A New Method for Fitting Current–Voltage Curves of Planar Heterojunction Perovskite Solar Cells
Corresponding Author: Mingkui Wang
Nano-Micro Letters,
Vol. 10 No. 1 (2018), Article Number: 5
Abstract
Herein we propose a new equivalent circuit including double heterojunctions in series to simulate the current–voltage characteristic of P–I–N planar structure perovskite solar cells. This new method can theoretically solve the dilemma of the parameter diode ideal factor being larger than 2 from an ideal single heterojunction equivalent circuit, which usually is in the range from 1 to 2. The diode ideal factor reflects PN junction quality, which influences the recombination at electron transport layer/perovskite and perovskite/hole transport layer interface. Based on the double PN junction equivalent circuit, we can also simulate the dark current–voltage curve for analyzing recombination current (Shockley–Read–Hall recombination) and diffusion current (including direct recombination), and thus carrier recombination and transportation characteristics. This new model offers an efficacious and simple method to investigate interfaces condition, film quality of perovskite absorbing layer and performance of transport layer, helping us further improve the device efficiency and analyze the working mechanism.
Highlights:
1 A universal and simple method to analyze current-voltage curves of planar heterojunction perovskite solar cells is proposed.
2 The new method theoretically solves the dilemma of the parameter diode ideal factor being larger than 2.
3 The dark current fitted with the new method helps to analyze physical processes of perovskite solar cells.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- C.R. Kagan, D.B. Mitzi, C.D. Dimitrakopoulos, Organic-inorganic hybrid materials as semiconducting channels in thin-film field-effect transistors. Science 286(5441), 945–947 (1999). doi:10.1126/science.286.5441.945
- H.S. Kim, C.R. Lee, J.H. Im, K.B. Lee, T. Moehl et al., Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep. 2(8), 591 (2012). doi:10.1038/srep00591
- J. Burschka, N. Pellet, S.J. Moon, R. Humphry-Baker, P. Gao, M.K. Nazeeruddin, M. Gratzel, Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499(7458), 316–319 (2013). doi:10.1038/nature12340
- F. Khan, S.N. Singh, M. Husain, Determination of diode parameters of a silicon solar cell from variation of slopes of the I-V curve at open circuit and short circuit conditions with the intensity of illumination. Semicond. Sci. Tech. 25(1), 015002 (2010). doi:10.1088/0268-1242/25/1/015002
- S.S. Hegedus, W.N. Shafarman, Thin-film solar cells: device measurements and analysis. Prog. Photovoltaics 12(2–3), 155–176 (2004). doi:10.1002/pip.518
- J. Kim, J.H. Yun, H. Kim, Y. Cho, H.H. Park, M.M.D. Kumar, J. Yi, W.A. Anderson, D.W. Kim, Transparent conductor-embedding nanocones for selective emitters: optical and electrical improvements of Si solar cells. Sci. Rep. 5(1), 9256 (2015). doi:10.1038/srep09256
- J.J. Shi, J. Dong, S.T. Lv, Y.Z. Xu, L.F. Zhu et al., Hole-conductor-free perovskite organic lead iodide heterojunction thin-film solar cells: high efficiency and junction property. Appl. Phys. Lett. 104(6), 063901 (2014). doi:10.1063/1.4864638
- L.T. Dou, Y. Yang, J.B. You, Z.R. Hong, W.H. Chang, G. Li, Y. Yang, Solution-processed hybrid perovskite photodetectors with high detectivity. Nat. Commun. 5, 5404 (2014). doi:10.1038/ncomms6404
- Y. Li, Z. Xu, S.L. Zhao, B. Qiao, D. Huang et al., Highly efficient P–I–N perovskite solar cells utilizing novel low-temperature solution-processed hole transport materials with linear pi-conjugated structure. Small 12(35), 4902–4908 (2016). doi:10.1002/smll.201601603
- L. Meng, J.B. You, T.F. Guo, Y. Yang, Recent advances in the inverted planar structure of perovskite solar cells. Accounts Chem. Res. 49(1), 155–165 (2016). doi:10.1021/acs.accounts.5b00404
- Z. Zhou, J. Xu, L. Xiao, J. Chen, Z.A. Tan, J.X. Yao, S.Y. Dai, Efficient planar perovskite solar cells prepared via a low-pressure vapor-assisted solution process with fullerene/TiO2 as an electron collection bilayer. RSC Adv. 6(82), 78585–78594 (2016). doi:10.1039/C6RA14372E
- D. Liu, C. Liu, L.L. Wu, W. Li, F. Chen, B.Q. Xiao, J.Q. Zhang, L.H. Feng, Highly reproducible perovskite solar cells with excellent CH3NH3PbI3-xClx film morphology fabricated via high precursor concentration. RSC Adv. 6(56), 51279–51285 (2016). doi:10.1039/C6RA07359J
- M.K. Wang, W.L. Yim, P.Z. Liao, Y. Shen, Temperature dependent characteristics of perovskite solar cells. ChemistrySelect 2(16), 4469–4477 (2017). doi:10.1002/slct.201700776
- G.J.A.H. Wetzelaer, M. Scheepers, A.M. Sempere, C. Momblona, J. Avila, H.J. Bolink, Trap-assisted non-radiative recombination in organic-inorganic perovskite solar cells. Adv. Mater. 27(11), 1837–1841 (2015). doi:10.1002/adma.201405372
- J.F. Lu, J. Bai, X.B. Xu, Z.H. Li, K. Cao, J. Cui, M.K. Wang, Alternate redox electrolytes in dye-sensitized solar cells. Chin. Sci. Bull. 57(32), 4131–4142 (2012). doi:10.1007/s11434-012-5409-3
- J.B. You, Y.M. Yang, Z.R. Hong, T.B. Song, L. Meng et al., Moisture assisted perovskite film growth for high performance solar cells. Appl. Phys. Lett. 105(18), 183902 (2014). doi:10.1063/1.4901510
- W.D. Zhu, C.X. Bao, Y. Wang, F.M. Li, X.X. Zhou et al., Coarsening of one-step deposited organolead triiodide perovskite films via Ostwald ripening for high efficiency planar-heterojunction solar cells. Dalton Trans. 45(18), 7856–7865 (2016). doi:10.1039/C6DT00900J
- X.D. Li, X.H. Liu, X.Y. Wang, L.X. Zhao, T.G. Jiu, J.F. Fang, Polyelectrolyte based hole-transporting materials for high performance solution processed planar perovskite solar cells. J. Mater. Chem. A 3(29), 15024–15029 (2015). doi:10.1039/C5TA04712A
- E.Z. Li, Y. Guo, T. Liu, W. Hu, N. Wang, H.C. He, H. Lin, Preheating-assisted deposition of solution-processed perovskite layer for an efficiency-improved inverted planar composite heterojunction solar cell. RSC Adv. 6(37), 30978–30985 (2016). doi:10.1039/C5RA27434F
- S. Yuan, Z.W. Qiu, H.L. Zhang, H.B. Gong, Y.F. Hao, B.Q. Cao, Oxygen influencing the photocarriers lifetime of CH3NH3Pbl3-xClx film grown by two-step interdiffusion method and its photovoltaic performance. Appl. Phys. Lett. 108(3), 033904 (2016). doi:10.1063/1.4940368
- J. Nelson, The Physics of Solar Cells (Imperial College Press, London, 2003)
- E. Edri, S. Kirmayer, S. Mukhopadhyay, K. Gartsman, G. Hodes, D. Cahen, Elucidating the charge carrier separation and working mechanism of CH3NH3PbI3-xClx perovskite solar cells. Nat. Commun. 5, 3461 (2014). doi:10.1038/ncomms4461
- X.X. Shai, L.J. Zuo, P.Y. Sun, P.Z. Liao, W.C. Huang et al., Efficient planar perovskite solar cells using halide Sr-substituted Pb perovskite. Nano Energy 36, 213–222 (2017). doi:10.1016/j.nanoen.2017.04.047
- J. Cui, P.F. Li, Z.F. Chen, K. Cao, D. Li et al., Phosphor coated NiO-based planar inverted organometallic halide perovskite solar cells with enhanced efficiency and stability. Appl. Phys. Lett. 109(17), 171103 (2016). doi:10.1063/1.4965838
- D. Li, J. Cui, H. Li, D.K. Huang, M.K. Wang, Y. Shen, Graphene oxide modified hole transport layer for CH3NH3PbI3 planar heterojunction solar cells. Sol. Energy 131, 176–182 (2016). doi:10.1016/j.solener.2016.02.049
- H. Luo, X.H. Lin, X. Hou, L.K. Pan, S.M. Huang, X.H. Chen, Efficient and air-stable planar perovskite solar cells formed on graphene-oxide-modified PEDOT:PSS hole transport layer. Nano-Micro Lett. 9(4), 39 (2017). doi:10.1007/s40820-017-0140-x
- D. Li, J. Cui, H. Zhang, H. Li, M.K. Wang, Y. Shen, Effect of hole transport layer in planar inverted perovskite solar cells. Chem. Lett. 45(1), 89–91 (2016). doi:10.1246/cl.150888
- K.Y. Yan, Z.H. Wei, T.K. Zhang, X.L. Zheng, M.Z. Long et al., Near-infrared photoresponse of one-sided abrupt MAPbI3/TiO2 heterojunction through a tunneling process. Adv. Funct. Mater. 26(46), 8545–8554 (2016). doi:10.1002/adfm.201602736
- B.G. Streetman, S.K. Banerjee, Solid State Electronic Devices (Prentice Hall, Upper Saddle River, 2006)
- E.K. Liu, B.S. Zhu, J.S. Luo, The Physics of Semiconductors (Publishing House of Electronics Industry, Beijing, 2012)
- S.D. Stranks, G.E. Eperon, G. Grancini, C. Menelaou, M.J.P. Alcocer, T. Leijtens, L.M. Herz, A. Petrozza, H.J. Snaith, Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342(6156), 341–344 (2013). doi:10.1126/science.1243982
- N. Tripathi, M. Yanagida, Y. Shirai, T. Masuda, L.Y. Han, K. Miyano, Hysteresis-free and highly stable perovskite solar cells produced via a chlorine-mediated interdiffusion method. J. Mater. Chem. A 3(22), 12081–12088 (2015). doi:10.1039/C5TA01668A
- E.M. Hutter, G.E. Eperon, S.D. Stranks, T.J. Savenije, Charge carriers in planar and meso-structured organic-inorganic perovskites: mobilities, lifetimes, and concentrations of trap states. J. Phys. Chem. Lett. 6(15), 3082–3090 (2015). doi:10.1021/acs.jpclett.5b01361
- J. Min, Z.G. Zhang, Y. Hou, C.O. Ramirez Quiroz, T. Przybilla et al., Interface engineering of perovskite hybrid solar cells with solution-processed perylene-diimide heterojunctions toward high performance. Chem. Mater. 27(1), 227–234 (2015). doi:10.1021/cm5037919
- E. Edri, S. Kirmayer, M. Kulbak, G. Hodes, D. Cahen, Chloride inclusion and hole transport material doping to improve methyl ammonium lead bromide perovskite-based high open-circuit voltage solar cells. J. Phys. Chem. Lett. 5(3), 429–433 (2014). doi:10.1021/jz402706q
- U. Wurfel, D. Neher, A. Spies, S. Albrecht, Impact of charge transport on current-voltage characteristics and power-conversion efficiency of organic solar cells. Nat. Commun. 6, 6951 (2015). doi:10.1038/ncomms7951
- S.M. Sze, K.K. Ng, Physics of Semiconductor Devices (Wiley, New York, 1981)
- W.J. Ke, G.J. Fang, J.W. Wan, H. Tao, Q. Liu et al., Efficient hole-blocking layer-free planar halide perovskite thin-film solar cells. Nat. Commun. 6, 6700 (2015). doi:10.1038/ncomms7700
- J. Dong, J.J. Shi, D.M. Li, Y.H. Luo, Q.B. Meng, Controlling the conduction band offset for highly efficient ZnO nanorods based perovskite solar cell. Appl. Phys. Lett. 107(7), 073507 (2015). doi:10.1063/1.4929435
- J. Qing, H.T. Chandran, Y.H. Cheng, X.K. Liu, H.W. Li, S.W. Tsang, M.F. Lo, C.S. Lee, Chlorine incorporation for enhanced performance of planar perovskite solar cell based on lead acetate precursor. ACS Appl. Mater. Interface 7(41), 23110–23116 (2015). doi:10.1021/acsami.5b06819
- Y.K. Wang, D.Z. Yang, X.K. Zhou, S.M. Alshehri, T. Ahamad, A. Vadim, D.G. Ma, Vapour-assisted multi-functional perovskite thin films for solar cells and photodetectors. J. Mater. Chem. C 4(31), 7415–7419 (2016). doi:10.1039/C6TC00747C
- H.Y. Zhang, J.J. Shi, X. Xu, L.F. Zhu, Y.H. Luo, D.M. Li, Q.B. Meng, Mg-doped TiO2 boosts the efficiency of planar perovskite solar cells to exceed 19%. J. Mater. Chem. A 4(40), 15383–15389 (2016). doi:10.1039/C6TA06879K
- J. Chen, J. Xu, L. Xiao, B. Zhang, S.Y. Dai, J.X. Yao, Mixed-organic-cation (FA)x(MA)1-xPbI3 planar perovskite solar cells with 16.48% efficiency via a low-pressure vapor-assisted solution process. ACS Appl. Mater. Interface 9(3), 2449–2458 (2017). doi:10.1021/acsami.6b13410
References
C.R. Kagan, D.B. Mitzi, C.D. Dimitrakopoulos, Organic-inorganic hybrid materials as semiconducting channels in thin-film field-effect transistors. Science 286(5441), 945–947 (1999). doi:10.1126/science.286.5441.945
H.S. Kim, C.R. Lee, J.H. Im, K.B. Lee, T. Moehl et al., Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep. 2(8), 591 (2012). doi:10.1038/srep00591
J. Burschka, N. Pellet, S.J. Moon, R. Humphry-Baker, P. Gao, M.K. Nazeeruddin, M. Gratzel, Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499(7458), 316–319 (2013). doi:10.1038/nature12340
F. Khan, S.N. Singh, M. Husain, Determination of diode parameters of a silicon solar cell from variation of slopes of the I-V curve at open circuit and short circuit conditions with the intensity of illumination. Semicond. Sci. Tech. 25(1), 015002 (2010). doi:10.1088/0268-1242/25/1/015002
S.S. Hegedus, W.N. Shafarman, Thin-film solar cells: device measurements and analysis. Prog. Photovoltaics 12(2–3), 155–176 (2004). doi:10.1002/pip.518
J. Kim, J.H. Yun, H. Kim, Y. Cho, H.H. Park, M.M.D. Kumar, J. Yi, W.A. Anderson, D.W. Kim, Transparent conductor-embedding nanocones for selective emitters: optical and electrical improvements of Si solar cells. Sci. Rep. 5(1), 9256 (2015). doi:10.1038/srep09256
J.J. Shi, J. Dong, S.T. Lv, Y.Z. Xu, L.F. Zhu et al., Hole-conductor-free perovskite organic lead iodide heterojunction thin-film solar cells: high efficiency and junction property. Appl. Phys. Lett. 104(6), 063901 (2014). doi:10.1063/1.4864638
L.T. Dou, Y. Yang, J.B. You, Z.R. Hong, W.H. Chang, G. Li, Y. Yang, Solution-processed hybrid perovskite photodetectors with high detectivity. Nat. Commun. 5, 5404 (2014). doi:10.1038/ncomms6404
Y. Li, Z. Xu, S.L. Zhao, B. Qiao, D. Huang et al., Highly efficient P–I–N perovskite solar cells utilizing novel low-temperature solution-processed hole transport materials with linear pi-conjugated structure. Small 12(35), 4902–4908 (2016). doi:10.1002/smll.201601603
L. Meng, J.B. You, T.F. Guo, Y. Yang, Recent advances in the inverted planar structure of perovskite solar cells. Accounts Chem. Res. 49(1), 155–165 (2016). doi:10.1021/acs.accounts.5b00404
Z. Zhou, J. Xu, L. Xiao, J. Chen, Z.A. Tan, J.X. Yao, S.Y. Dai, Efficient planar perovskite solar cells prepared via a low-pressure vapor-assisted solution process with fullerene/TiO2 as an electron collection bilayer. RSC Adv. 6(82), 78585–78594 (2016). doi:10.1039/C6RA14372E
D. Liu, C. Liu, L.L. Wu, W. Li, F. Chen, B.Q. Xiao, J.Q. Zhang, L.H. Feng, Highly reproducible perovskite solar cells with excellent CH3NH3PbI3-xClx film morphology fabricated via high precursor concentration. RSC Adv. 6(56), 51279–51285 (2016). doi:10.1039/C6RA07359J
M.K. Wang, W.L. Yim, P.Z. Liao, Y. Shen, Temperature dependent characteristics of perovskite solar cells. ChemistrySelect 2(16), 4469–4477 (2017). doi:10.1002/slct.201700776
G.J.A.H. Wetzelaer, M. Scheepers, A.M. Sempere, C. Momblona, J. Avila, H.J. Bolink, Trap-assisted non-radiative recombination in organic-inorganic perovskite solar cells. Adv. Mater. 27(11), 1837–1841 (2015). doi:10.1002/adma.201405372
J.F. Lu, J. Bai, X.B. Xu, Z.H. Li, K. Cao, J. Cui, M.K. Wang, Alternate redox electrolytes in dye-sensitized solar cells. Chin. Sci. Bull. 57(32), 4131–4142 (2012). doi:10.1007/s11434-012-5409-3
J.B. You, Y.M. Yang, Z.R. Hong, T.B. Song, L. Meng et al., Moisture assisted perovskite film growth for high performance solar cells. Appl. Phys. Lett. 105(18), 183902 (2014). doi:10.1063/1.4901510
W.D. Zhu, C.X. Bao, Y. Wang, F.M. Li, X.X. Zhou et al., Coarsening of one-step deposited organolead triiodide perovskite films via Ostwald ripening for high efficiency planar-heterojunction solar cells. Dalton Trans. 45(18), 7856–7865 (2016). doi:10.1039/C6DT00900J
X.D. Li, X.H. Liu, X.Y. Wang, L.X. Zhao, T.G. Jiu, J.F. Fang, Polyelectrolyte based hole-transporting materials for high performance solution processed planar perovskite solar cells. J. Mater. Chem. A 3(29), 15024–15029 (2015). doi:10.1039/C5TA04712A
E.Z. Li, Y. Guo, T. Liu, W. Hu, N. Wang, H.C. He, H. Lin, Preheating-assisted deposition of solution-processed perovskite layer for an efficiency-improved inverted planar composite heterojunction solar cell. RSC Adv. 6(37), 30978–30985 (2016). doi:10.1039/C5RA27434F
S. Yuan, Z.W. Qiu, H.L. Zhang, H.B. Gong, Y.F. Hao, B.Q. Cao, Oxygen influencing the photocarriers lifetime of CH3NH3Pbl3-xClx film grown by two-step interdiffusion method and its photovoltaic performance. Appl. Phys. Lett. 108(3), 033904 (2016). doi:10.1063/1.4940368
J. Nelson, The Physics of Solar Cells (Imperial College Press, London, 2003)
E. Edri, S. Kirmayer, S. Mukhopadhyay, K. Gartsman, G. Hodes, D. Cahen, Elucidating the charge carrier separation and working mechanism of CH3NH3PbI3-xClx perovskite solar cells. Nat. Commun. 5, 3461 (2014). doi:10.1038/ncomms4461
X.X. Shai, L.J. Zuo, P.Y. Sun, P.Z. Liao, W.C. Huang et al., Efficient planar perovskite solar cells using halide Sr-substituted Pb perovskite. Nano Energy 36, 213–222 (2017). doi:10.1016/j.nanoen.2017.04.047
J. Cui, P.F. Li, Z.F. Chen, K. Cao, D. Li et al., Phosphor coated NiO-based planar inverted organometallic halide perovskite solar cells with enhanced efficiency and stability. Appl. Phys. Lett. 109(17), 171103 (2016). doi:10.1063/1.4965838
D. Li, J. Cui, H. Li, D.K. Huang, M.K. Wang, Y. Shen, Graphene oxide modified hole transport layer for CH3NH3PbI3 planar heterojunction solar cells. Sol. Energy 131, 176–182 (2016). doi:10.1016/j.solener.2016.02.049
H. Luo, X.H. Lin, X. Hou, L.K. Pan, S.M. Huang, X.H. Chen, Efficient and air-stable planar perovskite solar cells formed on graphene-oxide-modified PEDOT:PSS hole transport layer. Nano-Micro Lett. 9(4), 39 (2017). doi:10.1007/s40820-017-0140-x
D. Li, J. Cui, H. Zhang, H. Li, M.K. Wang, Y. Shen, Effect of hole transport layer in planar inverted perovskite solar cells. Chem. Lett. 45(1), 89–91 (2016). doi:10.1246/cl.150888
K.Y. Yan, Z.H. Wei, T.K. Zhang, X.L. Zheng, M.Z. Long et al., Near-infrared photoresponse of one-sided abrupt MAPbI3/TiO2 heterojunction through a tunneling process. Adv. Funct. Mater. 26(46), 8545–8554 (2016). doi:10.1002/adfm.201602736
B.G. Streetman, S.K. Banerjee, Solid State Electronic Devices (Prentice Hall, Upper Saddle River, 2006)
E.K. Liu, B.S. Zhu, J.S. Luo, The Physics of Semiconductors (Publishing House of Electronics Industry, Beijing, 2012)
S.D. Stranks, G.E. Eperon, G. Grancini, C. Menelaou, M.J.P. Alcocer, T. Leijtens, L.M. Herz, A. Petrozza, H.J. Snaith, Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342(6156), 341–344 (2013). doi:10.1126/science.1243982
N. Tripathi, M. Yanagida, Y. Shirai, T. Masuda, L.Y. Han, K. Miyano, Hysteresis-free and highly stable perovskite solar cells produced via a chlorine-mediated interdiffusion method. J. Mater. Chem. A 3(22), 12081–12088 (2015). doi:10.1039/C5TA01668A
E.M. Hutter, G.E. Eperon, S.D. Stranks, T.J. Savenije, Charge carriers in planar and meso-structured organic-inorganic perovskites: mobilities, lifetimes, and concentrations of trap states. J. Phys. Chem. Lett. 6(15), 3082–3090 (2015). doi:10.1021/acs.jpclett.5b01361
J. Min, Z.G. Zhang, Y. Hou, C.O. Ramirez Quiroz, T. Przybilla et al., Interface engineering of perovskite hybrid solar cells with solution-processed perylene-diimide heterojunctions toward high performance. Chem. Mater. 27(1), 227–234 (2015). doi:10.1021/cm5037919
E. Edri, S. Kirmayer, M. Kulbak, G. Hodes, D. Cahen, Chloride inclusion and hole transport material doping to improve methyl ammonium lead bromide perovskite-based high open-circuit voltage solar cells. J. Phys. Chem. Lett. 5(3), 429–433 (2014). doi:10.1021/jz402706q
U. Wurfel, D. Neher, A. Spies, S. Albrecht, Impact of charge transport on current-voltage characteristics and power-conversion efficiency of organic solar cells. Nat. Commun. 6, 6951 (2015). doi:10.1038/ncomms7951
S.M. Sze, K.K. Ng, Physics of Semiconductor Devices (Wiley, New York, 1981)
W.J. Ke, G.J. Fang, J.W. Wan, H. Tao, Q. Liu et al., Efficient hole-blocking layer-free planar halide perovskite thin-film solar cells. Nat. Commun. 6, 6700 (2015). doi:10.1038/ncomms7700
J. Dong, J.J. Shi, D.M. Li, Y.H. Luo, Q.B. Meng, Controlling the conduction band offset for highly efficient ZnO nanorods based perovskite solar cell. Appl. Phys. Lett. 107(7), 073507 (2015). doi:10.1063/1.4929435
J. Qing, H.T. Chandran, Y.H. Cheng, X.K. Liu, H.W. Li, S.W. Tsang, M.F. Lo, C.S. Lee, Chlorine incorporation for enhanced performance of planar perovskite solar cell based on lead acetate precursor. ACS Appl. Mater. Interface 7(41), 23110–23116 (2015). doi:10.1021/acsami.5b06819
Y.K. Wang, D.Z. Yang, X.K. Zhou, S.M. Alshehri, T. Ahamad, A. Vadim, D.G. Ma, Vapour-assisted multi-functional perovskite thin films for solar cells and photodetectors. J. Mater. Chem. C 4(31), 7415–7419 (2016). doi:10.1039/C6TC00747C
H.Y. Zhang, J.J. Shi, X. Xu, L.F. Zhu, Y.H. Luo, D.M. Li, Q.B. Meng, Mg-doped TiO2 boosts the efficiency of planar perovskite solar cells to exceed 19%. J. Mater. Chem. A 4(40), 15383–15389 (2016). doi:10.1039/C6TA06879K
J. Chen, J. Xu, L. Xiao, B. Zhang, S.Y. Dai, J.X. Yao, Mixed-organic-cation (FA)x(MA)1-xPbI3 planar perovskite solar cells with 16.48% efficiency via a low-pressure vapor-assisted solution process. ACS Appl. Mater. Interface 9(3), 2449–2458 (2017). doi:10.1021/acsami.6b13410