Progress and Challenges Toward Effective Flexible Perovskite Solar Cells
Corresponding Author: Mingkui Wang
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 206
Abstract
The demand for building-integrated photovoltaics and portable energy systems based on flexible photovoltaic technology such as perovskite embedded with exceptional flexibility and a superior power-to-mass ratio is enormous. The photoactive layer, i.e., the perovskite thin film, as a critical component of flexible perovskite solar cells (F-PSCs), still faces long-term stability issues when deformation occurs due to encountering temperature changes that also affect intrinsic rigidity. This literature investigation summarizes the main factors responsible for the rapid destruction of F-PSCs. We focus on long-term mechanical stability of F-PSCs together with the recent research protocols for improving this performance. Furthermore, we specify the progress in F-PSCs concerning precise design strategies of the functional layer to enhance the flexural endurance of perovskite films, such as internal stress engineering, grain boundary modification, self-healing strategy, and crystallization regulation. The existing challenges of oxygen-moisture stability and advanced encapsulation technologies of F-PSCs are also discussed. As concluding remarks, we propose our viewpoints on the large-scale commercial application of F-PSCs.
Highlights:
1 Critical issues including mechanical stability, water and oxygen resistance, transparent electrodes for flexible perovskite solar cells are discussed.
2 Roll-to-Roll technology presents a promising avenue for fabrication of flexible perovskite solar cells fabricated for large-scale commercial application.
3 Balancing the transmittance and conductivity of transparent electrodes has become a significant issue in developing efficient flexible perovskite solar cells.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M. Green, A. Ho-Baillie, H. Snaith, The emergence of perovskite solar cells. Nat. Photonics 8(7), 506–514 (2014). https://doi.org/10.1038/nphoton.2014.134
- T. Wu, Z. Qin, Y. Wang, Y. Wu, W. Chen et al., The main progress of perovskite solar cells in 2020–2021. Nano Micro Lett. 13(1), 152 (2021). https://doi.org/10.1007/s40820-021-00672-w
- J. Correa-Baena, M. Saliba, T. Buonassisi, M. Graetzel, A. Abate et al., Promises and challenges of perovskite solar cells. Science 358(6364), 739–744 (2017). https://doi.org/10.1126/science.aam6323
- J. Guo, B. Qiu, D. Yang, C. Zhu, L. Zhou et al., 15.71% efficiency all-small-molecule organic solar cells based on low-cost synthesized donor molecules. Adv. Funct. Mater. 32(13), 106712 (2021). https://doi.org/10.1002/adfm.202110159
- Z. Jia, Q. Ma, Z. Chen, L. Meng, N. Jain et al., Near-infrared absorbing acceptor with suppressed triplet exciton generation enabling high performance tandem organic solar cells. Nat. Commun. 14(1), 1236 (2023). https://doi.org/10.1038/s41467-023-36917-y
- Y. Li, X. Huang, H. Sheriff, S. Forrest, Semitransparent organic photovoltaics for building-integrated photovoltaic applications. Nat. Rev. Mater. 8(3), 186–201 (2022). https://doi.org/10.1038/s41578-022-00514-0
- M. Jošt, E. Köhnen, A. Al-Ashouri, T. Bertram, Š Tomšič et al., Perovskite/CIGS tandem solar cells: from certified 24.2% toward 30% and beyond. ACS Energy Lett. 7(4), 1298–1307 (2022). https://doi.org/10.1021/acsenergylett.2c00274
- W. Liu, H. Li, B. Qiao, S. Zhao, Z. Xu et al., Highly efficient CIGS solar cells based on a new cigs bandgap gradient design characterized by numerical simulation. Sol. Energy 233, 337–344 (2022). https://doi.org/10.1016/j.solener.2022.01.054
- N. Shrivastav, S. Kashyap, J. Madan, A. Al-Mousoi, M. Mohammed et al., Perovskite-CIGS monolithic tandem solar cells with 29.7% efficiency: a numerical study. Energy Fuels 37(4), 3083–3090 (2023). https://doi.org/10.1021/acs.energyfuels.2c03973
- J. Zhou, Q. Huang, Y. Ding, G. Hou, Y. Zhao, Passivating contacts for high-efficiency silicon-based solar cells: from single-junction to tandem architecture. Nano Energy 92, 106712 (2022). https://doi.org/10.1016/j.nanoen.2021.106712
- Z. Yeo, Z. Ling, J. Ho, Q. Lim, Y. So et al., Status review and future perspectives on mitigating light-induced degradation on silicon-based solar cells. Renew. Sustain. Energy Rev. 159, 112223 (2022). https://doi.org/10.1016/j.rser.2022.112223
- S. Jain, G. Sharma, S. Vyas, Influence of hole interface layer on the performance of cadmium telluride-based thin film solar cell. Mater. Today Proc. 74, 231–233 (2023). https://doi.org/10.1016/j.matpr.2022.08.058
- M.K. Jamarkattel, A.B. Phillips, I. Subedi, A. Abudulimu, E. Bastola et al., Indium gallium oxide emitters for high-efficiency CdTe-based solar cells. ACS Appl. Energy Mater. 5(5), 5484–5489 (2022). https://doi.org/10.1021/acsaem.2c00153
- M. Wang, N. Chamberland, L. Breau, J.E. Moser, R. Humphry-Baker et al., An organic redox electrolyte to rival triiodide/iodide in dye-sensitized solar cells. Nat. Chem. 2(5), 385–389 (2010). https://doi.org/10.1038/nchem.610
- C. Chen, M. Wang, J. Li, N. Pootrakulchote, L. Alibabaei et al., Highly efficient light-harvesting ruthenium sensitizer for thin-film dye-sensitized solar cells. ACS Nano 3(10), 3103–3109 (2009). https://doi.org/10.1021/nn900756s
- N. Papež, A. Gajdoš, D. Sobola, R. Dallaev, R. Macků et al., Effect of gamma radiation on properties and performance of gaas based solar cells. Appl. Surf. Sci. 527, 146766 (2020). https://doi.org/10.1016/j.apsusc.2020.146766
- Y. Yun, S. Moon, S. Kim, J. Lee, Flexible fabric-based gaas thin-film solar cell for wearable energy harvesting applications. Sol. Energy Mater. Sol. Cells 246, 111930 (2022). https://doi.org/10.1016/j.solmat.2022.111930
- A. Rasal, S. Yadav, A. Kashale, A. Altaee, J. Chang, Stability of quantum dot-sensitized solar cells: a review and prospects. Nano Energy 94, 106854 (2022). https://doi.org/10.1016/j.nanoen.2021.106854
- Z. Pan, H. Rao, I. Mora-Sero, J. Bisquert, X. Zhong, Quantum dot-sensitized solar cells. Chem. Soc. Rev. 47(20), 7659–7702 (2018). https://doi.org/10.1039/c8cs00431e
- M. Yang, T. Zhang, P. Schulz, Z. Li, G. Li et al., Facile fabrication of large-grain CH3NH3PbI3−xBrx films for high-efficiency solar cells via CH3NH3Br-selective Ostwald ripening. Nat. Commun. 7, 12305 (2016). https://doi.org/10.1038/ncomms12305
- Y. Zhao, F. Ma, Z. Qu, S. Yu, T. Shen et al., Inactive (PbI2)2RbCl stabilizes perovskite films for efficient solar cells. Science 377(6605), 531–534 (2022). https://doi.org/10.1126/science.abp8873
- Q. Jiang, J. Tong, Y. Xian, R. Kerner, S. Dunfield et al., Surface reaction for efficient and stable inverted perovskite solar cells. Nature 611(7935), 278–283 (2022). https://doi.org/10.1038/s41586-022-05268-x
- W. Zhang, G. Eperon, H. Snaith, Metal halide perovskites for energy applications. Nat. Energy 1(6), 16048 (2016). https://doi.org/10.1038/nenergy.2016.48
- M. Othman, F. Zheng, A. Seeber, A. Chesman, A. Scully et al., Millimeter-sized clusters of triple cation perovskite enables highly efficient and reproducible roll-to-roll fabricated inverted perovskite solar cells. Adv. Funct. Mater. 32(12), 2110700 (2021). https://doi.org/10.1002/adfm.202110700
- Y. Kim, T. Yang, R. Suhonen, A. Kemppainen, K. Hwang et al., Roll-to-roll gravure-printed flexible perovskite solar cells using eco-friendly antisolvent bathing with wide processing window. Nat. Commun. 11(1), 5146 (2020). https://doi.org/10.1038/s41467-020-18940-5
- P. Chandrasekhar, S. Chapagain, M. Blake, P. Armstrong, C. Grapperhaus et al., Rapid scalable fabrication of roll-to-roll slot-die coated flexible perovskite solar cells using intense pulse light annealing. Sustain. Energy Fuels 6(23), 5316–5323 (2022). https://doi.org/10.1039/d2se00911k
- J. Li, H.A. Dewi, H. Wang, J. Zhao, N. Tiwari et al., Co-evaporated MAPbI3 with graded fermi levels enables highly performing, scalable, and flexible p-i-n perovskite solar cells. Adv. Funct. Mater. 31(42), 2103252 (2021). https://doi.org/10.1002/adfm.202103252
- Y. Meng, C. Liu, R. Cao, J. Zhang, L. Xie et al., Pre-buried ETL with bottom-up strategy toward flexible perovskite solar cells with efficiency over 23%. Adv. Funct. Mater. 33, 2214788 (2023). https://doi.org/10.1002/adfm.202214788
- L. Zhang, C. Fu, S. Wang, M. Wang, R. Wang et al., Amorphous f-doped TiOx caulked SnO2 electron transport layer for flexible perovskite solar cells with efficiency exceeding 22.5%. Adv. Funct. Mater. 33(11), 2213961 (2023). https://doi.org/10.1002/adfm.202213961
- Y. Wang, R. Lin, X. Wang, C. Liu, Y. Ahmed et al., Oxidation-resistant all-perovskite tandem solar cells in substrate configuration. Nat. Commun. 14(1), 1819 (2023). https://doi.org/10.1038/s41467-023-37492-y
- G. Jeong, D. Koo, J. Seo, S. Jung, Y. Choi et al., Suppressed interdiffusion and degradation in flexible and transparent metal electrode-based perovskite solar cells with a graphene interlayer. Nano Lett. 20(5), 3718–3727 (2020). https://doi.org/10.1021/acs.nanolett.0c00663
- T.M. Koh, H. Wang, Y. Ng, A. Bruno, S. Mhaisalkar et al., Halide perovskite solar cells for building integrated photovoltaics: transforming building facades into power generators. Adv. Mater. 34(25), e2104661 (2022). https://doi.org/10.1002/adma.202104661
- H. Xie, T. Liang, X. Yin, J. Liu, D. Liu et al., Mechanical stability study on PEDOT:PSS-based ITO-free flexible perovskite solar cells. ACS Appl. Energy Mater. 5(3), 3081–3091 (2022). https://doi.org/10.1021/acsaem.1c03696
- N. Pendyala, S. Magdassi, L. Etgar, Inkjet-printed flexible semitransparent solar cells with perovskite and polymeric pillars. Sol. RRL 7(6), 2200988 (2023). https://doi.org/10.1002/solr.202200988
- G. Jeong, D. Koo, J.H. Woo, Y. Choi, E. Son et al., Highly efficient self-encapsulated flexible semitransparent perovskite solar cells via bifacial cation exchange. ACS Appl. Mater. Interfaces (2022). https://doi.org/10.1021/acsami.2c08023
- M. Saifullah, J. Gwak, J. Yun, Comprehensive review on material requirements, present status, and future prospects for building-integrated semitransparent photovoltaics. J. Mater. Chem. A 4(22), 8512–8540 (2016). https://doi.org/10.1039/c6ta01016d
- E. Berger, M. Bagheri, S. Asgari, J. Zhou, M. Kokkonen et al., Recent developments in perovskite-based precursor inks for scalable architectures of perovskite solar cell technology. Sustain. Energy Fuels 6(12), 2879–2900 (2022). https://doi.org/10.1039/d2se00162d
- H. Li, C. Zuo, D. Angmo, H. Weerasinghe, M. Gao et al., Fully roll-to-roll processed efficient perovskite solar cells via precise control on the morphology of PbI2:CsI layer. Nano-Micro Lett. 14(1), 79 (2022). https://doi.org/10.1007/s40820-022-00815-7
- M. Kumar, N. Yantara, S. Dharani, M. Graetzel, S. Mhaisalkar et al., Flexible, low-temperature, solution processed zno-based perovskite solid state solar cells. Chem. Commun. 49(94), 11089–11091 (2013). https://doi.org/10.1039/c3cc46534a
- C. Roldán-Carmona, O. Malinkiewicz, A. Soriano, G. Mínguez Espallargas, A. Garcia et al., Flexible high efficiency perovskite solar cells. Energy Environ. Sci. 7(3), 994–997 (2014). https://doi.org/10.1039/c3ee43619e
- S. Shin, W. Yang, J. Noh, J. Suk, N. Jeon et al., High-performance flexible perovskite solar cells exploiting Zn2SnO4 prepared in solution below 100 °C. Nat. Commun. 6, 7410 (2015). https://doi.org/10.1038/ncomms8410
- J. Yoon, H. Sung, G. Lee, W. Cho, N. Ahn et al., Superflexible, high-efficiency perovskite solar cells utilizing graphene electrodes: towards future foldable power sources. Energy Environ. Sci. 10(1), 337–345 (2017). https://doi.org/10.1039/c6ee02650h
- C. Bi, B. Chen, H. Wei, S. DeLuca, J. Huang, Efficient flexible solar cell based on composition-tailored hybrid perovskite. Adv. Mater. 29(30), 1605900 (2017). https://doi.org/10.1002/adma.201605900
- J. Feng, X. Zhu, Z. Yang, X. Zhang, J. Niu et al., Record efficiency stable flexible perovskite solar cell using effective additive assistant strategy. Adv. Mater. 30(35), e1801418 (2018). https://doi.org/10.1002/adma.201801418
- K. Huang, Y. Peng, Y. Gao, J. Shi, H. Li et al., High-performance flexible perovskite solar cells via precise control of electron transport layer. Adv. Energy Mater. 9(44), 1901419 (2019). https://doi.org/10.1002/aenm.201901419
- S. Wu, Z. Li, J. Zhang, X. Wu, X. Deng et al., Low-bandgap organic bulk-heterojunction enabled efficient and flexible perovskite solar cells. Adv. Mater. 33(51), e2105539 (2021). https://doi.org/10.1002/adma.202105539
- L. Yang, J. Feng, Z. Liu, Y. Duan, S. Zhan et al., Record-efficiency flexible perovskite solar cells enabled by multifunctional organic ions interface passivation. Adv. Mater. 34(24), e2201681 (2022). https://doi.org/10.1002/adma.202201681
- Y. Wu, G. Xu, J. Xi, Y. Shen, X. Wu et al., In situ crosslinking-assisted perovskite grain growth for mechanically robust flexible perovskite solar cells with 23.4% efficiency. Joule 7(2), 398–415 (2023). https://doi.org/10.1016/j.joule.2022.12.013
- F. Di Giacomo, A. Fakharuddin, R. Jose, T. Brown, Progress, challenges and perspectives in flexible perovskite solar cells. Energy Environ. Sci. 9(10), 3007–3035 (2016). https://doi.org/10.1039/c6ee01137c
- G. Tang, F. Yan, Recent progress of flexible perovskite solar cells. Nano Today 39, 101155 (2021). https://doi.org/10.1016/j.nantod.2021.101155
- Y. Gao, K. Huang, C. Long, Y. Ding, J. Chang et al., Flexible perovskite solar cells: from materials and device architectures to applications. ACS Energy Lett. 7(4), 1412–1445 (2022). https://doi.org/10.1021/acsenergylett.1c02768
- Y. Xu, Z. Lin, W. Wei, Y. Hao, S. Liu et al., Recent progress of electrode materials for flexible perovskite solar cells. Nano-Micro Lett. 14(1), 117 (2022). https://doi.org/10.1007/s40820-022-00859-9
- X. Meng, Z. Cai, Y. Zhang, X. Hu, Z. Xing et al., Bio-inspired vertebral design for scalable and flexible perovskite solar cells. Nat. Commun. 11(1), 3016 (2020). https://doi.org/10.1038/s41467-020-16831-3
- Q. Dong, M. Chen, Y. Liu, F. Eickemeyer, W. Zhao et al., Flexible perovskite solar cells with simultaneously improved efficiency, operational stability, and mechanical reliability. Joule 5(6), 1587–1601 (2021). https://doi.org/10.1016/j.joule.2021.04.014
- Y. Kang, R. Li, A. Wang, J. Kang, Z. Wang et al., Ionogel-perovskite matrix enabling highly efficient and stable flexible solar cells towards fully-R2R fabrication. Energy Environ. Sci. 15(8), 3439–3448 (2022). https://doi.org/10.1039/d2ee01326f
- C. Ge, Z. Yang, X. Liu, Y. Song, A. Wang et al., Stable and highly flexible perovskite solar cells with power conversion efficiency approaching 20% by elastic grain boundary encapsulation. CCS Chemistry 3(7), 2035–2044 (2021). https://doi.org/10.31635/ccschem.020.202000335
- M. Wang, Q. Fu, L. Yan, W. Pi, G. Wang et al., A Bi2Te3 topological insulator as a new and outstanding counter electrode material for high-efficiency and endurable flexible perovskite solar cells. ACS Appl. Mater. Interfaces 11(51), 47868–47877 (2019). https://doi.org/10.1021/acsami.9b15320
- C. Jia, X. Zhao, Y.-H. Lai, J. Zhao, P. Wang et al., Highly flexible, robust, stable and high efficiency perovskite solar cells enabled by van der Waals epitaxy on mica substrate. Nano Energy 60, 476–484 (2019). https://doi.org/10.1016/j.nanoen.2019.03.053
- Y. Xu, X. Guo, Z. Lin, Q. Wang, J. Su et al., Perovskite films regulation via hydrogen-bonded polymer network for efficient and stable perovskite solar cells. Angew. Chem. Int. Ed. (2023). https://doi.org/10.1002/anie.202306229
- B. Jin, L. Ren, Y. Gou, R. Ma, Z. Liang et al., Fiber-bridging-induced toughening of perovskite for resistance to crack propagation. Matter 6(5), 1622–1638 (2023). https://doi.org/10.1016/j.matt.2023.03.014
- J. Yang, W. Sheng, X. Li, Y. Zhong, Y. Su et al., Synergistic toughening and self-healing strategy for highly efficient and stable flexible perovskite solar cells. Adv. Funct. Mater. (2023). https://doi.org/10.1002/adfm.202214984
- N. Rolston, A. Printz, J. Tracy, H. Weerasinghe, D. Vak et al., Effect of cation composition on the mechanical stability of perovskite solar cells. Adv. Energy Mater. 8(9), 1702116 (2017). https://doi.org/10.1002/aenm.201702116
- S. Sun, Y. Fang, G. Kieslich, T. White, A. Cheetham, Mechanical properties of organic–inorganic halide perovskites, CH3NH3PbX3 (x = I, Br and Cl), by nanoindentation. J. Mater. Chem. A 3(36), 18450–18455 (2015). https://doi.org/10.1039/c5ta03331d
- S. Sun, F.H. Isikgor, Z. Deng, F. Wei, G. Kieslich et al., Factors influencing the mechanical properties of formamidinium lead halides and related hybrid perovskites. Chemsuschem 10(19), 3740–3745 (2017). https://doi.org/10.1002/cssc.201700991
- M. Kanninen, An augmented double cantilever beam model for studying crack propagation and arrest. Int. J. Fract. 9(1), 83–92 (1973). https://doi.org/10.1007/bf00035958
- J. Kruzic, D. Kim, K. Koester, R. Ritchie, Indentation techniques for evaluating the fracture toughness of biomaterials and hard tissues. J. Mech. Behav. Biomed. Mater. 2(4), 384–395 (2009). https://doi.org/10.1016/j.jmbbm.2008.10.008
- B. Watson, N. Rolston, A. Printz, R. Dauskardt, Scaffold-reinforced perovskite compound solar cells. Energy Environ. Sci. 10(12), 2500–2508 (2017). https://doi.org/10.1039/c7ee02185b
- C. Bruner, N. Cates, M. McGehee, R. Dauskardt, Molecular intercalation and cohesion of organic bulk heterojunction photovoltaic devices. Adv. Funct. Mater. 23(22), 2863–2871 (2013). https://doi.org/10.1002/adfm.201202969
- A. Walsh, Principles of chemical bonding and band gap engineering in hybrid organic-inorganic halide perovskites. J. Phys. Chem. C 119(11), 5755–5760 (2015). https://doi.org/10.1021/jp512420b
- L. Ma, W. Li, K. Yang, J. Bi, J. Feng et al., A- or x-site mixture on mechanical properties of APbX3 perovskite single crystals. APL Mater. 9(4), 041112 (2021). https://doi.org/10.1063/5.0015569
- Y. Galagan, F. Di Giacomo, H. Gorter, G. Kirchner, I. de Vries et al., Roll-to-roll slot die coated perovskite for efficient flexible solar cells. Adv. Energy Mater. 8(32), 1801935 (2018). https://doi.org/10.1002/aenm.201801935
- M. Kaltenbrunner, G. Adam, E. Glowacki, M. Drack, R. Schwodiauer et al., Flexible high power-per-weight perovskite solar cells with chromium oxide-metal contacts for improved stability in air. Nat. Mater. 14(10), 1032–1039 (2015). https://doi.org/10.1038/nmat4388
- P. Holzhey, M. Prettl, S. Collavini, N. Chang, M. Saliba, Toward commercialization with lightweight, flexible perovskite solar cells for residential photovoltaics. Joule 7(2), 257–271 (2023). https://doi.org/10.1016/j.joule.2022.12.012
- W. Zi, Z. Jin, S. Liu, B. Xu, Flexible perovskite solar cells based on green, continuous roll-to-roll printing technology. J. Energy Chem. 27(4), 971–989 (2018). https://doi.org/10.1016/j.jechem.2018.01.027
- Y. Hu, T. Niu, Y. Liu, Y. Zhou, Y. Xia et al., Flexible perovskite solar cells with high power-per-weight: progress, application, and perspectives. ACS Energy Lett. 6(8), 2917–2943 (2021). https://doi.org/10.1021/acsenergylett.1c01193
- A. Rafique, I. Ferreira, G. Abbas, A. Baptista, Recent advances and challenges toward application of fibers and textiles in integrated photovoltaic energy storage devices. Nano-Micro Lett. 15(1), 40 (2023). https://doi.org/10.1007/s40820-022-01008-y
- N. Rolston, K. Bush, A. Printz, A. Gold-Parker, Y. Ding et al., Engineering stress in perovskite solar cells to improve stability. Adv. Energy Mater. 8(29), 1802139 (2018). https://doi.org/10.1002/aenm.201802139
- C. Chen, Z. Su, Y. Lou, Y. Yu, K. Wang et al., Full-dimensional grain boundary stress release for flexible perovskite indoor photovoltaics. Adv. Mater. 34(16), e2200320 (2022). https://doi.org/10.1002/adma.202200320
- Z. Zheng, F. Li, J. Gong, Y. Ma, J. Gu et al., Pre-buried additive for cross-layer modification in flexible perovskite solar cells with efficiency exceeding 22%. Adv. Mater. 34(21), e2109879 (2022). https://doi.org/10.1002/adma.202109879
- X. Hu, Z. Huang, X. Zhou, P. Li, Y. Wang et al., Wearable large-scale perovskite solar-power source via nanocellular scaffold. Adv. Mater. 29(42), 1703236 (2017). https://doi.org/10.1002/adma.201703236
- X. Hu, X. Meng, X. Yang, Z. Huang, Z. Xing et al., Cementitious grain-boundary passivation for flexible perovskite solar cells with superior environmental stability and mechanical robustness. Sci. Bull. 66(6), 527–535 (2021). https://doi.org/10.1016/j.scib.2020.10.023
- T. Xue, D. Chen, M. Su, X. Hu, Z. Huang et al., Macromonomer crosslinking polymerized scaffolds for mechanically robust and flexible perovskite solar cells. J. Mater. Chem. A 10(36), 18762–18772 (2022). https://doi.org/10.1039/d2ta04502h
- M. Li, Y.G. Yang, Z.K. Wang, T. Kang, Q. Wang et al., Perovskite grains embraced in a soft fullerene network make highly efficient flexible solar cells with superior mechanical stability. Adv. Mater. 31(25), e1901519 (2019). https://doi.org/10.1002/adma.201901519
- J.-S. Park, J. Calbo, Y.-K. Jung, L.D. Whalley, A. Walsh, Accumulation of deep traps at grain boundaries in halide perovskites. ACS Energy Lett. 4(6), 1321–1327 (2019). https://doi.org/10.1021/acsenergylett.9b00840
- Y. Yan, R. Wang, Q. Dong, Y. Yin, L. Zhang et al., Polarity and moisture induced trans-grain-boundaries 2D/3D coupling structure for flexible perovskite solar cells with high mechanical reliability and efficiency. Energy Environ. Sci. 15(12), 5168–5180 (2022). https://doi.org/10.1039/d2ee01879a
- F. Zhang, S. Ye, H. Zhang, F. Zhou, Y. Hao et al., Comprehensive passivation strategy for achieving inverted perovskite solar cells with efficiency exceeding 23% by trap passivation and ion constraint. Nano Energy 89, 106370 (2021). https://doi.org/10.1016/j.nanoen.2021.106370
- H. Xiong, G. DeLuca, Y. Rui, B. Zhang, Y. Li et al., Modifying perovskite films with polyvinylpyrrolidone for ambient-air-stable highly bendable solar cells. ACS Appl. Mater. Interfaces 10(41), 35385–35394 (2018). https://doi.org/10.1021/acsami.8b04236
- M. Wang, H. Sun, F. Cao, W. Tian, L. Li, Moisture-triggered self-healing flexible perovskite photodetectors with excellent mechanical stability. Adv. Mater. 33(16), e2100625 (2021). https://doi.org/10.1002/adma.202100625
- X. Qian, Y. Shen, L. Zhang, M. Guo, X. Cai et al., Bio-inspired pangolin design for self-healable flexible perovskite light-emitting diodes. ACS Nano 16(11), 17973–17981 (2022). https://doi.org/10.1021/acsnano.2c06118
- M. Fahim, I. Firdous, S. Tsang, W. Daoud, Engineering intrinsic flexibility in polycrystalline perovskite film by grain boundary stitching for high mechanical endurance. Nano Energy 96, 107058 (2022). https://doi.org/10.1016/j.nanoen.2022.107058
- M. Li, J. Zhou, L. Tan, H. Li, Y. Liu et al., Multifunctional succinate additive for flexible perovskite solar cells with more than 23% power-conversion efficiency. Innovation 3(6), 100310 (2022). https://doi.org/10.1016/j.xinn.2022.100310
- Y. Lan, Y. Wang, Y. Lai, Z. Cai, M. Tao et al., Thermally driven self-healing efficient flexible perovskite solar cells. Nano Energy 100, 107523 (2022). https://doi.org/10.1016/j.nanoen.2022.107523
- L. Zhang, Z. You, Dynamic oxime-urethane bonds, a versatile unit of high performance self-healing polymers for diverse applications. Chin. J. Polym. Sci. 39(10), 1281–1291 (2021). https://doi.org/10.1007/s10118-021-2625-9
- J. Kang, J. Tok, Z. Bao, Self-healing soft electronics. Nat. Electron. 2(4), 144–150 (2019). https://doi.org/10.1038/s41928-019-0235-0
- M. Bartlett, M. Dickey, C. Majidi, Self-healing materials for soft-matter machines and electronics. NPG Asia Mater. 11(1), 21 (2019). https://doi.org/10.1038/s41427-019-0122-1
- X. Meng, Z. Xing, X. Hu, Z. Huang, T. Hu et al., Stretchable perovskite solar cells with recoverable performance. Angew. Chem. Int. Ed. 59(38), 16602–16608 (2020). https://doi.org/10.1002/anie.202003813
- Z. Chen, Q. Cheng, H. Chen, Y. Wu, J. Ding et al., Perovskite grain-boundary manipulation using room-temperature dynamic self-healing “ligaments” for developing highly stable flexible perovskite solar cells with 23.8% efficiency. Adv. Mater. 35(18), e2300513 (2023). https://doi.org/10.1002/adma.202300513
- M. Urban, D. Davydovich, Y. Yang, T. Demir, Y. Zhang et al., Key-and-lock commodity self-healing copolymers. Science 362(6411), 220–225 (2018). https://doi.org/10.1126/science.aat2975
- H. Ying, Y. Zhang, J. Cheng, Dynamic urea bond for the design of reversible and self-healing polymers. Nat. Commun. 5, 3218 (2014). https://doi.org/10.1038/ncomms4218
- M. Burnworth, L. Tang, J. Kumpfer, A. Duncan, F. Beyer et al., Optically healable supramolecular polymers. Nature 472(7343), 334–337 (2011). https://doi.org/10.1038/nature09963
- B. Ghosh, M. Urban, Self-repairing oxetane-substituted chitosan polyurethane networks. Science 323(5920), 1458–1460 (2009). https://doi.org/10.1126/science.1167391
- D. Kim, K. Higgins, M. Ahmadi, Navigating grain boundaries in perovskite solar cells. Matter 4(5), 1442–1445 (2021). https://doi.org/10.1016/j.matt.2021.04.006
- X. Duan, X. Li, L. Tan, Z. Huang, J. Yang et al., Controlling crystal growth via an autonomously longitudinal scaffold for planar perovskite solar cells. Adv. Mater. 32(26), e2000617 (2020). https://doi.org/10.1002/adma.202000617
- Z. Dai, S.K. Yadavalli, M. Hu, M. Chen, Y. Zhou et al., Effect of grain size on the fracture behavior of organic-inorganic halide perovskite thin films for solar cells. Scr. Mater. 185, 47–50 (2020). https://doi.org/10.1016/j.scriptamat.2020.03.044
- C. Gong, F. Li, X. Hu, C. Wang, S. Shi et al., Printing-induced alignment network design of polymer matrix for stretchable perovskite solar cells with over 20% efficiency. Adv. Funct. Mater. (2023). https://doi.org/10.1002/adfm.202301043
- N. Jiang, Y. Wang, Q. Dong, C. Ge, Z. Yang et al., Enhanced efficiency and mechanical robustness of flexible perovskite solar cells by using HPbI3 additive. Sol. RRL 5(4), 2000821 (2021). https://doi.org/10.1002/solr.202000821
- T. Yang, C. Ma, W. Cai, S. Wang, Y. Wu et al., Amidino-based dion-jacobson 2D perovskite for efficient and stable 2D/3D heterostructure perovskite solar cells. Joule 7(3), 574–586 (2023). https://doi.org/10.1016/j.joule.2023.02.003
- S. Jon, G. Sin, G. Kim, G. Jong, J. Ri, Flexible perovskite solar cells based on AgNW/ATO composite transparent electrodes. Synth. Met. 262, 116286 (2020). https://doi.org/10.1016/j.synthmet.2019.116286
- B. Cao, L. Yang, S. Jiang, H. Lin, N. Wang et al., Flexible quintuple cation perovskite solar cells with high efficiency. J. Mater. Chem. A 7(9), 4960–4970 (2019). https://doi.org/10.1039/c8ta11945g
- B. Kim, D. Kim, Y. Lee, H. Shin, G. Han et al., Highly efficient and bending durable perovskite solar cells: toward a wearable power source. Energy Environ. Sci. 8(3), 916–921 (2015). https://doi.org/10.1039/c4ee02441a
- U. Ryu, S. Jee, J. Park, I. Han, J. Lee et al., Nanocrystalline titanium metal-organic frameworks for highly efficient and flexible perovskite solar cells. ACS Nano 12(5), 4968–4975 (2018). https://doi.org/10.1021/acsnano.8b02079
- J. Zhang, W. Zhang, H. Cheng, S. Silva, Critical review of recent progress of flexible perovskite solar cells. Mater. Today 39, 66–88 (2020). https://doi.org/10.1016/j.mattod.2020.05.002
- S. Cruz, L. Rocha, J. Viana, Printing technologies on flexible substrates for printed electronics. IntechOpen (2018). https://doi.org/10.5772/intechopen.76161
- V. Zardetto, T. Brown, A. Reale, A. Di Carlo, Substrates for flexible electronics: a practical investigation on the electrical, film flexibility, optical, temperature, and solvent resistance properties. J. Polym. Sci. Part B Polym. Phys. 49(9), 638–648 (2011). https://doi.org/10.1002/polb.22227
- J. Burst, W. Rance, D. Meysing, C. Wolden, W. Metzger et al., Performance of transparent conductors on flexible glass and plastic substrates for thin film photovoltaics. in 2014 IEEE 40th Photovoltaic Specialist Conference (PVSC) (2014), pp. 1589–1592. https://doi.org/10.1109/PVSC.2014.6925223
- L. Yang, Q. Xiong, Y. Li, P. Gao, B. Xu et al., Artemisinin-passivated mixed-cation perovskite films for durable flexible perovskite solar cells with over 21% efficiency. J. Mater. Chem. A 9(3), 1574–1582 (2021). https://doi.org/10.1039/d0ta10717d
- J. Yoon, U. Kim, Y. Yoo, J. Byeon, S. Lee et al., Foldable perovskite solar cells using carbon nanotube-embedded ultrathin polyimide conductor. Adv. Sci. 8(7), 2004092 (2021). https://doi.org/10.1002/advs.202004092
- G. Lee, M. Kim, Y. Choi, N. Ahn, J. Jang et al., Ultra-flexible perovskite solar cells with crumpling durability: toward a wearable power source. Energy Environ. Sci. 12(10), 3182–3191 (2019). https://doi.org/10.1039/c9ee01944h
- Y. Li, L. Meng, Y.M. Yang, G. Xu, Z. Hong et al., High-efficiency robust perovskite solar cells on ultrathin flexible substrates. Nat. Commun. 7, 10214 (2016). https://doi.org/10.1038/ncomms10214
- M. Li, W. Zuo, A. Ricciardulli, Y. Yang, Y. Liu et al., Embedded nickel-mesh transparent electrodes for highly efficient and mechanically stable flexible perovskite photovoltaics: toward a portable mobile energy source. Adv. Mater. 32(38), e2003422 (2020). https://doi.org/10.1002/adma.202003422
- X. Chen, G. Xu, G. Zeng, H. Gu, H. Chen et al., Realizing ultrahigh mechanical flexibility and > 15% efficiency of flexible organic solar cells via a “welding” flexible transparent electrode. Adv. Mater. 32(14), e1908478 (2020). https://doi.org/10.1002/adma.201908478
- J. Seo, I. Hwang, H. Um, S. Lee, K. Lee et al., Cold isostatic-pressured silver nanowire electrodes for flexible organic solar cells via room-temperature processes. Adv. Mater. 29(30), 1701479 (2017). https://doi.org/10.1002/adma.201701479
- H. Wang, H. Tang, J. Liang, Y. Chen, Dynamic agitation-induced centrifugal purification of nanowires enabling transparent electrodes with 99.2% transmittance. Adv. Funct. Mater. 28(45), 1804479 (2018). https://doi.org/10.1002/adfm.201804479
- D. Leem, A. Edwards, M. Faist, J. Nelson, D. Bradley et al., Efficient organic solar cells with solution-processed silver nanowire electrodes. Adv. Mater. 23(38), 4371–4375 (2011). https://doi.org/10.1002/adma.201100871
- H. Im, S. Jeong, J. Jin, J. Lee, D. Youn et al., Hybrid crystalline-ITO/metal nanowire mesh transparent electrodes and their application for highly flexible perovskite solar cells. NPG Asia Mater. 8(6), e282–e282 (2016). https://doi.org/10.1038/am.2016.85
- T. Wu, L.K. Ono, R. Yoshioka, C. Ding, C. Zhang et al., Elimination of light-induced degradation at the nickel oxide-perovskite heterojunction by aprotic sulfonium layers towards long-term operationally stable inverted perovskite solar cells. Energy Environ. Sci. 15(11), 4612–4624 (2022). https://doi.org/10.1039/d2ee01801b
- J. Zhang, H. Ma, X. Zhang, Y. Ma, Light-induced degradation of metal-free organic perovskites. J. Phys. Chem. Lett. 13(42), 9848–9854 (2022). https://doi.org/10.1021/acs.jpclett.2c02572
- R. Heiderhoff, T. Haeger, N. Pourdavoud, T. Hu, M. Al-Khafaji et al., Thermal conductivity of methylammonium lead halide perovskite single crystals and thin films: a comparative study. J. Phys. Chem. C 121(51), 28306–28311 (2017). https://doi.org/10.1021/acs.jpcc.7b11495
- Z. Guo, S.J. Yoon, J. Manser, P. Kamat, T. Luo, Structural phase- and degradation-dependent thermal conductivity of CH3NH3PbI3 perovskite thin films. J. Phys. Chem. C 120(12), 6394–6401 (2016). https://doi.org/10.1021/acs.jpcc.6b00513
- F. Pei, N. Li, Y. Chen, X. Niu, Y. Zhang et al., Thermal management enables more efficient and stable perovskite solar cells. ACS Energy Lett. 6(9), 3029–3036 (2021). https://doi.org/10.1021/acsenergylett.1c00999
- C. Pang, J. Jung, J. Lee, Y. Kang, Thermal conductivity measurement of methanol-based nanofluids with Al2O3 and SiO2 nanops. Int. J. Heat Mass Transf. 55(21–22), 5597–5602 (2012). https://doi.org/10.1016/j.ijheatmasstransfer.2012.05.048
- R. Liu, D. Schiraldi, A. Hiltner, E. Baer, Oxygen-barrier properties of cold-drawn polyesters. J. Polym. Sci. Part B Polym. Phys. 40(9), 862–877 (2002). https://doi.org/10.1002/polb.10149
- L. Li, S. Zhang, Z. Yang, E. Berthold, W. Chen, Recent advances of flexible perovskite solar cells. J. Energy Chem. 27(3), 673–689 (2018). https://doi.org/10.1016/j.jechem.2018.01.003
- S. Pisoni, F. Fu, T. Feurer, M. Makha, B. Bissig et al., Flexible NIR-transparent perovskite solar cells for all-thin-film tandem photovoltaic devices. J. Mater. Chem. A 5(26), 13639–13647 (2017). https://doi.org/10.1039/c7ta04225f
- I. Channa, A. Distler, M. Zaiser, C.J. Brabec, H. Egelhaaf, Thin film encapsulation of organic solar cells by direct deposition of polysilazanes from solution. Adv. Energy Mater. (2019). https://doi.org/10.1002/aenm.201900598
- J. Li, R. Xia, W. Qi, X. Zhou, J. Cheng et al., Encapsulation of perovskite solar cells for enhanced stability: structures, materials and characterization. J. Power Sources 485, 229313 (2021). https://doi.org/10.1016/j.jpowsour.2020.229313
- H. Weerasinghe, Y. Dkhissi, A. Scully, R. Caruso, Y. Cheng, Encapsulation for improving the lifetime of flexible perovskite solar cells. Nano Energy 18, 118–125 (2015). https://doi.org/10.1016/j.nanoen.2015.10.006
- S. Seo, E. Jung, S. Seo, H. Chae, H. Chung et al., Toward fully flexible multilayer moisture-barriers for organic light-emitting diodes. J. Appl. Phys. 114(14), 143505 (2013). https://doi.org/10.1063/1.4824689
- S. Seo, S. Jeong, C. Bae, N. Park, H. Shin, Perovskite solar cells with inorganic electron- and hole-transport layers exhibiting long-term (≈ 500 h) stability at 85 °C under continuous 1 sun illumination in ambient air. Adv. Mater. (2018). https://doi.org/10.1002/adma.201801010
- Z. Liu, B. Sun, T. Shi, Z. Tang, G. Liao, Enhanced photovoltaic performance and stability of carbon counter electrode based perovskite solar cells encapsulated by PDMS. J. Mater. Chem. A 4(27), 10700–10709 (2016). https://doi.org/10.1039/c6ta02851a
- Y. Lee, N. Jeon, B. Kim, H. Shim, T. Yang et al., A low-temperature thin-film encapsulation for enhanced stability of a highly efficient perovskite solar cell. Adv. Energy Mater. 8(9), 1701928 (2018). https://doi.org/10.1002/aenm.201701928
- N. Rolston, A. Printz, F. Hilt, M. Hovish, K. Brüning et al., Improved stability and efficiency of perovskite solar cells with submicron flexible barrier films deposited in air. J. Mater. Chem. A 5(44), 22975–22983 (2017). https://doi.org/10.1039/c7ta09178h
- F. Bella, G. Griffini, J. Correa-Baena, G. Saracco, M. Graetzel et al., Improving efficiency and stability of perovskite solar cells with photocurable fluoropolymers. Science 354(6309), 203–206 (2016). https://doi.org/10.1126/science.aah4046
- B. Li, M. Wang, R. Subair, G. Cao, J. Tian, Significant stability enhancement of perovskite solar cells by facile adhesive encapsulation. J. Phys. Chem. C 122(44), 25260–25267 (2018). https://doi.org/10.1021/acs.jpcc.8b09595
- J. Idigoras, F. Aparicio, L. Contreras-Bernal, S. Ramos-Terron, M. Alcaire et al., Enhancing moisture and water resistance in perovskite solar cells by encapsulation with ultrathin plasma polymers. ACS Appl. Mater. Interfaces 10(14), 11587–11594 (2018). https://doi.org/10.1021/acsami.7b17824
- Z. Fu, M. Xu, Y. Sheng, Z. Yan, J. Meng et al., Encapsulation of printable mesoscopic perovskite solar cells enables high temperature and long-term outdoor stability. Adv. Funct. Mater. 29(16), 1809129 (2019). https://doi.org/10.1002/adfm.201809129
- Q. Dong, F. Liu, M. Wong, H. Tam, A. Djurisic et al., Encapsulation of perovskite solar cells for high humidity conditions. Chemsuschem 9(18), 2597–2603 (2016). https://doi.org/10.1002/cssc.201600868
- J. Zhao, K. Brinkmann, T. Hu, N. Pourdavoud, T. Becker et al., Self-encapsulating thermostable and air-resilient semitransparent perovskite solar cells. Adv. Energy Mater. 7(14), 1602599 (2017). https://doi.org/10.1002/aenm.201602599
- R. Cheacharoen, C. Boyd, G. Burkhard, T. Leijtens, J. Raiford et al., Encapsulating perovskite solar cells to withstand damp heat and thermal cycling. Sustain. Energy Fuels 2(11), 2398–2406 (2018). https://doi.org/10.1039/c8se00250a
- F. Arabpour Roghabadi, N. Ahmadi, V. Ahmadi, A. Di Carlo, K. Aghmiuni et al., Bulk heterojunction polymer solar cell and perovskite solar cell: concepts, materials, current status, and opto-electronic properties. Sol. Energy 173, 407–424 (2018). https://doi.org/10.1016/j.solener.2018.07.058
References
M. Green, A. Ho-Baillie, H. Snaith, The emergence of perovskite solar cells. Nat. Photonics 8(7), 506–514 (2014). https://doi.org/10.1038/nphoton.2014.134
T. Wu, Z. Qin, Y. Wang, Y. Wu, W. Chen et al., The main progress of perovskite solar cells in 2020–2021. Nano Micro Lett. 13(1), 152 (2021). https://doi.org/10.1007/s40820-021-00672-w
J. Correa-Baena, M. Saliba, T. Buonassisi, M. Graetzel, A. Abate et al., Promises and challenges of perovskite solar cells. Science 358(6364), 739–744 (2017). https://doi.org/10.1126/science.aam6323
J. Guo, B. Qiu, D. Yang, C. Zhu, L. Zhou et al., 15.71% efficiency all-small-molecule organic solar cells based on low-cost synthesized donor molecules. Adv. Funct. Mater. 32(13), 106712 (2021). https://doi.org/10.1002/adfm.202110159
Z. Jia, Q. Ma, Z. Chen, L. Meng, N. Jain et al., Near-infrared absorbing acceptor with suppressed triplet exciton generation enabling high performance tandem organic solar cells. Nat. Commun. 14(1), 1236 (2023). https://doi.org/10.1038/s41467-023-36917-y
Y. Li, X. Huang, H. Sheriff, S. Forrest, Semitransparent organic photovoltaics for building-integrated photovoltaic applications. Nat. Rev. Mater. 8(3), 186–201 (2022). https://doi.org/10.1038/s41578-022-00514-0
M. Jošt, E. Köhnen, A. Al-Ashouri, T. Bertram, Š Tomšič et al., Perovskite/CIGS tandem solar cells: from certified 24.2% toward 30% and beyond. ACS Energy Lett. 7(4), 1298–1307 (2022). https://doi.org/10.1021/acsenergylett.2c00274
W. Liu, H. Li, B. Qiao, S. Zhao, Z. Xu et al., Highly efficient CIGS solar cells based on a new cigs bandgap gradient design characterized by numerical simulation. Sol. Energy 233, 337–344 (2022). https://doi.org/10.1016/j.solener.2022.01.054
N. Shrivastav, S. Kashyap, J. Madan, A. Al-Mousoi, M. Mohammed et al., Perovskite-CIGS monolithic tandem solar cells with 29.7% efficiency: a numerical study. Energy Fuels 37(4), 3083–3090 (2023). https://doi.org/10.1021/acs.energyfuels.2c03973
J. Zhou, Q. Huang, Y. Ding, G. Hou, Y. Zhao, Passivating contacts for high-efficiency silicon-based solar cells: from single-junction to tandem architecture. Nano Energy 92, 106712 (2022). https://doi.org/10.1016/j.nanoen.2021.106712
Z. Yeo, Z. Ling, J. Ho, Q. Lim, Y. So et al., Status review and future perspectives on mitigating light-induced degradation on silicon-based solar cells. Renew. Sustain. Energy Rev. 159, 112223 (2022). https://doi.org/10.1016/j.rser.2022.112223
S. Jain, G. Sharma, S. Vyas, Influence of hole interface layer on the performance of cadmium telluride-based thin film solar cell. Mater. Today Proc. 74, 231–233 (2023). https://doi.org/10.1016/j.matpr.2022.08.058
M.K. Jamarkattel, A.B. Phillips, I. Subedi, A. Abudulimu, E. Bastola et al., Indium gallium oxide emitters for high-efficiency CdTe-based solar cells. ACS Appl. Energy Mater. 5(5), 5484–5489 (2022). https://doi.org/10.1021/acsaem.2c00153
M. Wang, N. Chamberland, L. Breau, J.E. Moser, R. Humphry-Baker et al., An organic redox electrolyte to rival triiodide/iodide in dye-sensitized solar cells. Nat. Chem. 2(5), 385–389 (2010). https://doi.org/10.1038/nchem.610
C. Chen, M. Wang, J. Li, N. Pootrakulchote, L. Alibabaei et al., Highly efficient light-harvesting ruthenium sensitizer for thin-film dye-sensitized solar cells. ACS Nano 3(10), 3103–3109 (2009). https://doi.org/10.1021/nn900756s
N. Papež, A. Gajdoš, D. Sobola, R. Dallaev, R. Macků et al., Effect of gamma radiation on properties and performance of gaas based solar cells. Appl. Surf. Sci. 527, 146766 (2020). https://doi.org/10.1016/j.apsusc.2020.146766
Y. Yun, S. Moon, S. Kim, J. Lee, Flexible fabric-based gaas thin-film solar cell for wearable energy harvesting applications. Sol. Energy Mater. Sol. Cells 246, 111930 (2022). https://doi.org/10.1016/j.solmat.2022.111930
A. Rasal, S. Yadav, A. Kashale, A. Altaee, J. Chang, Stability of quantum dot-sensitized solar cells: a review and prospects. Nano Energy 94, 106854 (2022). https://doi.org/10.1016/j.nanoen.2021.106854
Z. Pan, H. Rao, I. Mora-Sero, J. Bisquert, X. Zhong, Quantum dot-sensitized solar cells. Chem. Soc. Rev. 47(20), 7659–7702 (2018). https://doi.org/10.1039/c8cs00431e
M. Yang, T. Zhang, P. Schulz, Z. Li, G. Li et al., Facile fabrication of large-grain CH3NH3PbI3−xBrx films for high-efficiency solar cells via CH3NH3Br-selective Ostwald ripening. Nat. Commun. 7, 12305 (2016). https://doi.org/10.1038/ncomms12305
Y. Zhao, F. Ma, Z. Qu, S. Yu, T. Shen et al., Inactive (PbI2)2RbCl stabilizes perovskite films for efficient solar cells. Science 377(6605), 531–534 (2022). https://doi.org/10.1126/science.abp8873
Q. Jiang, J. Tong, Y. Xian, R. Kerner, S. Dunfield et al., Surface reaction for efficient and stable inverted perovskite solar cells. Nature 611(7935), 278–283 (2022). https://doi.org/10.1038/s41586-022-05268-x
W. Zhang, G. Eperon, H. Snaith, Metal halide perovskites for energy applications. Nat. Energy 1(6), 16048 (2016). https://doi.org/10.1038/nenergy.2016.48
M. Othman, F. Zheng, A. Seeber, A. Chesman, A. Scully et al., Millimeter-sized clusters of triple cation perovskite enables highly efficient and reproducible roll-to-roll fabricated inverted perovskite solar cells. Adv. Funct. Mater. 32(12), 2110700 (2021). https://doi.org/10.1002/adfm.202110700
Y. Kim, T. Yang, R. Suhonen, A. Kemppainen, K. Hwang et al., Roll-to-roll gravure-printed flexible perovskite solar cells using eco-friendly antisolvent bathing with wide processing window. Nat. Commun. 11(1), 5146 (2020). https://doi.org/10.1038/s41467-020-18940-5
P. Chandrasekhar, S. Chapagain, M. Blake, P. Armstrong, C. Grapperhaus et al., Rapid scalable fabrication of roll-to-roll slot-die coated flexible perovskite solar cells using intense pulse light annealing. Sustain. Energy Fuels 6(23), 5316–5323 (2022). https://doi.org/10.1039/d2se00911k
J. Li, H.A. Dewi, H. Wang, J. Zhao, N. Tiwari et al., Co-evaporated MAPbI3 with graded fermi levels enables highly performing, scalable, and flexible p-i-n perovskite solar cells. Adv. Funct. Mater. 31(42), 2103252 (2021). https://doi.org/10.1002/adfm.202103252
Y. Meng, C. Liu, R. Cao, J. Zhang, L. Xie et al., Pre-buried ETL with bottom-up strategy toward flexible perovskite solar cells with efficiency over 23%. Adv. Funct. Mater. 33, 2214788 (2023). https://doi.org/10.1002/adfm.202214788
L. Zhang, C. Fu, S. Wang, M. Wang, R. Wang et al., Amorphous f-doped TiOx caulked SnO2 electron transport layer for flexible perovskite solar cells with efficiency exceeding 22.5%. Adv. Funct. Mater. 33(11), 2213961 (2023). https://doi.org/10.1002/adfm.202213961
Y. Wang, R. Lin, X. Wang, C. Liu, Y. Ahmed et al., Oxidation-resistant all-perovskite tandem solar cells in substrate configuration. Nat. Commun. 14(1), 1819 (2023). https://doi.org/10.1038/s41467-023-37492-y
G. Jeong, D. Koo, J. Seo, S. Jung, Y. Choi et al., Suppressed interdiffusion and degradation in flexible and transparent metal electrode-based perovskite solar cells with a graphene interlayer. Nano Lett. 20(5), 3718–3727 (2020). https://doi.org/10.1021/acs.nanolett.0c00663
T.M. Koh, H. Wang, Y. Ng, A. Bruno, S. Mhaisalkar et al., Halide perovskite solar cells for building integrated photovoltaics: transforming building facades into power generators. Adv. Mater. 34(25), e2104661 (2022). https://doi.org/10.1002/adma.202104661
H. Xie, T. Liang, X. Yin, J. Liu, D. Liu et al., Mechanical stability study on PEDOT:PSS-based ITO-free flexible perovskite solar cells. ACS Appl. Energy Mater. 5(3), 3081–3091 (2022). https://doi.org/10.1021/acsaem.1c03696
N. Pendyala, S. Magdassi, L. Etgar, Inkjet-printed flexible semitransparent solar cells with perovskite and polymeric pillars. Sol. RRL 7(6), 2200988 (2023). https://doi.org/10.1002/solr.202200988
G. Jeong, D. Koo, J.H. Woo, Y. Choi, E. Son et al., Highly efficient self-encapsulated flexible semitransparent perovskite solar cells via bifacial cation exchange. ACS Appl. Mater. Interfaces (2022). https://doi.org/10.1021/acsami.2c08023
M. Saifullah, J. Gwak, J. Yun, Comprehensive review on material requirements, present status, and future prospects for building-integrated semitransparent photovoltaics. J. Mater. Chem. A 4(22), 8512–8540 (2016). https://doi.org/10.1039/c6ta01016d
E. Berger, M. Bagheri, S. Asgari, J. Zhou, M. Kokkonen et al., Recent developments in perovskite-based precursor inks for scalable architectures of perovskite solar cell technology. Sustain. Energy Fuels 6(12), 2879–2900 (2022). https://doi.org/10.1039/d2se00162d
H. Li, C. Zuo, D. Angmo, H. Weerasinghe, M. Gao et al., Fully roll-to-roll processed efficient perovskite solar cells via precise control on the morphology of PbI2:CsI layer. Nano-Micro Lett. 14(1), 79 (2022). https://doi.org/10.1007/s40820-022-00815-7
M. Kumar, N. Yantara, S. Dharani, M. Graetzel, S. Mhaisalkar et al., Flexible, low-temperature, solution processed zno-based perovskite solid state solar cells. Chem. Commun. 49(94), 11089–11091 (2013). https://doi.org/10.1039/c3cc46534a
C. Roldán-Carmona, O. Malinkiewicz, A. Soriano, G. Mínguez Espallargas, A. Garcia et al., Flexible high efficiency perovskite solar cells. Energy Environ. Sci. 7(3), 994–997 (2014). https://doi.org/10.1039/c3ee43619e
S. Shin, W. Yang, J. Noh, J. Suk, N. Jeon et al., High-performance flexible perovskite solar cells exploiting Zn2SnO4 prepared in solution below 100 °C. Nat. Commun. 6, 7410 (2015). https://doi.org/10.1038/ncomms8410
J. Yoon, H. Sung, G. Lee, W. Cho, N. Ahn et al., Superflexible, high-efficiency perovskite solar cells utilizing graphene electrodes: towards future foldable power sources. Energy Environ. Sci. 10(1), 337–345 (2017). https://doi.org/10.1039/c6ee02650h
C. Bi, B. Chen, H. Wei, S. DeLuca, J. Huang, Efficient flexible solar cell based on composition-tailored hybrid perovskite. Adv. Mater. 29(30), 1605900 (2017). https://doi.org/10.1002/adma.201605900
J. Feng, X. Zhu, Z. Yang, X. Zhang, J. Niu et al., Record efficiency stable flexible perovskite solar cell using effective additive assistant strategy. Adv. Mater. 30(35), e1801418 (2018). https://doi.org/10.1002/adma.201801418
K. Huang, Y. Peng, Y. Gao, J. Shi, H. Li et al., High-performance flexible perovskite solar cells via precise control of electron transport layer. Adv. Energy Mater. 9(44), 1901419 (2019). https://doi.org/10.1002/aenm.201901419
S. Wu, Z. Li, J. Zhang, X. Wu, X. Deng et al., Low-bandgap organic bulk-heterojunction enabled efficient and flexible perovskite solar cells. Adv. Mater. 33(51), e2105539 (2021). https://doi.org/10.1002/adma.202105539
L. Yang, J. Feng, Z. Liu, Y. Duan, S. Zhan et al., Record-efficiency flexible perovskite solar cells enabled by multifunctional organic ions interface passivation. Adv. Mater. 34(24), e2201681 (2022). https://doi.org/10.1002/adma.202201681
Y. Wu, G. Xu, J. Xi, Y. Shen, X. Wu et al., In situ crosslinking-assisted perovskite grain growth for mechanically robust flexible perovskite solar cells with 23.4% efficiency. Joule 7(2), 398–415 (2023). https://doi.org/10.1016/j.joule.2022.12.013
F. Di Giacomo, A. Fakharuddin, R. Jose, T. Brown, Progress, challenges and perspectives in flexible perovskite solar cells. Energy Environ. Sci. 9(10), 3007–3035 (2016). https://doi.org/10.1039/c6ee01137c
G. Tang, F. Yan, Recent progress of flexible perovskite solar cells. Nano Today 39, 101155 (2021). https://doi.org/10.1016/j.nantod.2021.101155
Y. Gao, K. Huang, C. Long, Y. Ding, J. Chang et al., Flexible perovskite solar cells: from materials and device architectures to applications. ACS Energy Lett. 7(4), 1412–1445 (2022). https://doi.org/10.1021/acsenergylett.1c02768
Y. Xu, Z. Lin, W. Wei, Y. Hao, S. Liu et al., Recent progress of electrode materials for flexible perovskite solar cells. Nano-Micro Lett. 14(1), 117 (2022). https://doi.org/10.1007/s40820-022-00859-9
X. Meng, Z. Cai, Y. Zhang, X. Hu, Z. Xing et al., Bio-inspired vertebral design for scalable and flexible perovskite solar cells. Nat. Commun. 11(1), 3016 (2020). https://doi.org/10.1038/s41467-020-16831-3
Q. Dong, M. Chen, Y. Liu, F. Eickemeyer, W. Zhao et al., Flexible perovskite solar cells with simultaneously improved efficiency, operational stability, and mechanical reliability. Joule 5(6), 1587–1601 (2021). https://doi.org/10.1016/j.joule.2021.04.014
Y. Kang, R. Li, A. Wang, J. Kang, Z. Wang et al., Ionogel-perovskite matrix enabling highly efficient and stable flexible solar cells towards fully-R2R fabrication. Energy Environ. Sci. 15(8), 3439–3448 (2022). https://doi.org/10.1039/d2ee01326f
C. Ge, Z. Yang, X. Liu, Y. Song, A. Wang et al., Stable and highly flexible perovskite solar cells with power conversion efficiency approaching 20% by elastic grain boundary encapsulation. CCS Chemistry 3(7), 2035–2044 (2021). https://doi.org/10.31635/ccschem.020.202000335
M. Wang, Q. Fu, L. Yan, W. Pi, G. Wang et al., A Bi2Te3 topological insulator as a new and outstanding counter electrode material for high-efficiency and endurable flexible perovskite solar cells. ACS Appl. Mater. Interfaces 11(51), 47868–47877 (2019). https://doi.org/10.1021/acsami.9b15320
C. Jia, X. Zhao, Y.-H. Lai, J. Zhao, P. Wang et al., Highly flexible, robust, stable and high efficiency perovskite solar cells enabled by van der Waals epitaxy on mica substrate. Nano Energy 60, 476–484 (2019). https://doi.org/10.1016/j.nanoen.2019.03.053
Y. Xu, X. Guo, Z. Lin, Q. Wang, J. Su et al., Perovskite films regulation via hydrogen-bonded polymer network for efficient and stable perovskite solar cells. Angew. Chem. Int. Ed. (2023). https://doi.org/10.1002/anie.202306229
B. Jin, L. Ren, Y. Gou, R. Ma, Z. Liang et al., Fiber-bridging-induced toughening of perovskite for resistance to crack propagation. Matter 6(5), 1622–1638 (2023). https://doi.org/10.1016/j.matt.2023.03.014
J. Yang, W. Sheng, X. Li, Y. Zhong, Y. Su et al., Synergistic toughening and self-healing strategy for highly efficient and stable flexible perovskite solar cells. Adv. Funct. Mater. (2023). https://doi.org/10.1002/adfm.202214984
N. Rolston, A. Printz, J. Tracy, H. Weerasinghe, D. Vak et al., Effect of cation composition on the mechanical stability of perovskite solar cells. Adv. Energy Mater. 8(9), 1702116 (2017). https://doi.org/10.1002/aenm.201702116
S. Sun, Y. Fang, G. Kieslich, T. White, A. Cheetham, Mechanical properties of organic–inorganic halide perovskites, CH3NH3PbX3 (x = I, Br and Cl), by nanoindentation. J. Mater. Chem. A 3(36), 18450–18455 (2015). https://doi.org/10.1039/c5ta03331d
S. Sun, F.H. Isikgor, Z. Deng, F. Wei, G. Kieslich et al., Factors influencing the mechanical properties of formamidinium lead halides and related hybrid perovskites. Chemsuschem 10(19), 3740–3745 (2017). https://doi.org/10.1002/cssc.201700991
M. Kanninen, An augmented double cantilever beam model for studying crack propagation and arrest. Int. J. Fract. 9(1), 83–92 (1973). https://doi.org/10.1007/bf00035958
J. Kruzic, D. Kim, K. Koester, R. Ritchie, Indentation techniques for evaluating the fracture toughness of biomaterials and hard tissues. J. Mech. Behav. Biomed. Mater. 2(4), 384–395 (2009). https://doi.org/10.1016/j.jmbbm.2008.10.008
B. Watson, N. Rolston, A. Printz, R. Dauskardt, Scaffold-reinforced perovskite compound solar cells. Energy Environ. Sci. 10(12), 2500–2508 (2017). https://doi.org/10.1039/c7ee02185b
C. Bruner, N. Cates, M. McGehee, R. Dauskardt, Molecular intercalation and cohesion of organic bulk heterojunction photovoltaic devices. Adv. Funct. Mater. 23(22), 2863–2871 (2013). https://doi.org/10.1002/adfm.201202969
A. Walsh, Principles of chemical bonding and band gap engineering in hybrid organic-inorganic halide perovskites. J. Phys. Chem. C 119(11), 5755–5760 (2015). https://doi.org/10.1021/jp512420b
L. Ma, W. Li, K. Yang, J. Bi, J. Feng et al., A- or x-site mixture on mechanical properties of APbX3 perovskite single crystals. APL Mater. 9(4), 041112 (2021). https://doi.org/10.1063/5.0015569
Y. Galagan, F. Di Giacomo, H. Gorter, G. Kirchner, I. de Vries et al., Roll-to-roll slot die coated perovskite for efficient flexible solar cells. Adv. Energy Mater. 8(32), 1801935 (2018). https://doi.org/10.1002/aenm.201801935
M. Kaltenbrunner, G. Adam, E. Glowacki, M. Drack, R. Schwodiauer et al., Flexible high power-per-weight perovskite solar cells with chromium oxide-metal contacts for improved stability in air. Nat. Mater. 14(10), 1032–1039 (2015). https://doi.org/10.1038/nmat4388
P. Holzhey, M. Prettl, S. Collavini, N. Chang, M. Saliba, Toward commercialization with lightweight, flexible perovskite solar cells for residential photovoltaics. Joule 7(2), 257–271 (2023). https://doi.org/10.1016/j.joule.2022.12.012
W. Zi, Z. Jin, S. Liu, B. Xu, Flexible perovskite solar cells based on green, continuous roll-to-roll printing technology. J. Energy Chem. 27(4), 971–989 (2018). https://doi.org/10.1016/j.jechem.2018.01.027
Y. Hu, T. Niu, Y. Liu, Y. Zhou, Y. Xia et al., Flexible perovskite solar cells with high power-per-weight: progress, application, and perspectives. ACS Energy Lett. 6(8), 2917–2943 (2021). https://doi.org/10.1021/acsenergylett.1c01193
A. Rafique, I. Ferreira, G. Abbas, A. Baptista, Recent advances and challenges toward application of fibers and textiles in integrated photovoltaic energy storage devices. Nano-Micro Lett. 15(1), 40 (2023). https://doi.org/10.1007/s40820-022-01008-y
N. Rolston, K. Bush, A. Printz, A. Gold-Parker, Y. Ding et al., Engineering stress in perovskite solar cells to improve stability. Adv. Energy Mater. 8(29), 1802139 (2018). https://doi.org/10.1002/aenm.201802139
C. Chen, Z. Su, Y. Lou, Y. Yu, K. Wang et al., Full-dimensional grain boundary stress release for flexible perovskite indoor photovoltaics. Adv. Mater. 34(16), e2200320 (2022). https://doi.org/10.1002/adma.202200320
Z. Zheng, F. Li, J. Gong, Y. Ma, J. Gu et al., Pre-buried additive for cross-layer modification in flexible perovskite solar cells with efficiency exceeding 22%. Adv. Mater. 34(21), e2109879 (2022). https://doi.org/10.1002/adma.202109879
X. Hu, Z. Huang, X. Zhou, P. Li, Y. Wang et al., Wearable large-scale perovskite solar-power source via nanocellular scaffold. Adv. Mater. 29(42), 1703236 (2017). https://doi.org/10.1002/adma.201703236
X. Hu, X. Meng, X. Yang, Z. Huang, Z. Xing et al., Cementitious grain-boundary passivation for flexible perovskite solar cells with superior environmental stability and mechanical robustness. Sci. Bull. 66(6), 527–535 (2021). https://doi.org/10.1016/j.scib.2020.10.023
T. Xue, D. Chen, M. Su, X. Hu, Z. Huang et al., Macromonomer crosslinking polymerized scaffolds for mechanically robust and flexible perovskite solar cells. J. Mater. Chem. A 10(36), 18762–18772 (2022). https://doi.org/10.1039/d2ta04502h
M. Li, Y.G. Yang, Z.K. Wang, T. Kang, Q. Wang et al., Perovskite grains embraced in a soft fullerene network make highly efficient flexible solar cells with superior mechanical stability. Adv. Mater. 31(25), e1901519 (2019). https://doi.org/10.1002/adma.201901519
J.-S. Park, J. Calbo, Y.-K. Jung, L.D. Whalley, A. Walsh, Accumulation of deep traps at grain boundaries in halide perovskites. ACS Energy Lett. 4(6), 1321–1327 (2019). https://doi.org/10.1021/acsenergylett.9b00840
Y. Yan, R. Wang, Q. Dong, Y. Yin, L. Zhang et al., Polarity and moisture induced trans-grain-boundaries 2D/3D coupling structure for flexible perovskite solar cells with high mechanical reliability and efficiency. Energy Environ. Sci. 15(12), 5168–5180 (2022). https://doi.org/10.1039/d2ee01879a
F. Zhang, S. Ye, H. Zhang, F. Zhou, Y. Hao et al., Comprehensive passivation strategy for achieving inverted perovskite solar cells with efficiency exceeding 23% by trap passivation and ion constraint. Nano Energy 89, 106370 (2021). https://doi.org/10.1016/j.nanoen.2021.106370
H. Xiong, G. DeLuca, Y. Rui, B. Zhang, Y. Li et al., Modifying perovskite films with polyvinylpyrrolidone for ambient-air-stable highly bendable solar cells. ACS Appl. Mater. Interfaces 10(41), 35385–35394 (2018). https://doi.org/10.1021/acsami.8b04236
M. Wang, H. Sun, F. Cao, W. Tian, L. Li, Moisture-triggered self-healing flexible perovskite photodetectors with excellent mechanical stability. Adv. Mater. 33(16), e2100625 (2021). https://doi.org/10.1002/adma.202100625
X. Qian, Y. Shen, L. Zhang, M. Guo, X. Cai et al., Bio-inspired pangolin design for self-healable flexible perovskite light-emitting diodes. ACS Nano 16(11), 17973–17981 (2022). https://doi.org/10.1021/acsnano.2c06118
M. Fahim, I. Firdous, S. Tsang, W. Daoud, Engineering intrinsic flexibility in polycrystalline perovskite film by grain boundary stitching for high mechanical endurance. Nano Energy 96, 107058 (2022). https://doi.org/10.1016/j.nanoen.2022.107058
M. Li, J. Zhou, L. Tan, H. Li, Y. Liu et al., Multifunctional succinate additive for flexible perovskite solar cells with more than 23% power-conversion efficiency. Innovation 3(6), 100310 (2022). https://doi.org/10.1016/j.xinn.2022.100310
Y. Lan, Y. Wang, Y. Lai, Z. Cai, M. Tao et al., Thermally driven self-healing efficient flexible perovskite solar cells. Nano Energy 100, 107523 (2022). https://doi.org/10.1016/j.nanoen.2022.107523
L. Zhang, Z. You, Dynamic oxime-urethane bonds, a versatile unit of high performance self-healing polymers for diverse applications. Chin. J. Polym. Sci. 39(10), 1281–1291 (2021). https://doi.org/10.1007/s10118-021-2625-9
J. Kang, J. Tok, Z. Bao, Self-healing soft electronics. Nat. Electron. 2(4), 144–150 (2019). https://doi.org/10.1038/s41928-019-0235-0
M. Bartlett, M. Dickey, C. Majidi, Self-healing materials for soft-matter machines and electronics. NPG Asia Mater. 11(1), 21 (2019). https://doi.org/10.1038/s41427-019-0122-1
X. Meng, Z. Xing, X. Hu, Z. Huang, T. Hu et al., Stretchable perovskite solar cells with recoverable performance. Angew. Chem. Int. Ed. 59(38), 16602–16608 (2020). https://doi.org/10.1002/anie.202003813
Z. Chen, Q. Cheng, H. Chen, Y. Wu, J. Ding et al., Perovskite grain-boundary manipulation using room-temperature dynamic self-healing “ligaments” for developing highly stable flexible perovskite solar cells with 23.8% efficiency. Adv. Mater. 35(18), e2300513 (2023). https://doi.org/10.1002/adma.202300513
M. Urban, D. Davydovich, Y. Yang, T. Demir, Y. Zhang et al., Key-and-lock commodity self-healing copolymers. Science 362(6411), 220–225 (2018). https://doi.org/10.1126/science.aat2975
H. Ying, Y. Zhang, J. Cheng, Dynamic urea bond for the design of reversible and self-healing polymers. Nat. Commun. 5, 3218 (2014). https://doi.org/10.1038/ncomms4218
M. Burnworth, L. Tang, J. Kumpfer, A. Duncan, F. Beyer et al., Optically healable supramolecular polymers. Nature 472(7343), 334–337 (2011). https://doi.org/10.1038/nature09963
B. Ghosh, M. Urban, Self-repairing oxetane-substituted chitosan polyurethane networks. Science 323(5920), 1458–1460 (2009). https://doi.org/10.1126/science.1167391
D. Kim, K. Higgins, M. Ahmadi, Navigating grain boundaries in perovskite solar cells. Matter 4(5), 1442–1445 (2021). https://doi.org/10.1016/j.matt.2021.04.006
X. Duan, X. Li, L. Tan, Z. Huang, J. Yang et al., Controlling crystal growth via an autonomously longitudinal scaffold for planar perovskite solar cells. Adv. Mater. 32(26), e2000617 (2020). https://doi.org/10.1002/adma.202000617
Z. Dai, S.K. Yadavalli, M. Hu, M. Chen, Y. Zhou et al., Effect of grain size on the fracture behavior of organic-inorganic halide perovskite thin films for solar cells. Scr. Mater. 185, 47–50 (2020). https://doi.org/10.1016/j.scriptamat.2020.03.044
C. Gong, F. Li, X. Hu, C. Wang, S. Shi et al., Printing-induced alignment network design of polymer matrix for stretchable perovskite solar cells with over 20% efficiency. Adv. Funct. Mater. (2023). https://doi.org/10.1002/adfm.202301043
N. Jiang, Y. Wang, Q. Dong, C. Ge, Z. Yang et al., Enhanced efficiency and mechanical robustness of flexible perovskite solar cells by using HPbI3 additive. Sol. RRL 5(4), 2000821 (2021). https://doi.org/10.1002/solr.202000821
T. Yang, C. Ma, W. Cai, S. Wang, Y. Wu et al., Amidino-based dion-jacobson 2D perovskite for efficient and stable 2D/3D heterostructure perovskite solar cells. Joule 7(3), 574–586 (2023). https://doi.org/10.1016/j.joule.2023.02.003
S. Jon, G. Sin, G. Kim, G. Jong, J. Ri, Flexible perovskite solar cells based on AgNW/ATO composite transparent electrodes. Synth. Met. 262, 116286 (2020). https://doi.org/10.1016/j.synthmet.2019.116286
B. Cao, L. Yang, S. Jiang, H. Lin, N. Wang et al., Flexible quintuple cation perovskite solar cells with high efficiency. J. Mater. Chem. A 7(9), 4960–4970 (2019). https://doi.org/10.1039/c8ta11945g
B. Kim, D. Kim, Y. Lee, H. Shin, G. Han et al., Highly efficient and bending durable perovskite solar cells: toward a wearable power source. Energy Environ. Sci. 8(3), 916–921 (2015). https://doi.org/10.1039/c4ee02441a
U. Ryu, S. Jee, J. Park, I. Han, J. Lee et al., Nanocrystalline titanium metal-organic frameworks for highly efficient and flexible perovskite solar cells. ACS Nano 12(5), 4968–4975 (2018). https://doi.org/10.1021/acsnano.8b02079
J. Zhang, W. Zhang, H. Cheng, S. Silva, Critical review of recent progress of flexible perovskite solar cells. Mater. Today 39, 66–88 (2020). https://doi.org/10.1016/j.mattod.2020.05.002
S. Cruz, L. Rocha, J. Viana, Printing technologies on flexible substrates for printed electronics. IntechOpen (2018). https://doi.org/10.5772/intechopen.76161
V. Zardetto, T. Brown, A. Reale, A. Di Carlo, Substrates for flexible electronics: a practical investigation on the electrical, film flexibility, optical, temperature, and solvent resistance properties. J. Polym. Sci. Part B Polym. Phys. 49(9), 638–648 (2011). https://doi.org/10.1002/polb.22227
J. Burst, W. Rance, D. Meysing, C. Wolden, W. Metzger et al., Performance of transparent conductors on flexible glass and plastic substrates for thin film photovoltaics. in 2014 IEEE 40th Photovoltaic Specialist Conference (PVSC) (2014), pp. 1589–1592. https://doi.org/10.1109/PVSC.2014.6925223
L. Yang, Q. Xiong, Y. Li, P. Gao, B. Xu et al., Artemisinin-passivated mixed-cation perovskite films for durable flexible perovskite solar cells with over 21% efficiency. J. Mater. Chem. A 9(3), 1574–1582 (2021). https://doi.org/10.1039/d0ta10717d
J. Yoon, U. Kim, Y. Yoo, J. Byeon, S. Lee et al., Foldable perovskite solar cells using carbon nanotube-embedded ultrathin polyimide conductor. Adv. Sci. 8(7), 2004092 (2021). https://doi.org/10.1002/advs.202004092
G. Lee, M. Kim, Y. Choi, N. Ahn, J. Jang et al., Ultra-flexible perovskite solar cells with crumpling durability: toward a wearable power source. Energy Environ. Sci. 12(10), 3182–3191 (2019). https://doi.org/10.1039/c9ee01944h
Y. Li, L. Meng, Y.M. Yang, G. Xu, Z. Hong et al., High-efficiency robust perovskite solar cells on ultrathin flexible substrates. Nat. Commun. 7, 10214 (2016). https://doi.org/10.1038/ncomms10214
M. Li, W. Zuo, A. Ricciardulli, Y. Yang, Y. Liu et al., Embedded nickel-mesh transparent electrodes for highly efficient and mechanically stable flexible perovskite photovoltaics: toward a portable mobile energy source. Adv. Mater. 32(38), e2003422 (2020). https://doi.org/10.1002/adma.202003422
X. Chen, G. Xu, G. Zeng, H. Gu, H. Chen et al., Realizing ultrahigh mechanical flexibility and > 15% efficiency of flexible organic solar cells via a “welding” flexible transparent electrode. Adv. Mater. 32(14), e1908478 (2020). https://doi.org/10.1002/adma.201908478
J. Seo, I. Hwang, H. Um, S. Lee, K. Lee et al., Cold isostatic-pressured silver nanowire electrodes for flexible organic solar cells via room-temperature processes. Adv. Mater. 29(30), 1701479 (2017). https://doi.org/10.1002/adma.201701479
H. Wang, H. Tang, J. Liang, Y. Chen, Dynamic agitation-induced centrifugal purification of nanowires enabling transparent electrodes with 99.2% transmittance. Adv. Funct. Mater. 28(45), 1804479 (2018). https://doi.org/10.1002/adfm.201804479
D. Leem, A. Edwards, M. Faist, J. Nelson, D. Bradley et al., Efficient organic solar cells with solution-processed silver nanowire electrodes. Adv. Mater. 23(38), 4371–4375 (2011). https://doi.org/10.1002/adma.201100871
H. Im, S. Jeong, J. Jin, J. Lee, D. Youn et al., Hybrid crystalline-ITO/metal nanowire mesh transparent electrodes and their application for highly flexible perovskite solar cells. NPG Asia Mater. 8(6), e282–e282 (2016). https://doi.org/10.1038/am.2016.85
T. Wu, L.K. Ono, R. Yoshioka, C. Ding, C. Zhang et al., Elimination of light-induced degradation at the nickel oxide-perovskite heterojunction by aprotic sulfonium layers towards long-term operationally stable inverted perovskite solar cells. Energy Environ. Sci. 15(11), 4612–4624 (2022). https://doi.org/10.1039/d2ee01801b
J. Zhang, H. Ma, X. Zhang, Y. Ma, Light-induced degradation of metal-free organic perovskites. J. Phys. Chem. Lett. 13(42), 9848–9854 (2022). https://doi.org/10.1021/acs.jpclett.2c02572
R. Heiderhoff, T. Haeger, N. Pourdavoud, T. Hu, M. Al-Khafaji et al., Thermal conductivity of methylammonium lead halide perovskite single crystals and thin films: a comparative study. J. Phys. Chem. C 121(51), 28306–28311 (2017). https://doi.org/10.1021/acs.jpcc.7b11495
Z. Guo, S.J. Yoon, J. Manser, P. Kamat, T. Luo, Structural phase- and degradation-dependent thermal conductivity of CH3NH3PbI3 perovskite thin films. J. Phys. Chem. C 120(12), 6394–6401 (2016). https://doi.org/10.1021/acs.jpcc.6b00513
F. Pei, N. Li, Y. Chen, X. Niu, Y. Zhang et al., Thermal management enables more efficient and stable perovskite solar cells. ACS Energy Lett. 6(9), 3029–3036 (2021). https://doi.org/10.1021/acsenergylett.1c00999
C. Pang, J. Jung, J. Lee, Y. Kang, Thermal conductivity measurement of methanol-based nanofluids with Al2O3 and SiO2 nanops. Int. J. Heat Mass Transf. 55(21–22), 5597–5602 (2012). https://doi.org/10.1016/j.ijheatmasstransfer.2012.05.048
R. Liu, D. Schiraldi, A. Hiltner, E. Baer, Oxygen-barrier properties of cold-drawn polyesters. J. Polym. Sci. Part B Polym. Phys. 40(9), 862–877 (2002). https://doi.org/10.1002/polb.10149
L. Li, S. Zhang, Z. Yang, E. Berthold, W. Chen, Recent advances of flexible perovskite solar cells. J. Energy Chem. 27(3), 673–689 (2018). https://doi.org/10.1016/j.jechem.2018.01.003
S. Pisoni, F. Fu, T. Feurer, M. Makha, B. Bissig et al., Flexible NIR-transparent perovskite solar cells for all-thin-film tandem photovoltaic devices. J. Mater. Chem. A 5(26), 13639–13647 (2017). https://doi.org/10.1039/c7ta04225f
I. Channa, A. Distler, M. Zaiser, C.J. Brabec, H. Egelhaaf, Thin film encapsulation of organic solar cells by direct deposition of polysilazanes from solution. Adv. Energy Mater. (2019). https://doi.org/10.1002/aenm.201900598
J. Li, R. Xia, W. Qi, X. Zhou, J. Cheng et al., Encapsulation of perovskite solar cells for enhanced stability: structures, materials and characterization. J. Power Sources 485, 229313 (2021). https://doi.org/10.1016/j.jpowsour.2020.229313
H. Weerasinghe, Y. Dkhissi, A. Scully, R. Caruso, Y. Cheng, Encapsulation for improving the lifetime of flexible perovskite solar cells. Nano Energy 18, 118–125 (2015). https://doi.org/10.1016/j.nanoen.2015.10.006
S. Seo, E. Jung, S. Seo, H. Chae, H. Chung et al., Toward fully flexible multilayer moisture-barriers for organic light-emitting diodes. J. Appl. Phys. 114(14), 143505 (2013). https://doi.org/10.1063/1.4824689
S. Seo, S. Jeong, C. Bae, N. Park, H. Shin, Perovskite solar cells with inorganic electron- and hole-transport layers exhibiting long-term (≈ 500 h) stability at 85 °C under continuous 1 sun illumination in ambient air. Adv. Mater. (2018). https://doi.org/10.1002/adma.201801010
Z. Liu, B. Sun, T. Shi, Z. Tang, G. Liao, Enhanced photovoltaic performance and stability of carbon counter electrode based perovskite solar cells encapsulated by PDMS. J. Mater. Chem. A 4(27), 10700–10709 (2016). https://doi.org/10.1039/c6ta02851a
Y. Lee, N. Jeon, B. Kim, H. Shim, T. Yang et al., A low-temperature thin-film encapsulation for enhanced stability of a highly efficient perovskite solar cell. Adv. Energy Mater. 8(9), 1701928 (2018). https://doi.org/10.1002/aenm.201701928
N. Rolston, A. Printz, F. Hilt, M. Hovish, K. Brüning et al., Improved stability and efficiency of perovskite solar cells with submicron flexible barrier films deposited in air. J. Mater. Chem. A 5(44), 22975–22983 (2017). https://doi.org/10.1039/c7ta09178h
F. Bella, G. Griffini, J. Correa-Baena, G. Saracco, M. Graetzel et al., Improving efficiency and stability of perovskite solar cells with photocurable fluoropolymers. Science 354(6309), 203–206 (2016). https://doi.org/10.1126/science.aah4046
B. Li, M. Wang, R. Subair, G. Cao, J. Tian, Significant stability enhancement of perovskite solar cells by facile adhesive encapsulation. J. Phys. Chem. C 122(44), 25260–25267 (2018). https://doi.org/10.1021/acs.jpcc.8b09595
J. Idigoras, F. Aparicio, L. Contreras-Bernal, S. Ramos-Terron, M. Alcaire et al., Enhancing moisture and water resistance in perovskite solar cells by encapsulation with ultrathin plasma polymers. ACS Appl. Mater. Interfaces 10(14), 11587–11594 (2018). https://doi.org/10.1021/acsami.7b17824
Z. Fu, M. Xu, Y. Sheng, Z. Yan, J. Meng et al., Encapsulation of printable mesoscopic perovskite solar cells enables high temperature and long-term outdoor stability. Adv. Funct. Mater. 29(16), 1809129 (2019). https://doi.org/10.1002/adfm.201809129
Q. Dong, F. Liu, M. Wong, H. Tam, A. Djurisic et al., Encapsulation of perovskite solar cells for high humidity conditions. Chemsuschem 9(18), 2597–2603 (2016). https://doi.org/10.1002/cssc.201600868
J. Zhao, K. Brinkmann, T. Hu, N. Pourdavoud, T. Becker et al., Self-encapsulating thermostable and air-resilient semitransparent perovskite solar cells. Adv. Energy Mater. 7(14), 1602599 (2017). https://doi.org/10.1002/aenm.201602599
R. Cheacharoen, C. Boyd, G. Burkhard, T. Leijtens, J. Raiford et al., Encapsulating perovskite solar cells to withstand damp heat and thermal cycling. Sustain. Energy Fuels 2(11), 2398–2406 (2018). https://doi.org/10.1039/c8se00250a
F. Arabpour Roghabadi, N. Ahmadi, V. Ahmadi, A. Di Carlo, K. Aghmiuni et al., Bulk heterojunction polymer solar cell and perovskite solar cell: concepts, materials, current status, and opto-electronic properties. Sol. Energy 173, 407–424 (2018). https://doi.org/10.1016/j.solener.2018.07.058