader, I. Grill et al., Extraction of photogenerated electrons and holes from a covalent organic framework integrated heterojunction. J. Am. Chem. Soc. 136, 17802–17807 (2014). https://doi.org/10.1021/ja509551m
- F. Zhao, H. Liu, S.D.R. Mathe, A. Dong, J. Zhang, Covalent organic frameworks: from materials design to biomedical application. Nanomaterials 8 (2017). http://doi.org/https://doi.org/10.3390/nano8010015
- Q. Guan, L.L. Zhou, W.Y. Li, Y.A. Li, Y.B. Dong, Covalent organic frameworks (COFs) for cancer therapeutics. Chemistry 26, 5583–5591 (2020). https://doi.org/10.1002/chem.201905150
- G. Zhang, X. Li, Q. Liao, Y. Liu, K. Xi et al., Water-dispersible PEG-curcumin/amine-functionalized covalent organic framework nanocomposites as smart carriers for in vivo drug delivery. Nat. Commun. 9, 2785 (2018). https://doi.org/10.1038/s41467-018-04910-5
- S. Mitra, H.S. Sasmal, T. Kundu, S. Kandambeth, K. Illath et al., Targeted drug delivery in covalent organic nanosheets (CONs) via sequential postsynthetic modification. J. Am. Chem. Soc. 139, 4513–4520 (2017). https://doi.org/10.1021/jacs.7b00925
- Q. Fang, J. Wang, S. Gu, R.B. Kaspar, Z. Zhuang et al., 3D porous crystalline polyimide covalent organic frameworks for drug delivery. J. Am. Chem. Soc. 137, 8352–8355 (2015). https://doi.org/10.1021/jacs.5b04147
- V.S. Vyas, M. Vishwakarma, I. Moudrakovski, F. Haase, G. Savasci et al., Exploiting noncovalent interactions in an imine-based covalent organic framework for quercetin delivery. Adv. Mater. 28, 8749–8754 (2016). https://doi.org/10.1002/adma.201603006
- M.-X. Wu, Y.-W. Yang, Applications of covalent organic frameworks (COFs): From gas storage and separation to drug delivery. Chinese Chem. Lett. 28, 1135–1143 (2017). https://doi.org/10.1016/j.cclet.2017.03.026
- L. Zhang, S. Wang, Y. Zhou, C. Wang, X.Z. Zhang et al., Covalent organic frameworks as favorable constructs for photodynamic therapy. Angew. Chem. Int. Ed. 58, 14213–14218 (2019). https://doi.org/10.1002/anie.201909020
- S. Gan, X. Tong, Y. Zhang, J. Wu, Y. Hu et al., Covalent organic framework-supported molecularly dispersed near-infrared dyes boost immunogenic phototherapy against tumors. Adv. Funct. Mater. 29, 1902757 (2019). https://doi.org/10.1002/adfm.201902757
- S. Kantidas, S. Mishra, K. Manna, U. Kayal, S. Mahapatra et al., A new triazine based pi-conjugated mesoporous 2D covalent organic framework: its in vitro anticancer activities. Chem. Commun. 54, 11475–11478 (2018). https://doi.org/10.1039/c8cc07289b
- P. Wang, F. Zhou, K. Guan, Y. Wang, X. Fu et al., In vivo therapeutic response monitoring by a self-reporting upconverting covalent organic framework nanoplatform. Chem. Sci. 11, 1299–1306 (2020). https://doi.org/10.1039/c9sc04875h
- J. Wang, L. Zhao, B. Yan, Indicator displacement assay inside dye-functionalized covalent organic frameworks for ultrasensitive monitoring of sialic acid, an ovarian cancer biomarker. ACS Appl. Mater. Interf. 12, 12990–12997 (2020). https://doi.org/10.1021/acsami.0c00101
- T. Yang, Y. Cui, H. Chen, W. Li, Controllable preparation of two dimensional metal- or covalent organic frameworks for chemical sensing and biosensing. Acta Chim. Sin. 75, 339 (2017). https://doi.org/10.6023/a16110592
- D. Cui, D.F. Perepichka, J.M. MacLeod, F. Rosei, Surface-confined single-layer covalent organic frameworks: design, synthesis and application. Chem. Soc. Rev. 49, 2020–2038 (2020). https://doi.org/10.1039/c9cs00456d
- S.B. Alahakoon, S.D. Diwakara, C.M. Thompson, R.A. Smaldone, Supramolecular design in 2D covalent organic frameworks. Chem. Soc. Rev. 49, 1344–1356 (2020). https://doi.org/10.1039/c9cs00884e
- X. Han, C. Yuan, B. Hou, L. Liu, H. Li et al., Chiral covalent organic frameworks: design, synthesis and property. Chem. Soc. Rev. 49, 6248–6272 (2020). https://doi.org/10.1039/d0cs00009d
- R.R. Liang, S.Y. Jiang, A. Ru-Han, X. Zhao, Two-dimensional covalent organic frameworks with hierarchical porosity. Chem. Soc. Rev. 49, 3920–3951 (2020). https://doi.org/10.1039/d0cs00049c
- F. Yu, W. Liu, B. Li, D. Tian, J.L. Zuo et al., Photostimulus-responsive large-area two-dimensional covalent organic framework films. Angew. Chem. Int. Ed. 58, 16101–16104 (2019). https://doi.org/10.1002/anie.201909613
- Y. Zhao, H. Liu, C. Wu, Z. Zhang, Q. Pan et al., Fully conjugated two-dimensional sp(2) -carbon covalent organic frameworks as artificial photosystem i with high efficiency. Angew. Chem. Int. Ed. 58, 5376–5381 (2019). https://doi.org/10.1002/anie.201901194
- D. Zhou, X. Tan, H. Wu, L. Tian, M. Li, Synthesis of C-C bonded two-dimensional conjugated covalent organic framework films by suzuki polymerization on a liquid-liquid interface. Angew. Chem. Int. Ed. 58, 1376–1381 (2019). https://doi.org/10.1002/anie.201811399
- L. Liang, Y. Qiu, W.D. Wang, J. Han, Y. Luo et al., Non-interpenetrated single-crystal covalent organic frameworks. Angew. Chem. Int. Ed. 59, 17991–17995 (2020). https://doi.org/10.1002/anie.202007230
- E. Tavakoli, A. Kakekhani, S. Kaviani, P. Tan, M.M. Ghaleni et al., In situ bottom-up synthesis of porphyrin-based covalent organic frameworks. J. Am. Chem. Soc. 141, 19560–19564 (2019). https://doi.org/10.1021/jacs.9b10787
- C.G. Na, D. Ravelli, E.J. Alexanian, Direct decarboxylative functionalization of carboxylic acids via O-H hydrogen atom transfer. J. Am. Chem. Soc. 142, 44–49 (2020). https://doi.org/10.1021/jacs.9b10825
- J.F. Dienstmaier, D.D. Medina, M. Dogru, P. Knochel, T. Bein et al., Isoreticular two-dimensional covalent organic frameworks synthesized by on-surface condensation of diboronic acids. ACS Nano 6, 7234–7242 (2012). https://doi.org/10.1021/nn302363d
- S. Park, Z. Liao, B. Ibarlucea, H. Qi, H.H. Lin et al., Two-dimensional boronate ester covalent organic framework thin films with large single crystalline domains for a neuromorphic memory device. Angew. Chem. Int. Ed. 59, 8218–8224 (2020). https://doi.org/10.1002/anie.201916595
- A.D. Chavez, B.J. Smith, M.K. Smith, P.A. Beaucage, B.H. Northrop et al., Discrete, hexagonal boronate ester-linked macrocycles related to two-dimensional covalent organic frameworks. Chem. Mater. 28, 4884–4888 (2016). https://doi.org/10.1021/acs.chemmater.6b01831
- A.M. Evans, L.R. Parent, N.C. Flanders, R.P. Bisbey, E. Vitaku et al., Seeded growth of single-crystal two-dimensional covalent organic frameworks. Science 361, 52–57 (2018). https://doi.org/10.1126/science.aar7883
- B.J. Smith, W.R. Dichtel, Mechanistic studies of two-dimensional covalent organic frameworks rapidly polymerized from initially homogenous conditions. J. Am. Chem. Soc. 136, 8783–8789 (2014). https://doi.org/10.1021/ja5037868
- S. Chandra, D. Roy Chowdhury, M. Addicoat, T. Heine, A. Paul et al., Molecular level control of the capacitance of two-dimensional covalent organic frameworks: role of hydrogen bonding in energy storage materials. Chem. Mater. 29, 2074–2080 (2017). https://doi.org/10.1021/acs.chemmater.6b04178
- P. Wang, F. Zhou, C. Zhang, S.Y. Yin, L. Teng et al., Ultrathin two-dimensional covalent organic framework nanoprobe for interference-resistant two-photon fluorescence bioimaging. Chem. Sci. 9, 8402–8408 (2018). https://doi.org/10.1039/c8sc03393e
- M. Wang, M. Ballabio, M. Wang, H.H. Lin, B.P. Biswal et al., Unveiling electronic properties in metal-phthalocyanine-based pyrazine-linked conjugated two-dimensional covalent organic frameworks. J. Am. Chem. Soc. 141, 16810–16816 (2019). https://doi.org/10.1021/jacs.9b07644
- P. Kuhn, M. Antonietti, A. Thomas, Porous, covalent triazine-based frameworks prepared by ionothermal synthesis. Angew. Chem. Int. Ed. 47, 3450–3453 (2008). https://doi.org/10.1002/anie.200705710
- E. Jin, M. Asada, Q. Xu, S. Dalapati, M.A. Addicoat et al., Two-dimensional sp(2) carbon-conjugated covalent organic frameworks. Science 357, 673–676 (2017). https://doi.org/10.1126/science.aan0202
- S. Thomas, H. Li, R.R. Dasari, A.M. Evans, I. Castano et al., Design and synthesis of two-dimensional covalent organic frameworks with four-arm cores: prediction of remarkable ambipolar charge-transport properties. Mater. Horiz. 6, 1868–1876 (2019). https://doi.org/10.1039/c9mh00035f
- X. Guan, H. Li, Y. Ma, M. Xue, Q. Fang et al., Chemically stable polyarylether-based covalent organic frameworks. Nat. Chem. 11, 587–594 (2019). https://doi.org/10.1038/s41557-019-0238-5
- X. Li, P. Yadav, K.P. Loh, Function-oriented synthesis of two-dimensional (2D) covalent organic frameworks-from 3D solids to 2D sheets. Chem. Soc. Rev. 49, 4835–4866 (2020). https://doi.org/10.1039/d0cs00236d
- A.C. Jakowetz, T.F. Hinrichsen, L. Ascherl, T. Sick, M. Calik et al., Excited-state dynamics in fully conjugated 2D covalent organic frameworks. J. Am. Chem. Soc. 141, 11565–11571 (2019). https://doi.org/10.1021/jacs.9b03956
- Z. Meng, R.M. Stolz, K.A. Mirica, Two-dimensional chemiresistive covalent organic framework with high intrinsic conductivity. J. Am. Chem. Soc. 141, 11929–11937 (2019). https://doi.org/10.1021/jacs.9b03441
- T. Sick, J.M. Rotter, S. Reuter, S. Kandambeth, N.N. Bach et al., Switching on and off interlayer correlations and porosity in 2D covalent organic frameworks. J. Am. Chem. Soc. 141, 12570–12581 (2019). https://doi.org/10.1021/jacs.9b02800
- E. Vitaku, W.R. Dichtel, Synthesis of 2D imine-linked covalent organic frameworks through formal transimination reactions. J. Am. Chem. Soc. 139, 12911–12914 (2017). https://doi.org/10.1021/jacs.7b06913
- Y. Peng, Y. Huang, Y. Zhu, B. Chen, L. Wang et al., Ultrathin two-dimensional covalent organic framework nanosheets: preparation and application in highly sensitive and selective DNA detection. J. Am. Chem. Soc. 139, 8698–8704 (2017). https://doi.org/10.1021/jacs.7b04096
- X. Wang, X. Han, J. Zhang, X. Wu, Y. Liu et al., Homochiral 2D porous covalent organic frameworks for heterogeneous asymmetric catalysis. J. Am. Chem. Soc. 138, 12332–12335 (2016). https://doi.org/10.1021/jacs.6b07714
- D.A. Vazquez-Molina, G.S. Mohammad-Pour, C. Lee, M.W. Logan, X. Duan et al., Mechanically Shaped two-dimensional covalent organic frameworks reveal crystallographic alignment and fast li-ion conductivity. J. Am. Chem. Soc. 138, 9767–9770 (2016). https://doi.org/10.1021/jacs.6b05568
- R.P. Bisbey, C.R. DeBlase, B.J. Smith, W.R. Dichtel, Two-dimensional covalent organic framework thin films grown in flow. J. Am. Chem. Soc. 138, 11433–11436 (2016). https://doi.org/10.1021/jacs.6b04669
- W.K. Haug, E.R. Wolfson, B.T. Morman, C.M. Thomas, P.L. McGrier, A nickel-doped dehydrobenzoannulene-based two-dimensional covalent organic framework for the reductive cleavage of inert aryl C-S bonds. J. Am. Chem. Soc. 142, 5521–5525 (2020). https://doi.org/10.1021/jacs.0c01026
- X. Ding, L. Chen, Y. Honsho, X. Feng, O. Saengsawang et al., An n-channel two-dimensional covalent organic framework. J. Am. Chem. Soc. 133, 14510–14513 (2011). https://doi.org/10.1021/ja2052396
- Z. Xie, B. Wang, Z. Yang, X. Yang, X. Yu et al., Stable 2D heteroporous covalent organic frameworks for efficient ionic conduction. Angew. Chem. Int. Ed. 58, 15742–15746 (2019). https://doi.org/10.1002/anie.201909554
- Y. Ma, Y. Wang, H. Li, X. Guan, B. Li et al., Three-dimensional chemically stable covalent organic frameworks through hydrophobic engineering. Angew. Chem. Int. Ed. 59, 19633–19638 (2020). https://doi.org/10.1002/anie.202005277
- X. Feng, L. Chen, Y. Dong, D. Jiang, Porphyrin-based two-dimensional covalent organic frameworks: synchronized synthetic control of macroscopic structures and pore parameters. Chem. Commun. 47, 1979–1981 (2011). https://doi.org/10.1039/c0cc04386a
- Y. Wang, Y. Liu, H. Li, X. Guan, M. Xue et al., Three-dimensional mesoporous covalent organic frameworks through steric hindrance engineering. J. Am. Chem. Soc. 142, 3736–3741 (2020). https://doi.org/10.1021/jacs.0c00560
- G. Lin, H. Ding, D. Yuan, B. Wang, C. Wang, A pyrene-based, fluorescent three-dimensional covalent organic framework. J. Am. Chem. Soc. 138, 3302–3305 (2016). https://doi.org/10.1021/jacs.6b00652
- L.M. Lanni, R.W. Tilford, M. Bharathy, J.J. Lavigne, Enhanced hydrolytic stability of self-assembling alkylated two-dimensional covalent organic frameworks. J. Am. Chem. Soc. 133, 13975–13983 (2011). https://doi.org/10.1021/ja203807h
- M. Martinez-Abadia, C.T. Stoppiello, K. Strutynski, B. Lerma-Berlanga, C. Marti-Gastaldo et al., A wavy two-dimensional covalent organic framework from core-twisted polycyclic aromatic hydrocarbons. J. Am. Chem. Soc. 141, 14403–14410 (2019). https://doi.org/10.1021/jacs.9b07383
- X. Li, J. Qiao, S.W. Chee, H.S. Xu, X. Zhao et al., Scalable construction of highly crystalline acylhydrazone two-dimensional covalent organic frameworks via dipole-induced antiparallel stacking. J. Am. Chem. Soc. 142, 4932–4943 (2020). https://doi.org/10.1021/jacs.0c00553
- X. Wu, X. Han, Y. Liu, Y. Liu, Y. Cui, Control interlayer stacking and chemical stability of two-dimensional covalent organic frameworks via steric tuning. J. Am. Chem. Soc. 140, 16124–16133 (2018). https://doi.org/10.1021/jacs.8b08452
- S. Bi, C. Yang, W. Zhang, J. Xu, L. Liu et al., Two-dimensional semiconducting covalent organic frameworks via condensation at arylmethyl carbon atoms. Nat. Commun. 10, 2467 (2019). https://doi.org/10.1038/s41467-019-10504-6
- J. Dong, X. Li, S.B. Peh, Y.D. Yuan, Y. Wang et al., Restriction of molecular rotors in ultrathin two-dimensional covalent organic framework nanosheets for sensing signal amplification. Chem. Mater. 31, 146–160 (2018). https://doi.org/10.1021/acs.chemmater.8b03685
- C. Gao, J. Li, S. Yin, G. Lin, T. Ma et al., Isostructural three-dimensional covalent organic frameworks. Angew. Chem. Int. Ed. 58, 9770–9775 (2019). https://doi.org/10.1002/anie.201905591
- Q. Lu, Y. Ma, H. Li, X. Guan, Y. Yusran et al., Postsynthetic functionalization of three-dimensional covalent organic frameworks for selective extraction of lanthanide ions. Angew. Chem. Int. Ed. 57, 6042–6048 (2018). https://doi.org/10.1002/anie.201712246
- H. Wang, W. Zhu, J. Liu, Z. Dong, Z. Liu, pH-responsive nanoscale covalent organic polymers as a biodegradable drug carrier for combined photodynamic chemotherapy of cancer. ACS Appl. Mater. Interf. 10, 14475–14482 (2018). https://doi.org/10.1021/acsami.8b02080
- K. Wang, Z. Zhang, L. Lin, K. Hao, J. Chen et al., Cyanine-assisted exfoliation of covalent organic frameworks in nanocomposites for highly efficient chemo-photothermal tumor therapy. ACS Appl. Mater. Interf. 11, 39503–39512 (2019). https://doi.org/10.1021/acsami.9b13544
- S.B. Wang, Z.X. Chen, F. Gao, C. Zhang, M.Z. Zou et al., Remodeling extracellular matrix based on functional covalent organic framework to enhance tumor photodynamic therapy. Biomaterials 234, 119772 (2020). https://doi.org/10.1016/j.biomaterials.2020.119772
- L. Akyuz, An imine based COF as a smart carrier for targeted drug delivery: From synthesis to computational studies. Micropor. Mesopor. Mater. 294, 109850 (2020). https://doi.org/10.1016/j.micromeso.2019.109850
- K. Wang, Z. Zhang, L. Lin, J. Chen, K. Hao et al., Covalent organic nanosheets integrated heterojunction with two strategies to overcome hypoxic-tumor photodynamic therapy. Chem. Mater. 31, 3313–3323 (2019). https://doi.org/10.1021/acs.chemmater.9b00265
- H. Dai, Q. Shen, J. Shao, W. Wang, F. Gao et al., Small molecular NIR-II fluorophores for cancer phototheranostics. Innovation 2, 100082 (2021). https://doi.org/10.1016/j.xinn.2021.100082
- H. Tan, P. Kong, R. Zhang, M. Gao, M. Liu et al., Controllable generation of reactive oxygen species on cyano-group-modified carbon nitride for selective epoxidation of styrene. Innovation 2, 100089 (2021). https://doi.org/10.1016/j.xinn.2021.100089
- D. Tao, L. Feng, Y. Chao, C. Liang, X. Song et al., Covalent organic polymers based on fluorinated porphyrin as oxygen nanoshuttles for tumor hypoxia relief and enhanced photodynamic therapy. Adv. Funct. Mater. 28, 1804901 (2018). https://doi.org/10.1002/adfm.201804901
- Y. Zhang, L. Zhang, Z. Wang, F. Wang, L. Kang et al., Renal-clearable ultrasmall covalent organic framework nanodots as photodynamic agents for effective cancer therapy. Biomaterials 223, 119462 (2019). https://doi.org/10.1016/j.biomaterials.2019.119462
- H. Wang, W. Zhu, L. Feng, Q. Chen, Y. Chao et al., Nanoscale covalent organic polymers as a biodegradable nanomedicine for chemotherapy-enhanced photodynamic therapy of cancer. Nano Res. 11, 3244–3257 (2018). https://doi.org/10.1007/s12274-017-1858-y
- Y. Qian, D. Li, Y. Han, H.L. Jiang, Photocatalytic molecular oxygen activation by regulating excitonic effects in covalent organic frameworks. J. Am. Chem. Soc. 142, 20763–20771 (2020). https://doi.org/10.1021/jacs.0c09727
- S. Liu, J. Yang, R. Guo, L. Deng, A. Dong et al., Facile fabrication of redox-responsive covalent organic framework nanocarriers for efficiently loading and delivering doxorubicin. Macromol. Rapid Commun. 41, e1900570 (2020). https://doi.org/10.1002/marc.201900570
- Y. Ding, Y. Dai, M. Wu, L. Li, Glutathione-mediated nanomedicines for cancer diagnosis and therapy. Chem. Eng. J. 128880 (2021). https://doi.org/10.1016/j.cej.2021.128880
- Y. Zhao, W. Dai, Y. Peng, Z. Niu, Q. Sun et al., A corrole-based covalent organic framework featuring desymmetrized topology. Angew. Chem. Int. Ed. 59, 4354–4359 (2020). https://doi.org/10.1002/anie.201915569
- Q. Guan, D.D. Fu, Y.A. Li, X.M. Kong, Z.Y. Wei et al., BODIPY-decorated nanoscale covalent organic frameworks for photodynamic therapy. iScience 14, 180–198 (2019). https://doi.org/10.1016/j.isci.2019.03.028
- C. Hu, L. Cai, S. Liu, M. Pang, Integration of a highly monodisperse covalent organic framework photosensitizer with cation exchange synthesized Ag2Se nanoparticles for enhanced phototherapy. Chem. Commun. 55, 9164–9167 (2019). https://doi.org/10.1039/c9cc04668b
- X. Li, J.F. Lovell, J. Yoon, X. Chen, Clinical development and potential of photothermal and photodynamic therapies for cancer. Nat. Rev. Clin. Oncol. 17, 657–674 (2020). https://doi.org/10.1038/s41571-020-0410-2
- Q. Guan, L.L. Zhou, Y.A. Li, W.Y. Li, S. Wang et al., Nanoscale covalent organic framework for combinatorial antitumor photodynamic and photothermal therapy. ACS Nano 13, 13304–13316 (2019). https://doi.org/10.1021/acsnano.9b06467
- D. Wang, Z. Zhang, L. Lin, F. Liu, Y. Wang et al., Porphyrin-based covalent organic framework nanoparticles for photoacoustic imaging-guided photodynamic and photothermal combination cancer therapy. Biomaterials 223, 119459 (2019). https://doi.org/10.1016/j.biomaterials.2019.119459
- P. Bhanja, S. Mishra, K. Manna, A. Mallick, K. Das Saha et al., Covalent organic framework material bearing phloroglucinol building units as a potent anticancer agent. ACS Appl. Mater. Interf. 9, 31411–31423 (2017). https://doi.org/10.1021/acsami.7b07343
- X. Yan, Y. Song, J. Liu, N. Zhou, C. Zhang et al., Two-dimensional porphyrin-based covalent organic framework: A novel platform for sensitive epidermal growth factor receptor and living cancer cell detection. Biosens. Bioelectron. 126, 734–742 (2019). https://doi.org/10.1016/j.bios.2018.11.047
- P. Sun, J. Hai, S. Sun, S. Lu, S. Liu et al., Aqueous stable Pd nanoparticles/covalent organic framework nanocomposite: an efficient nanoenzyme for colorimetric detection and multicolor imaging of cancer cells. Nanoscale 12, 825–831 (2020). https://doi.org/10.1039/c9nr08486j
- Y. Liu, Y. Zhang, X. Li, X. Gao, X. Niu et al., Fluorescence-enhanced covalent organic framework nanosystem for tumor imaging and photothermal therapy. Nanoscale 11, 10429–10438 (2019). https://doi.org/10.1039/c9nr02140j
- J.Y. Zeng, X.S. Wang, B.R. Xie, M.J. Li, X.Z. Zhang, Covalent organic framework for improving near-infrared light induced fluorescence imaging through two-photon induction. Angew. Chem. Int. Ed. 59, 10087–10094 (2020). https://doi.org/10.1002/anie.201912594
References
C.S. Diercks, O.M. Yaghi, The atom, the molecule, and the covalent organic framework. Science 355, eaal1585 (2017). https://doi.org/10.1126/science.aal1585
C. Hu, Z. Zhang, S. Liu, X. Liu, M. Pang, Monodispersed cuse sensitized covalent organic framework photosensitizer with an enhanced photodynamic and photothermal effect for cancer therapy. ACS Appl. Mater. Interf. 11, 23072–23082 (2019). https://doi.org/10.1021/acsami.9b08394
Y. Shi, S. Liu, Y. Liu, C. Sun, M. Chang et al., Facile fabrication of nanoscale porphyrinic covalent organic polymers for combined photodynamic and photothermal cancer therapy. ACS Appl. Mater. Interf. 11, 12321–12326 (2019). https://doi.org/10.1021/acsami.9b00361
X. Liu, H. Pang, X. Liu, Q. Li, N. Zhang et al., Orderly porous covalent organic frameworks-based materials: superior adsorbents for pollutants removal from aqueous solutions. Innovation 2, 100076 (2021). https://doi.org/10.1016/j.xinn.2021.100076
S. Bhunia, K.A. Deo, A.K. Gaharwar, 2D covalent organic frameworks for biomedical applications. Adv. Funct. Mater. 30, 2002046 (2020). https://doi.org/10.1002/adfm.202002046
S.S. Chui, S.M. Lo, J.P. Charmant, A.G. Orpen, I.D. Williams, A chemically functionalizable nanoporous material. Science 283, 1148–1150 (1999). https://doi.org/10.1126/science.283.5405.1148
A.P. Cote, A.I. Benin, N.W. Ockwig, M. O’Keeffe, A.J. Matzger et al., Porous, crystalline, covalent organic frameworks. Science 310, 1166–1170 (2005). https://doi.org/10.1126/science.1120411
E. Jin, J. Li, K. Geng, Q. Jiang, H. Xu et al., Designed synthesis of stable light-emitting two-dimensional sp(2) carbon-conjugated covalent organic frameworks. Nat. Commun. 9, 4143 (2018). https://doi.org/10.1038/s41467-018-06719-8
X. Li, Q. Gao, J. Wang, Y. Chen, Z.H. Chen et al., Tuneable near white-emissive two-dimensional covalent organic frameworks. Nat. Commun. 9, 2335 (2018). https://doi.org/10.1038/s41467-018-04769-6
C. Liu, E. Park, Y. Jin, J. Liu, Y. Yu et al., Separation of arylenevinylene macrocycles with a surface-confined two-dimensional covalent organic framework. Angew. Chem. Int. Ed. 57, 8984–8988 (2018). https://doi.org/10.1002/anie.201803937
C. Jiang, M. Tang, S. Zhu, J. Zhang, Y. Wu et al., Constructing universal ionic sieves via alignment of two-dimensional covalent organic frameworks (COFs). Angew. Chem. Int. Ed. 57, 16072–16076 (2018). https://doi.org/10.1002/anie.201809907
R.R. Liang, A. Ru-Han, S.Q. Xu, Q.Y. Qi, X. Zhao, Fabricating organic nanotubes through selective disassembly of two-dimensional covalent organic frameworks. J. Am. Chem. Soc. 142, 70–74 (2020). https://doi.org/10.1021/jacs.9b11401
V. Lakshmi, C.H. Liu, M. Rajeswara Rao, Y. Chen, Y. Fang et al., A two-dimensional poly(azatriangulene) covalent organic framework with semiconducting and paramagnetic states. J. Am. Chem. Soc. 142, 2155–2160 (2020). https://doi.org/10.1021/jacs.9b11528
H. Li, A.M. Evans, I. Castano, M.J. Strauss, W.R. Dichtel et al., Nucleation-elongation dynamics of two-dimensional covalent organic frameworks. J. Am. Chem. Soc. 142, 1367–1374 (2020). https://doi.org/10.1021/jacs.9b10869
Q. Hao, Z.J. Li, C. Lu, B. Sun, Y.W. Zhong et al., Oriented two-dimensional covalent organic framework films for near-infrared electrochromic application. J. Am. Chem. Soc. 141, 19831–19838 (2019). https://doi.org/10.1021/jacs.9b09956
J.W. Colson, A.R. Woll, A. Mukherjee, M.P. Levendorf, E.L. Spitler et al., Oriented 2D covalent organic framework thin films on single-layer graphene. Science 332, 228–231 (2011). https://doi.org/10.1126/science.1202747
J.-T. Yu, Z. Chen, J. Sun, Z.-T. Huang, Q.-Y. Zheng, Cyclotricatechylene based porous crystalline material: synthesis and applications in gas storage. J. Mater. Chem. 22, 5369 (2012). https://doi.org/10.1039/c2jm15159f
S.S. Han, H. Furukawa, O.M. Yaghi, W.A. Goddard, Covalent organic frameworks as exceptional hydrogen storage materials. J. Am. Chem. Soc. 130, 11580–11581 (2008). https://doi.org/10.1021/ja803247y
H. Furukawa, O.M. Yaghi, Storage of hydrogen, methane, and carbon dioxide in highly porous covalent organic frameworks for clean energy applications. J. Am. Chem. Soc. 131, 8875–8883 (2009). https://doi.org/10.1021/ja9015765
S. Lin, C.S. Diercks, Y.-B. Zhang, N. Kornienko, E.M. Nichols et al., Covalent organic frameworks comprising cobalt porphyrins for catalytic CO2 reduction in water. Science 349, 1208–1213 (2015). https://doi.org/10.1126/science.aac8343
L. Stegbauer, K. Schwinghammer, B.V. Lotsch, A hydrazone-based covalent organic framework for photocatalytic hydrogen production. Chem. Sci. 5, 2789–2793 (2014). https://doi.org/10.1039/c4sc00016a
S.Y. Ding, J. Gao, Q. Wang, Y. Zhang, W.G. Song et al., Construction of covalent organic framework for catalysis: Pd/COF-LZU1 in Suzuki-Miyaura coupling reaction. J. Am. Chem. Soc. 133, 19816–19822 (2011). https://doi.org/10.1021/ja206846p
N. Huang, X. Ding, J. Kim, H. Ihee, D. Jiang, A photoresponsive smart covalent organic framework. Angew. Chem. Int. Ed. 54, 8704–8707 (2015). https://doi.org/10.1002/anie.201503902
M. Dogru, T. Bein, On the road towards electroactive covalent organic frameworks. Chem. Commun. 50, 5531–5546 (2014). https://doi.org/10.1039/c3cc46767h
L. Chen, K. Furukawa, J. Gao, A. Nagai, T. Nakamura et al., Photoelectric covalent organic frameworks: converting open lattices into ordered donor-acceptor heterojunctions. J. Am. Chem. Soc. 136, 9806–9809 (2014). https://doi.org/10.1021/ja502692w
M. Calik, F. Auras, L.M. Salonen, K. Bader, I. Grill et al., Extraction of photogenerated electrons and holes from a covalent organic framework integrated heterojunction. J. Am. Chem. Soc. 136, 17802–17807 (2014). https://doi.org/10.1021/ja509551m
F. Zhao, H. Liu, S.D.R. Mathe, A. Dong, J. Zhang, Covalent organic frameworks: from materials design to biomedical application. Nanomaterials 8 (2017). http://doi.org/https://doi.org/10.3390/nano8010015
Q. Guan, L.L. Zhou, W.Y. Li, Y.A. Li, Y.B. Dong, Covalent organic frameworks (COFs) for cancer therapeutics. Chemistry 26, 5583–5591 (2020). https://doi.org/10.1002/chem.201905150
G. Zhang, X. Li, Q. Liao, Y. Liu, K. Xi et al., Water-dispersible PEG-curcumin/amine-functionalized covalent organic framework nanocomposites as smart carriers for in vivo drug delivery. Nat. Commun. 9, 2785 (2018). https://doi.org/10.1038/s41467-018-04910-5
S. Mitra, H.S. Sasmal, T. Kundu, S. Kandambeth, K. Illath et al., Targeted drug delivery in covalent organic nanosheets (CONs) via sequential postsynthetic modification. J. Am. Chem. Soc. 139, 4513–4520 (2017). https://doi.org/10.1021/jacs.7b00925
Q. Fang, J. Wang, S. Gu, R.B. Kaspar, Z. Zhuang et al., 3D porous crystalline polyimide covalent organic frameworks for drug delivery. J. Am. Chem. Soc. 137, 8352–8355 (2015). https://doi.org/10.1021/jacs.5b04147
V.S. Vyas, M. Vishwakarma, I. Moudrakovski, F. Haase, G. Savasci et al., Exploiting noncovalent interactions in an imine-based covalent organic framework for quercetin delivery. Adv. Mater. 28, 8749–8754 (2016). https://doi.org/10.1002/adma.201603006
M.-X. Wu, Y.-W. Yang, Applications of covalent organic frameworks (COFs): From gas storage and separation to drug delivery. Chinese Chem. Lett. 28, 1135–1143 (2017). https://doi.org/10.1016/j.cclet.2017.03.026
L. Zhang, S. Wang, Y. Zhou, C. Wang, X.Z. Zhang et al., Covalent organic frameworks as favorable constructs for photodynamic therapy. Angew. Chem. Int. Ed. 58, 14213–14218 (2019). https://doi.org/10.1002/anie.201909020
S. Gan, X. Tong, Y. Zhang, J. Wu, Y. Hu et al., Covalent organic framework-supported molecularly dispersed near-infrared dyes boost immunogenic phototherapy against tumors. Adv. Funct. Mater. 29, 1902757 (2019). https://doi.org/10.1002/adfm.201902757
S. Kantidas, S. Mishra, K. Manna, U. Kayal, S. Mahapatra et al., A new triazine based pi-conjugated mesoporous 2D covalent organic framework: its in vitro anticancer activities. Chem. Commun. 54, 11475–11478 (2018). https://doi.org/10.1039/c8cc07289b
P. Wang, F. Zhou, K. Guan, Y. Wang, X. Fu et al., In vivo therapeutic response monitoring by a self-reporting upconverting covalent organic framework nanoplatform. Chem. Sci. 11, 1299–1306 (2020). https://doi.org/10.1039/c9sc04875h
J. Wang, L. Zhao, B. Yan, Indicator displacement assay inside dye-functionalized covalent organic frameworks for ultrasensitive monitoring of sialic acid, an ovarian cancer biomarker. ACS Appl. Mater. Interf. 12, 12990–12997 (2020). https://doi.org/10.1021/acsami.0c00101
T. Yang, Y. Cui, H. Chen, W. Li, Controllable preparation of two dimensional metal- or covalent organic frameworks for chemical sensing and biosensing. Acta Chim. Sin. 75, 339 (2017). https://doi.org/10.6023/a16110592
D. Cui, D.F. Perepichka, J.M. MacLeod, F. Rosei, Surface-confined single-layer covalent organic frameworks: design, synthesis and application. Chem. Soc. Rev. 49, 2020–2038 (2020). https://doi.org/10.1039/c9cs00456d
S.B. Alahakoon, S.D. Diwakara, C.M. Thompson, R.A. Smaldone, Supramolecular design in 2D covalent organic frameworks. Chem. Soc. Rev. 49, 1344–1356 (2020). https://doi.org/10.1039/c9cs00884e
X. Han, C. Yuan, B. Hou, L. Liu, H. Li et al., Chiral covalent organic frameworks: design, synthesis and property. Chem. Soc. Rev. 49, 6248–6272 (2020). https://doi.org/10.1039/d0cs00009d
R.R. Liang, S.Y. Jiang, A. Ru-Han, X. Zhao, Two-dimensional covalent organic frameworks with hierarchical porosity. Chem. Soc. Rev. 49, 3920–3951 (2020). https://doi.org/10.1039/d0cs00049c
F. Yu, W. Liu, B. Li, D. Tian, J.L. Zuo et al., Photostimulus-responsive large-area two-dimensional covalent organic framework films. Angew. Chem. Int. Ed. 58, 16101–16104 (2019). https://doi.org/10.1002/anie.201909613
Y. Zhao, H. Liu, C. Wu, Z. Zhang, Q. Pan et al., Fully conjugated two-dimensional sp(2) -carbon covalent organic frameworks as artificial photosystem i with high efficiency. Angew. Chem. Int. Ed. 58, 5376–5381 (2019). https://doi.org/10.1002/anie.201901194
D. Zhou, X. Tan, H. Wu, L. Tian, M. Li, Synthesis of C-C bonded two-dimensional conjugated covalent organic framework films by suzuki polymerization on a liquid-liquid interface. Angew. Chem. Int. Ed. 58, 1376–1381 (2019). https://doi.org/10.1002/anie.201811399
L. Liang, Y. Qiu, W.D. Wang, J. Han, Y. Luo et al., Non-interpenetrated single-crystal covalent organic frameworks. Angew. Chem. Int. Ed. 59, 17991–17995 (2020). https://doi.org/10.1002/anie.202007230
E. Tavakoli, A. Kakekhani, S. Kaviani, P. Tan, M.M. Ghaleni et al., In situ bottom-up synthesis of porphyrin-based covalent organic frameworks. J. Am. Chem. Soc. 141, 19560–19564 (2019). https://doi.org/10.1021/jacs.9b10787
C.G. Na, D. Ravelli, E.J. Alexanian, Direct decarboxylative functionalization of carboxylic acids via O-H hydrogen atom transfer. J. Am. Chem. Soc. 142, 44–49 (2020). https://doi.org/10.1021/jacs.9b10825
J.F. Dienstmaier, D.D. Medina, M. Dogru, P. Knochel, T. Bein et al., Isoreticular two-dimensional covalent organic frameworks synthesized by on-surface condensation of diboronic acids. ACS Nano 6, 7234–7242 (2012). https://doi.org/10.1021/nn302363d
S. Park, Z. Liao, B. Ibarlucea, H. Qi, H.H. Lin et al., Two-dimensional boronate ester covalent organic framework thin films with large single crystalline domains for a neuromorphic memory device. Angew. Chem. Int. Ed. 59, 8218–8224 (2020). https://doi.org/10.1002/anie.201916595
A.D. Chavez, B.J. Smith, M.K. Smith, P.A. Beaucage, B.H. Northrop et al., Discrete, hexagonal boronate ester-linked macrocycles related to two-dimensional covalent organic frameworks. Chem. Mater. 28, 4884–4888 (2016). https://doi.org/10.1021/acs.chemmater.6b01831
A.M. Evans, L.R. Parent, N.C. Flanders, R.P. Bisbey, E. Vitaku et al., Seeded growth of single-crystal two-dimensional covalent organic frameworks. Science 361, 52–57 (2018). https://doi.org/10.1126/science.aar7883
B.J. Smith, W.R. Dichtel, Mechanistic studies of two-dimensional covalent organic frameworks rapidly polymerized from initially homogenous conditions. J. Am. Chem. Soc. 136, 8783–8789 (2014). https://doi.org/10.1021/ja5037868
S. Chandra, D. Roy Chowdhury, M. Addicoat, T. Heine, A. Paul et al., Molecular level control of the capacitance of two-dimensional covalent organic frameworks: role of hydrogen bonding in energy storage materials. Chem. Mater. 29, 2074–2080 (2017). https://doi.org/10.1021/acs.chemmater.6b04178
P. Wang, F. Zhou, C. Zhang, S.Y. Yin, L. Teng et al., Ultrathin two-dimensional covalent organic framework nanoprobe for interference-resistant two-photon fluorescence bioimaging. Chem. Sci. 9, 8402–8408 (2018). https://doi.org/10.1039/c8sc03393e
M. Wang, M. Ballabio, M. Wang, H.H. Lin, B.P. Biswal et al., Unveiling electronic properties in metal-phthalocyanine-based pyrazine-linked conjugated two-dimensional covalent organic frameworks. J. Am. Chem. Soc. 141, 16810–16816 (2019). https://doi.org/10.1021/jacs.9b07644
P. Kuhn, M. Antonietti, A. Thomas, Porous, covalent triazine-based frameworks prepared by ionothermal synthesis. Angew. Chem. Int. Ed. 47, 3450–3453 (2008). https://doi.org/10.1002/anie.200705710
E. Jin, M. Asada, Q. Xu, S. Dalapati, M.A. Addicoat et al., Two-dimensional sp(2) carbon-conjugated covalent organic frameworks. Science 357, 673–676 (2017). https://doi.org/10.1126/science.aan0202
S. Thomas, H. Li, R.R. Dasari, A.M. Evans, I. Castano et al., Design and synthesis of two-dimensional covalent organic frameworks with four-arm cores: prediction of remarkable ambipolar charge-transport properties. Mater. Horiz. 6, 1868–1876 (2019). https://doi.org/10.1039/c9mh00035f
X. Guan, H. Li, Y. Ma, M. Xue, Q. Fang et al., Chemically stable polyarylether-based covalent organic frameworks. Nat. Chem. 11, 587–594 (2019). https://doi.org/10.1038/s41557-019-0238-5
X. Li, P. Yadav, K.P. Loh, Function-oriented synthesis of two-dimensional (2D) covalent organic frameworks-from 3D solids to 2D sheets. Chem. Soc. Rev. 49, 4835–4866 (2020). https://doi.org/10.1039/d0cs00236d
A.C. Jakowetz, T.F. Hinrichsen, L. Ascherl, T. Sick, M. Calik et al., Excited-state dynamics in fully conjugated 2D covalent organic frameworks. J. Am. Chem. Soc. 141, 11565–11571 (2019). https://doi.org/10.1021/jacs.9b03956
Z. Meng, R.M. Stolz, K.A. Mirica, Two-dimensional chemiresistive covalent organic framework with high intrinsic conductivity. J. Am. Chem. Soc. 141, 11929–11937 (2019). https://doi.org/10.1021/jacs.9b03441
T. Sick, J.M. Rotter, S. Reuter, S. Kandambeth, N.N. Bach et al., Switching on and off interlayer correlations and porosity in 2D covalent organic frameworks. J. Am. Chem. Soc. 141, 12570–12581 (2019). https://doi.org/10.1021/jacs.9b02800
E. Vitaku, W.R. Dichtel, Synthesis of 2D imine-linked covalent organic frameworks through formal transimination reactions. J. Am. Chem. Soc. 139, 12911–12914 (2017). https://doi.org/10.1021/jacs.7b06913
Y. Peng, Y. Huang, Y. Zhu, B. Chen, L. Wang et al., Ultrathin two-dimensional covalent organic framework nanosheets: preparation and application in highly sensitive and selective DNA detection. J. Am. Chem. Soc. 139, 8698–8704 (2017). https://doi.org/10.1021/jacs.7b04096
X. Wang, X. Han, J. Zhang, X. Wu, Y. Liu et al., Homochiral 2D porous covalent organic frameworks for heterogeneous asymmetric catalysis. J. Am. Chem. Soc. 138, 12332–12335 (2016). https://doi.org/10.1021/jacs.6b07714
D.A. Vazquez-Molina, G.S. Mohammad-Pour, C. Lee, M.W. Logan, X. Duan et al., Mechanically Shaped two-dimensional covalent organic frameworks reveal crystallographic alignment and fast li-ion conductivity. J. Am. Chem. Soc. 138, 9767–9770 (2016). https://doi.org/10.1021/jacs.6b05568
R.P. Bisbey, C.R. DeBlase, B.J. Smith, W.R. Dichtel, Two-dimensional covalent organic framework thin films grown in flow. J. Am. Chem. Soc. 138, 11433–11436 (2016). https://doi.org/10.1021/jacs.6b04669
W.K. Haug, E.R. Wolfson, B.T. Morman, C.M. Thomas, P.L. McGrier, A nickel-doped dehydrobenzoannulene-based two-dimensional covalent organic framework for the reductive cleavage of inert aryl C-S bonds. J. Am. Chem. Soc. 142, 5521–5525 (2020). https://doi.org/10.1021/jacs.0c01026
X. Ding, L. Chen, Y. Honsho, X. Feng, O. Saengsawang et al., An n-channel two-dimensional covalent organic framework. J. Am. Chem. Soc. 133, 14510–14513 (2011). https://doi.org/10.1021/ja2052396
Z. Xie, B. Wang, Z. Yang, X. Yang, X. Yu et al., Stable 2D heteroporous covalent organic frameworks for efficient ionic conduction. Angew. Chem. Int. Ed. 58, 15742–15746 (2019). https://doi.org/10.1002/anie.201909554
Y. Ma, Y. Wang, H. Li, X. Guan, B. Li et al., Three-dimensional chemically stable covalent organic frameworks through hydrophobic engineering. Angew. Chem. Int. Ed. 59, 19633–19638 (2020). https://doi.org/10.1002/anie.202005277
X. Feng, L. Chen, Y. Dong, D. Jiang, Porphyrin-based two-dimensional covalent organic frameworks: synchronized synthetic control of macroscopic structures and pore parameters. Chem. Commun. 47, 1979–1981 (2011). https://doi.org/10.1039/c0cc04386a
Y. Wang, Y. Liu, H. Li, X. Guan, M. Xue et al., Three-dimensional mesoporous covalent organic frameworks through steric hindrance engineering. J. Am. Chem. Soc. 142, 3736–3741 (2020). https://doi.org/10.1021/jacs.0c00560
G. Lin, H. Ding, D. Yuan, B. Wang, C. Wang, A pyrene-based, fluorescent three-dimensional covalent organic framework. J. Am. Chem. Soc. 138, 3302–3305 (2016). https://doi.org/10.1021/jacs.6b00652
L.M. Lanni, R.W. Tilford, M. Bharathy, J.J. Lavigne, Enhanced hydrolytic stability of self-assembling alkylated two-dimensional covalent organic frameworks. J. Am. Chem. Soc. 133, 13975–13983 (2011). https://doi.org/10.1021/ja203807h
M. Martinez-Abadia, C.T. Stoppiello, K. Strutynski, B. Lerma-Berlanga, C. Marti-Gastaldo et al., A wavy two-dimensional covalent organic framework from core-twisted polycyclic aromatic hydrocarbons. J. Am. Chem. Soc. 141, 14403–14410 (2019). https://doi.org/10.1021/jacs.9b07383
X. Li, J. Qiao, S.W. Chee, H.S. Xu, X. Zhao et al., Scalable construction of highly crystalline acylhydrazone two-dimensional covalent organic frameworks via dipole-induced antiparallel stacking. J. Am. Chem. Soc. 142, 4932–4943 (2020). https://doi.org/10.1021/jacs.0c00553
X. Wu, X. Han, Y. Liu, Y. Liu, Y. Cui, Control interlayer stacking and chemical stability of two-dimensional covalent organic frameworks via steric tuning. J. Am. Chem. Soc. 140, 16124–16133 (2018). https://doi.org/10.1021/jacs.8b08452
S. Bi, C. Yang, W. Zhang, J. Xu, L. Liu et al., Two-dimensional semiconducting covalent organic frameworks via condensation at arylmethyl carbon atoms. Nat. Commun. 10, 2467 (2019). https://doi.org/10.1038/s41467-019-10504-6
J. Dong, X. Li, S.B. Peh, Y.D. Yuan, Y. Wang et al., Restriction of molecular rotors in ultrathin two-dimensional covalent organic framework nanosheets for sensing signal amplification. Chem. Mater. 31, 146–160 (2018). https://doi.org/10.1021/acs.chemmater.8b03685
C. Gao, J. Li, S. Yin, G. Lin, T. Ma et al., Isostructural three-dimensional covalent organic frameworks. Angew. Chem. Int. Ed. 58, 9770–9775 (2019). https://doi.org/10.1002/anie.201905591
Q. Lu, Y. Ma, H. Li, X. Guan, Y. Yusran et al., Postsynthetic functionalization of three-dimensional covalent organic frameworks for selective extraction of lanthanide ions. Angew. Chem. Int. Ed. 57, 6042–6048 (2018). https://doi.org/10.1002/anie.201712246
H. Wang, W. Zhu, J. Liu, Z. Dong, Z. Liu, pH-responsive nanoscale covalent organic polymers as a biodegradable drug carrier for combined photodynamic chemotherapy of cancer. ACS Appl. Mater. Interf. 10, 14475–14482 (2018). https://doi.org/10.1021/acsami.8b02080
K. Wang, Z. Zhang, L. Lin, K. Hao, J. Chen et al., Cyanine-assisted exfoliation of covalent organic frameworks in nanocomposites for highly efficient chemo-photothermal tumor therapy. ACS Appl. Mater. Interf. 11, 39503–39512 (2019). https://doi.org/10.1021/acsami.9b13544
S.B. Wang, Z.X. Chen, F. Gao, C. Zhang, M.Z. Zou et al., Remodeling extracellular matrix based on functional covalent organic framework to enhance tumor photodynamic therapy. Biomaterials 234, 119772 (2020). https://doi.org/10.1016/j.biomaterials.2020.119772
L. Akyuz, An imine based COF as a smart carrier for targeted drug delivery: From synthesis to computational studies. Micropor. Mesopor. Mater. 294, 109850 (2020). https://doi.org/10.1016/j.micromeso.2019.109850
K. Wang, Z. Zhang, L. Lin, J. Chen, K. Hao et al., Covalent organic nanosheets integrated heterojunction with two strategies to overcome hypoxic-tumor photodynamic therapy. Chem. Mater. 31, 3313–3323 (2019). https://doi.org/10.1021/acs.chemmater.9b00265
H. Dai, Q. Shen, J. Shao, W. Wang, F. Gao et al., Small molecular NIR-II fluorophores for cancer phototheranostics. Innovation 2, 100082 (2021). https://doi.org/10.1016/j.xinn.2021.100082
H. Tan, P. Kong, R. Zhang, M. Gao, M. Liu et al., Controllable generation of reactive oxygen species on cyano-group-modified carbon nitride for selective epoxidation of styrene. Innovation 2, 100089 (2021). https://doi.org/10.1016/j.xinn.2021.100089
D. Tao, L. Feng, Y. Chao, C. Liang, X. Song et al., Covalent organic polymers based on fluorinated porphyrin as oxygen nanoshuttles for tumor hypoxia relief and enhanced photodynamic therapy. Adv. Funct. Mater. 28, 1804901 (2018). https://doi.org/10.1002/adfm.201804901
Y. Zhang, L. Zhang, Z. Wang, F. Wang, L. Kang et al., Renal-clearable ultrasmall covalent organic framework nanodots as photodynamic agents for effective cancer therapy. Biomaterials 223, 119462 (2019). https://doi.org/10.1016/j.biomaterials.2019.119462
H. Wang, W. Zhu, L. Feng, Q. Chen, Y. Chao et al., Nanoscale covalent organic polymers as a biodegradable nanomedicine for chemotherapy-enhanced photodynamic therapy of cancer. Nano Res. 11, 3244–3257 (2018). https://doi.org/10.1007/s12274-017-1858-y
Y. Qian, D. Li, Y. Han, H.L. Jiang, Photocatalytic molecular oxygen activation by regulating excitonic effects in covalent organic frameworks. J. Am. Chem. Soc. 142, 20763–20771 (2020). https://doi.org/10.1021/jacs.0c09727
S. Liu, J. Yang, R. Guo, L. Deng, A. Dong et al., Facile fabrication of redox-responsive covalent organic framework nanocarriers for efficiently loading and delivering doxorubicin. Macromol. Rapid Commun. 41, e1900570 (2020). https://doi.org/10.1002/marc.201900570
Y. Ding, Y. Dai, M. Wu, L. Li, Glutathione-mediated nanomedicines for cancer diagnosis and therapy. Chem. Eng. J. 128880 (2021). https://doi.org/10.1016/j.cej.2021.128880
Y. Zhao, W. Dai, Y. Peng, Z. Niu, Q. Sun et al., A corrole-based covalent organic framework featuring desymmetrized topology. Angew. Chem. Int. Ed. 59, 4354–4359 (2020). https://doi.org/10.1002/anie.201915569
Q. Guan, D.D. Fu, Y.A. Li, X.M. Kong, Z.Y. Wei et al., BODIPY-decorated nanoscale covalent organic frameworks for photodynamic therapy. iScience 14, 180–198 (2019). https://doi.org/10.1016/j.isci.2019.03.028
C. Hu, L. Cai, S. Liu, M. Pang, Integration of a highly monodisperse covalent organic framework photosensitizer with cation exchange synthesized Ag2Se nanoparticles for enhanced phototherapy. Chem. Commun. 55, 9164–9167 (2019). https://doi.org/10.1039/c9cc04668b
X. Li, J.F. Lovell, J. Yoon, X. Chen, Clinical development and potential of photothermal and photodynamic therapies for cancer. Nat. Rev. Clin. Oncol. 17, 657–674 (2020). https://doi.org/10.1038/s41571-020-0410-2
Q. Guan, L.L. Zhou, Y.A. Li, W.Y. Li, S. Wang et al., Nanoscale covalent organic framework for combinatorial antitumor photodynamic and photothermal therapy. ACS Nano 13, 13304–13316 (2019). https://doi.org/10.1021/acsnano.9b06467
D. Wang, Z. Zhang, L. Lin, F. Liu, Y. Wang et al., Porphyrin-based covalent organic framework nanoparticles for photoacoustic imaging-guided photodynamic and photothermal combination cancer therapy. Biomaterials 223, 119459 (2019). https://doi.org/10.1016/j.biomaterials.2019.119459
P. Bhanja, S. Mishra, K. Manna, A. Mallick, K. Das Saha et al., Covalent organic framework material bearing phloroglucinol building units as a potent anticancer agent. ACS Appl. Mater. Interf. 9, 31411–31423 (2017). https://doi.org/10.1021/acsami.7b07343
X. Yan, Y. Song, J. Liu, N. Zhou, C. Zhang et al., Two-dimensional porphyrin-based covalent organic framework: A novel platform for sensitive epidermal growth factor receptor and living cancer cell detection. Biosens. Bioelectron. 126, 734–742 (2019). https://doi.org/10.1016/j.bios.2018.11.047
P. Sun, J. Hai, S. Sun, S. Lu, S. Liu et al., Aqueous stable Pd nanoparticles/covalent organic framework nanocomposite: an efficient nanoenzyme for colorimetric detection and multicolor imaging of cancer cells. Nanoscale 12, 825–831 (2020). https://doi.org/10.1039/c9nr08486j
Y. Liu, Y. Zhang, X. Li, X. Gao, X. Niu et al., Fluorescence-enhanced covalent organic framework nanosystem for tumor imaging and photothermal therapy. Nanoscale 11, 10429–10438 (2019). https://doi.org/10.1039/c9nr02140j
J.Y. Zeng, X.S. Wang, B.R. Xie, M.J. Li, X.Z. Zhang, Covalent organic framework for improving near-infrared light induced fluorescence imaging through two-photon induction. Angew. Chem. Int. Ed. 59, 10087–10094 (2020). https://doi.org/10.1002/anie.201912594