Stable Superwetting Surface Prepared with Tilted Silicon Nanowires
Corresponding Author: Bo Wang
Nano-Micro Letters,
Vol. 8 No. 4 (2016), Article Number: 388-393
Abstract
Large-scale uniform nanostructured surface with superwettability is crucial in both fundamental research and engineering applications. A facile and controllable approach was employed to fabricate a superwetting tilted silicon nanowires (TSNWs) surface through metal-assisted chemical etching and modification with low-surface-energy material. The contact angle (CA) measurements of the nanostructured surface show a large range from the superhydrophilicity (the CA approximate to 0°) to superhydrophobicity (the CA up to 160°). The surface becomes antiadhesion to water upon nanostructuring with a measured sliding angle (α) close to 0°. Moreover, the fluorinated TSNWs surface exhibits excellent stability and durability because strong chemical bonding has been formed on the surface.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J. Zhang, S. Seeger, Polyester materials with superwetting silicone nanofi laments for oil/water separation and selective oil absorption. Adv. Funct. Mater. 21(24), 4699–4704 (2011). doi:10.1002/adfm.201101090
- P. Zhang, S. Wang, S. Wang, L. Jiang, Superwetting surfaces under different media: effects of surface topography on wettability. Small 11(16), 1939–1946 (2015). doi:10.1002/smll.201401869
- J. Drelich, E. Chibowski, D.D. Meng, K. Terpilowski, Hydrophilic and superhydrophilic surfaces and materials. Soft Matter 7(21), 9804–9828 (2011). doi:10.1039/c1sm05849e
- Y. Huang, D.K. Sarkar, X. Chen, Fabrication of superhydrophobic surfaces on aluminum alloy via electrodeposition of copper followed by electrochemical modification. Nano-Micro Lett. 3(3), 160–165 (2011). doi:10.3786/nml.v3i3.p160-165
- B. Xin, J. Hao, Reversibly switchable wettability. Chem. Soc. Rev. 39(2), 769–782 (2010). doi:10.1039/B913622C
- Y. Zhang, W. Cui, Y. Zhu, F. Zu, L. Liao, S.T. Lee, B. Sun, High efficiency hybrid PEDOT:PSS/nanostructured silicon Schottky junction solar cells by doping-free rear contact. Energ. Environ. Sci. 8(1), 297–302 (2015). doi:10.1039/C4EE02282C
- R. Ghosh, P.K. Giri, Efficient visible light photocatalysis and tunable photoluminescence from orientation controlled mesoporous Si nanowires. RSC Adv. 6(42), 35365–35377 (2016). doi:10.1039/C6RA05339D
- Y. Lai, F. Pan, C. Xu, H. Fuchs, L. Chi, In situ surface-modification-induced superhydrophobic patterns with reversible wettability and adhesion. Adv. Mater. 25(12), 1682–1868 (2013). doi:10.1002/adma.201203797
- T. Darmanin, F. Guittard, Wettability of conducting polymers: from superhydrophilicity to superoleophobicity. Prog. Polym. Sci. 39(4), 656–682 (2014). doi:10.1016/j.progpolymsci.2013.10.003
- Y. Coffinier, G. Piret, M.R. Das, R. Boukherroub, Effect of surface roughness and chemical composition on the wetting properties of silicon-based substrates. C. R. Chim. 16(1), 65–72 (2013). doi:10.1016/j.crci.2012.08.011
- L. Yin, Y. Wang, J. Ding, Q. Wang, Q. Chen, Water condensation on superhydrophobic aluminum surfaces with different low-surface-energy coatings. Appl. Surf. Sci. 258(8), 4063–4068 (2012). doi:10.1016/j.apsusc.2011.12.100
- E. Miele, M. Malerba, M. Dipalo, E. Rondanina, A. Toma, F.D. Angelis, Controlling wetting and self-assembly dynamics by tailored hydrophobic and oleophobic surfaces. Adv. Mater. 26(24), 4179–4183 (2014). doi:10.1002/adma.201400310
- X. Zhang, J. Zhang, Z. Ren, X. Li, X. Zhang, D. Zhu, T. Wang, T. Tian, B. Yang, Morphology and wettability control of silicon cone arrays using colloidal lithography. Langmuir 25(13), 7375–7382 (2009). doi:10.1021/la900258e
- H. Bellanger, T. Darmanin, E. Taffin de Givenchy, F. Guittard, Chemical and physical pathways for the preparation of superoleophobic surfaces and related wetting theories. Chem. Rev. 114(5), 2694–2716 (2014). doi:10.1021/cr400169m
- L. Gao, T.J. McCarthy, Contact angle hysteresis explained. Langmuir 22(14), 6234–6237 (2006). doi:10.1021/la060254j
- J. Ma, L. Wen, Z. Dong, T. Zhang, S. Wang, L. Jiang, Aligned silicon nanowires with fine-tunable tilting angles by metal-assisted chemical etching on off-cut wafers. Phys. Status Solidi R 7(9), 655–658 (2013). doi:10.1002/pssr.201307190
- R. Smith, S. Collins, Porous silicon formation mechanisms. J. Appl. Phys. 71(8), R1 (1992). doi:10.1063/1.350839
- V. Lehmann, The physics of macropore formation in low doped n-type silicon. J. Electrochem. Soc. 140(10), 2836–2843 (1993). doi:10.1149/1.2220919
- C.Y. Chen, C.P. Wong, Unveiling the shape-diversified silicon nanowires made by HF/HNO3 isotropic etching with the assistance of silver. Nanoscale 7(3), 1216–1223 (2015). doi:10.1039/C4NR05949B
- M. Christophersen, J. Carstensen, S. Rönnebeck, C. Jäger, W. Jäger, H. Föll, Crystal orientation dependence and anisotropic properties of macropore formation of p- and n-type silicon. J. Electrochem. Soc. 148(6), E267–E275 (2001). doi:10.1149/1.1369378
- M. Christophersen, J. Carstensen, A. Feuerhake, H. Föll, Crystal orientation and electrolyte dependence for macropore nucleation and stable growth on p-type Si. Mater. Sci. Eng. B 69–70, 194–198 (2000). doi:10.1016/S0921-5107(99)00262-7
- D. Quéré, Leidenfrost dynamics. Annual Rev. Fluid Mech. 45(1), 197–215 (2013). doi:10.1146/annurev-fluid-011212-140709
- P. Tsai, M.H.W. Hendrix, R.R.M. Dijkstra, L. Shui, D. Lohse, Microscopic structure influencing macroscopic splash at high Weber number. Soft Matter 7(24), 11325–11333 (2011). doi:10.1039/c1sm05801k
- S. Li, Y. Li, H. Li, L. Zhang, J. Zhai et al., Super-hydrophobic surfaces: from natural to artificial. Adv. Mater. 14(24), 1857–1860 (2002). doi:10.1002/adma.200290020
- B. Zhang, Y. Li, B. Hou, One-step electrodeposition fabrication of a superhydrophobic surface on an aluminum substrate with enhanced self-cleaning and anticorrosion properties. RSC Adv. 5(121), 100000–100010 (2015). doi:10.1039/C5RA21525K
- T.M. Schutzius, S. Jung, T. Maitra, G. Graeber, M. Kohme, D. Poulikakos, Spontaneous droplet trampolining on rigid superhydrophobic surfaces. Nature 527(7576), 82–85 (2015). doi:10.1038/nature15738
- J. Gu, P. Xiao, Y. Huang, J. Zhang, T. Chen, Controlled functionalization of carbon nanotubes as superhydrophobic material for adjustable oil/water separation. J. Mater. Chem. A 3(8), 4124–4128 (2015). doi:10.1039/C4TA07173E
- H.J. Jeong, D.K. Kim, S.B. Lee, S.H. Kwon, K. Kadono, Preparation of water-repellent glass by sol-gel process using perfluoroalkylsilane and tetraethoxysilane. J. Colloid Interf. Sci. 235(1), 130–134 (2001). doi:10.1006/jcis.2000.7313
References
J. Zhang, S. Seeger, Polyester materials with superwetting silicone nanofi laments for oil/water separation and selective oil absorption. Adv. Funct. Mater. 21(24), 4699–4704 (2011). doi:10.1002/adfm.201101090
P. Zhang, S. Wang, S. Wang, L. Jiang, Superwetting surfaces under different media: effects of surface topography on wettability. Small 11(16), 1939–1946 (2015). doi:10.1002/smll.201401869
J. Drelich, E. Chibowski, D.D. Meng, K. Terpilowski, Hydrophilic and superhydrophilic surfaces and materials. Soft Matter 7(21), 9804–9828 (2011). doi:10.1039/c1sm05849e
Y. Huang, D.K. Sarkar, X. Chen, Fabrication of superhydrophobic surfaces on aluminum alloy via electrodeposition of copper followed by electrochemical modification. Nano-Micro Lett. 3(3), 160–165 (2011). doi:10.3786/nml.v3i3.p160-165
B. Xin, J. Hao, Reversibly switchable wettability. Chem. Soc. Rev. 39(2), 769–782 (2010). doi:10.1039/B913622C
Y. Zhang, W. Cui, Y. Zhu, F. Zu, L. Liao, S.T. Lee, B. Sun, High efficiency hybrid PEDOT:PSS/nanostructured silicon Schottky junction solar cells by doping-free rear contact. Energ. Environ. Sci. 8(1), 297–302 (2015). doi:10.1039/C4EE02282C
R. Ghosh, P.K. Giri, Efficient visible light photocatalysis and tunable photoluminescence from orientation controlled mesoporous Si nanowires. RSC Adv. 6(42), 35365–35377 (2016). doi:10.1039/C6RA05339D
Y. Lai, F. Pan, C. Xu, H. Fuchs, L. Chi, In situ surface-modification-induced superhydrophobic patterns with reversible wettability and adhesion. Adv. Mater. 25(12), 1682–1868 (2013). doi:10.1002/adma.201203797
T. Darmanin, F. Guittard, Wettability of conducting polymers: from superhydrophilicity to superoleophobicity. Prog. Polym. Sci. 39(4), 656–682 (2014). doi:10.1016/j.progpolymsci.2013.10.003
Y. Coffinier, G. Piret, M.R. Das, R. Boukherroub, Effect of surface roughness and chemical composition on the wetting properties of silicon-based substrates. C. R. Chim. 16(1), 65–72 (2013). doi:10.1016/j.crci.2012.08.011
L. Yin, Y. Wang, J. Ding, Q. Wang, Q. Chen, Water condensation on superhydrophobic aluminum surfaces with different low-surface-energy coatings. Appl. Surf. Sci. 258(8), 4063–4068 (2012). doi:10.1016/j.apsusc.2011.12.100
E. Miele, M. Malerba, M. Dipalo, E. Rondanina, A. Toma, F.D. Angelis, Controlling wetting and self-assembly dynamics by tailored hydrophobic and oleophobic surfaces. Adv. Mater. 26(24), 4179–4183 (2014). doi:10.1002/adma.201400310
X. Zhang, J. Zhang, Z. Ren, X. Li, X. Zhang, D. Zhu, T. Wang, T. Tian, B. Yang, Morphology and wettability control of silicon cone arrays using colloidal lithography. Langmuir 25(13), 7375–7382 (2009). doi:10.1021/la900258e
H. Bellanger, T. Darmanin, E. Taffin de Givenchy, F. Guittard, Chemical and physical pathways for the preparation of superoleophobic surfaces and related wetting theories. Chem. Rev. 114(5), 2694–2716 (2014). doi:10.1021/cr400169m
L. Gao, T.J. McCarthy, Contact angle hysteresis explained. Langmuir 22(14), 6234–6237 (2006). doi:10.1021/la060254j
J. Ma, L. Wen, Z. Dong, T. Zhang, S. Wang, L. Jiang, Aligned silicon nanowires with fine-tunable tilting angles by metal-assisted chemical etching on off-cut wafers. Phys. Status Solidi R 7(9), 655–658 (2013). doi:10.1002/pssr.201307190
R. Smith, S. Collins, Porous silicon formation mechanisms. J. Appl. Phys. 71(8), R1 (1992). doi:10.1063/1.350839
V. Lehmann, The physics of macropore formation in low doped n-type silicon. J. Electrochem. Soc. 140(10), 2836–2843 (1993). doi:10.1149/1.2220919
C.Y. Chen, C.P. Wong, Unveiling the shape-diversified silicon nanowires made by HF/HNO3 isotropic etching with the assistance of silver. Nanoscale 7(3), 1216–1223 (2015). doi:10.1039/C4NR05949B
M. Christophersen, J. Carstensen, S. Rönnebeck, C. Jäger, W. Jäger, H. Föll, Crystal orientation dependence and anisotropic properties of macropore formation of p- and n-type silicon. J. Electrochem. Soc. 148(6), E267–E275 (2001). doi:10.1149/1.1369378
M. Christophersen, J. Carstensen, A. Feuerhake, H. Föll, Crystal orientation and electrolyte dependence for macropore nucleation and stable growth on p-type Si. Mater. Sci. Eng. B 69–70, 194–198 (2000). doi:10.1016/S0921-5107(99)00262-7
D. Quéré, Leidenfrost dynamics. Annual Rev. Fluid Mech. 45(1), 197–215 (2013). doi:10.1146/annurev-fluid-011212-140709
P. Tsai, M.H.W. Hendrix, R.R.M. Dijkstra, L. Shui, D. Lohse, Microscopic structure influencing macroscopic splash at high Weber number. Soft Matter 7(24), 11325–11333 (2011). doi:10.1039/c1sm05801k
S. Li, Y. Li, H. Li, L. Zhang, J. Zhai et al., Super-hydrophobic surfaces: from natural to artificial. Adv. Mater. 14(24), 1857–1860 (2002). doi:10.1002/adma.200290020
B. Zhang, Y. Li, B. Hou, One-step electrodeposition fabrication of a superhydrophobic surface on an aluminum substrate with enhanced self-cleaning and anticorrosion properties. RSC Adv. 5(121), 100000–100010 (2015). doi:10.1039/C5RA21525K
T.M. Schutzius, S. Jung, T. Maitra, G. Graeber, M. Kohme, D. Poulikakos, Spontaneous droplet trampolining on rigid superhydrophobic surfaces. Nature 527(7576), 82–85 (2015). doi:10.1038/nature15738
J. Gu, P. Xiao, Y. Huang, J. Zhang, T. Chen, Controlled functionalization of carbon nanotubes as superhydrophobic material for adjustable oil/water separation. J. Mater. Chem. A 3(8), 4124–4128 (2015). doi:10.1039/C4TA07173E
H.J. Jeong, D.K. Kim, S.B. Lee, S.H. Kwon, K. Kadono, Preparation of water-repellent glass by sol-gel process using perfluoroalkylsilane and tetraethoxysilane. J. Colloid Interf. Sci. 235(1), 130–134 (2001). doi:10.1006/jcis.2000.7313